Free University of Bozen-Bolzano - Faculty of Computer Science Master of Science in Computer Science
 Theory of Computing - A.A. 2004/2005
 Final exam - 7/6/2005 - Part 2

Solutions

Problem 2.1 [6 points] Decide which of the following statements is TRUE and which is FALSE. You must give a brief explanation of your answer to receive full credit.
(a) For all languages L, if L is in NP, then its complement \bar{L} is in P .
(b) For all languages L_{1} and L_{2}, if L_{1} is in P and $L_{1}<_{p o l y} L_{2}$, then L_{2} is in NP.
(c) The class NP is closed under intersection.
(d) There exists a language L such that L is recursively enumerable and \bar{L} is recursive.

Solution:

(a) If L is in NP, then its complement \bar{L} is in coNP. In fact, we do not know whether coNP is equal to P or not, so we do not know whether the statement is TRUE or FALSE.
(b) FALSE. If we know that L_{1} is in P and $L_{1}<_{\text {poly }} L_{2}$, then we have in fact no upper bound on L_{2}, and in particular we do not know whether L_{2} is in NP.
(c) TRUE. Given two NTM M_{1} and M_{2} accepting respectively L_{1} and L_{2} in polynomial time, we can construct an NTM M accepting $L_{1} \cap L_{2}$ in polynomial time as follows. M is a 2-tape TM that first copies the content of the input tape (tape 1) to tape 2, then runs M_{1} on tape 1 , and from the accepting state of M_{1} moves to a state that runs M_{2} on tape $2 . M$ accepts if M_{2} accepts. Since M_{1} and M_{2} run in polynomial time, and the additional bookkeeping can be done in polynomial time, also M runs in polynomial time. Moreover, the 2-tape TM can be simulated in polynomial time by a 1-tape TM.
(d) TRUE. Every recursive language is such a language (and all such languages are recursive). Indeed, a recursive language is recursively enumerable and its complement \bar{L} is recursive. (Note that L should be "recursively enumerable", and not "recursively enumerable and nonrecursive".)

Problem 2.2 [6 points] Consider the context-free grammar $G=(\{S, A, B\},\{a, b, c\}, P, S)$, where P consists of the following productions

$$
\begin{aligned}
& S \longrightarrow a A \\
& A \longrightarrow B A \mid a \\
& B \longrightarrow b S \mid c S
\end{aligned}
$$

Construct a PDA M that accepts $\mathcal{L}(G)$ by empty stack. Draw the parse tree of G for the string $a b a a a$, and show the corresponding execution trace for M.

Solution: Parse tree for the string abaaa:

$M=\left(\left\{q_{0}\right\},\{a, b, c\},\{a, b, c, S, A, B\}, \delta, q_{0}, S, \emptyset\right)$, with δ defined as follows:

$$
\begin{array}{ll}
\delta\left(q_{0}, \varepsilon, S\right)=\left\{\left(q_{0}, a A\right)\right\} & \delta\left(q_{0}, a, a\right)=\left\{\left(q_{0}, \varepsilon\right)\right\} \\
\delta\left(q_{0}, \varepsilon, A\right)=\left\{\left(q_{0}, B A\right),\left(q_{0}, a\right)\right\} & \delta\left(q_{0}, b, b\right)=\left\{\left(q_{0}, \varepsilon\right)\right\} \\
\delta\left(q_{0}, \varepsilon, B\right)=\left\{\left(q_{0}, b S\right),\left(q_{0}, c S\right)\right\} & \delta\left(q_{0}, c, c\right)=\left\{\left(q_{0}, \varepsilon\right)\right\}
\end{array}
$$

Execution trace of M for the string abaaa: $\left(q_{0}, a b a a a, S\right) \vdash\left(q_{0}, a b a a a, a A\right) \vdash\left(q_{0}, b a a a, A\right) \vdash$ $\left(q_{0}, b a a a, B A\right) \vdash\left(q_{0}, b a a a, b S A\right) \vdash\left(q_{0}, a a a, S A\right) \vdash\left(q_{0}, a a a, a A A\right) \vdash\left(q_{0}, a a, A A\right) \vdash\left(q_{0}, a a, a A\right) \vdash$ $\left(q_{0}, a, A\right) \vdash\left(q_{0}, a, a\right) \vdash\left(q_{0}, \varepsilon, \varepsilon\right)$

Problem 2.3 [6 points] Consider the context free grammar $G=(\{S, A, B, C\},\{a, b\}, P, S)$ where P consists of the following productions:

$$
\begin{array}{ll}
S \longrightarrow a A b|b B a| A A & B \\
A \longrightarrow S \mid B & C \longrightarrow C \mid \varepsilon
\end{array}
$$

Convert G into Chomsky Normal Form. Illustrate the various steps of the algorithm.

