Free University of Bozen-Bolzano - Faculty of Computer Science Master of Science in Computer Science
 Theory of Computing - A.A. 2005/2006
 Midterm exam - 23/11/2005

Time: 90 minutes

Problem 1.1 [4.5 points] Decide which of the following statements is TRUE and which is FALSE. You must give a brief explanation of your answer to receive full credit.
(a) For all languages L_{1} and L_{2}, it holds that $\left(L_{1} \cdot L_{2}\right)^{*}=\left(L_{1} \cup L_{2}\right)^{*}$.
(b) If L_{1} is non-regular and L_{2} is non-regular, then $L_{1} \cup L_{2}$ must be non-regular.
(c) There exists a language L such that $L=L \cdot L$.

Problem 1.2 [1.5 points] Find a regular expression for the set of binary strings that have both 00 and 11 as substrings.

Problem 1.3 [2 points] Explain what is wrong in the following argument: "Let L be a language that is not regular. Since regular languages are closed under the $*$ operator, we have that also L^{*} is not regular."

Problem 1.4 [6 points] Consider the following DFA A over $\{0,1\}$:

Construct a regular expression E such that $\mathcal{L}(E)=\mathcal{L}(A)$. Illustrate the steps of the algorithm you have followed to construct E.

Problem 1.5 [6 points] Consider the following DFA A over $\{0,1\}$:

Construct a DFA A_{m} with minimal number of states such that $\mathcal{L}\left(A_{m}\right)=\mathcal{L}(A)$. Illustrate the steps of the algorithm you have followed to construct A_{m}.

Problem 1.6 [4 points] Show that the language $\left\{a^{m} b^{n} c^{p} d^{q} \mid m+n=p+q\right\}$ is context free by exhibiting a context free grammar that generates it.

Problem 1.7 [6 points] Consider the grammar $G=(\{S, A, B\},\{0,1\}, P, S)$, where P consists of the following productions

$$
\begin{array}{lll}
S & \longrightarrow & A \mid B \\
A & \longrightarrow & 0 A|A A 1| 0 \\
B & \longrightarrow & B 1|0 B B| 1
\end{array}
$$

Prove that in every word of the language $\mathcal{L}(G)$ the number of 0 's and the number of 1 's are different.