Solution:

1. Eliminate ε-productions. The nullable non-terminal symbols are C, B, A, S, i.e., all nonterminals. By eliminating ε-productions (except for the start symbol S) we obtain the grammar G_{1} accepting $\mathcal{L}(G) \backslash\{\varepsilon\}$:

$$
\begin{array}{ll}
S \longrightarrow a A b|b B a| A A|a b| b a \mid A & B \longrightarrow C \\
A \longrightarrow S \mid B & C \longrightarrow S
\end{array}
$$

2. Eliminate unit productions. We have that

$$
S \Rightarrow A \Rightarrow B \Rightarrow C \Rightarrow S \Rightarrow a A b|b B a| A A|a b| b a
$$

Hence, by eliminating the unit productions we obtain the grammar G_{2} equivalent to G_{1} :

$$
\begin{aligned}
& S \longrightarrow a A b|b B a| A A|a b| b a \\
& A \longrightarrow a A b|b B a| A A|a b| b a \\
& B \longrightarrow a A b|b B a| A A|a b| b a \\
& C \longrightarrow a A b|b B a| A A|a b| b a
\end{aligned}
$$

3. Eliminate non-generating symbols. All symbols are generating.
4. Eliminate unreachable symbols. The symbol C is unreachable. By eliminating C and the productions involving C we obtain the grammar G_{3} equivalent to G_{2} :

$$
\begin{aligned}
& S \longrightarrow a A b|b B a| A A|a b| b a \\
& A \longrightarrow a A b|b B a| A A|a b| b a \\
& B \longrightarrow a A b|b B a| A A|a b| b a
\end{aligned}
$$

5. Convert into Chomsky Normal Form. By arranging bodies of length 2 or more to consist only of variables, and then breaking bodies of length 3 or more into a cascade of productions, we obtain the grammar G_{4} that is in Chomsky Normal Form and is equivalent to G_{3}, and hence to G_{2}, G_{1}, and G :

$$
\begin{array}{llll}
S & \longrightarrow & A^{\prime} D\left|B^{\prime} E\right| A A\left|A^{\prime} B^{\prime}\right| B^{\prime} A^{\prime} & A^{\prime} \longrightarrow a \\
A \longrightarrow A^{\prime} D\left|B^{\prime} E\right| A A\left|A^{\prime} B^{\prime}\right| B^{\prime} A^{\prime} & B^{\prime} \longrightarrow b \\
B \longrightarrow A^{\prime} D\left|B^{\prime} E\right| A A\left|A^{\prime} B^{\prime}\right| B^{\prime} A^{\prime} & D & \longrightarrow A B^{\prime} \\
B & E & \longrightarrow B A^{\prime}
\end{array}
$$

Problem 2.4 [6 points] Describe how to obtain, for any given TM M, a new TM M^{\prime} such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$, but when M^{\prime} halts its tape is exactly as in the initial configuration (i.e., it contains the input string w, and the head of M^{\prime} is positioned on the leftmost symbol of w). You can make use of standard constructions presented in the course.

Solution: Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \mathrm{~B}, F\right)$. Without loss of generality, we can assume that the tape alphabet Γ does not contain the symbol \sharp, that there is a single final state q_{f}, i.e., $F=\left\{q_{f}\right\}$, and that δ does not contain transitions from q_{f}. We first construct a 2-tape TM M^{\prime} that performs the same transitions as M, except for the following modifications:

1. It first copies the content of tape 1 (the input tape) to tape 2 , positions the head on the first symbol of tape 1 , and then moves to the initial state q_{0} of M.
2. Whenever M would write a B on the tape, M^{\prime} writes a \sharp instead (we have assumed that \sharp is not part of the tape alphabet of M). This will allow M^{\prime} to erase the tape content at the end.
3. For each transition $\delta(q, \mathrm{~B})=\left(q^{\prime}, x, d\right)$ of M, M^{\prime} contains also a transition $\delta(q, \sharp)=\left(q^{\prime}, y, d\right)$, where $y=x$ if $x \neq \mathrm{B}$, and $y=\sharp$ if $x=\mathrm{B}$. This takes into account that M^{\prime} behaves on a \sharp exactly in the same way as M does on a B.
4. The accepting state q_{f} of M is not accepting for M^{\prime}. Instead, M^{\prime} contains the following transitions:

$$
\begin{array}{lll}
\delta\left(q_{f}, x\right)=\left(q_{r}^{a}, x, R\right), & & \text { for each } x \in \Sigma \cup\{\sharp\} \\
\delta\left(q_{r}^{a}, x\right)=\left(q_{r}^{a}, x, R\right), & & \text { for each } x \in \Sigma \cup\{\sharp\} \backslash\{\mathrm{B}\} \\
\delta\left(q_{r}^{a}, \mathrm{~B}\right)=\left(q_{e}^{a}, \mathrm{~B}, L\right) & & \\
\delta\left(q_{e}^{a}, x\right)=\left(q_{e}^{a}, \mathrm{~B}, L\right), & & \text { for each } x \in \Sigma \cup\{\sharp\} \backslash\{\mathrm{B}\} \\
\delta\left(q_{e}^{a}, \mathrm{~B}\right)=\left(q_{c}^{a}, \mathrm{~B}, R\right) &
\end{array}
$$

Notice that we have written the above transitions as if M^{\prime} were a single-tape TM, i.e., ignoring tape 2. Intuitively, when in q_{f}, M^{\prime} switches to q_{r}^{a} in which it sweeps to the rightmost symbol on the tape. Then it switches to q_{e}^{a} from where it sweeps left till it finds a B, erasing the tape while doing so. Then it moves to state q_{c}^{a}.
From state q_{c}^{a}, M^{\prime} copies the content of tape 2 to tape 1 , and then positions head 1 on the leftmost symbol on tape 1 , and moves to an accepting state.
5. Similarly as for the moves above from the accepting state q_{f}, for each state q and tape symbol x for which $\delta(q, x)$ is undefined, M^{\prime} contains a transition $\delta(q, x)=\left(q_{r}^{n}, x, R\right)$, and then transitions for states q_{r}^{n}, q_{e}^{n}, and q_{c}^{n} that are analogous to those for states q_{r}^{a}, q_{e}^{a}, and q_{c}^{a}, respectively, except that, in this case, at the end M^{\prime} rejects instead of accepting.

Finally, we can convert M^{\prime} to a single-tape TM using the standard construction.

Problem 2.5 [6 points] For a TM M, let $\mathcal{E}(M)$ denote the encoding of M. Consider the language $L=\{\mathcal{E}(M) \mid M$, when started on a blank tape eventually writes a 1 somewhere on the tape $\}$.
(a) Show that L is recursively enumerable. [Hint: Make use of a universal TM.]
(b) Show that L is not recursive. [Hint: Exploit a reduction from the halting problem.]

Solution:

(a) We can construct a TM M_{L} that accepts L as follows. We first let M_{L} transform its input $\mathcal{E}(M)$ so that it becomes the encoding of the pair $\langle\mathcal{E}(M), \varepsilon\rangle$. Then M_{L} behaves as a universal TM U, except that, when U would accept, M_{L} blocks in a non-final state, and when U would write a 1 on the tape, M_{L} moves instead to an accepting state.
(b) Let $H=\{\mathcal{E}(M) \mid M$, when started on a blank tape eventually halts $\}$ be the halting language, i.e., the language of codes of TMs that halt on the blank tape. Given a TM M, we show how to convert it to a TM M^{\prime} such that $\mathcal{E}(M) \in H$ if and only if $\mathcal{E}\left(M^{\prime}\right) \in L$. The conversion we are going to describe is such that it can be performed by a TM that always terminates, i.e., an algorithm, that takes $\mathcal{E}(M)$ as input and leaves $\mathcal{E}\left(M^{\prime}\right)$ as output on the tape. Hence, it provides a reduction from the halting language H to the language L. Since H is not recursive, neither can be L.
To obtain M^{\prime}, the TM M is modified as follows:

1. All occurrences of symbol 1 in the transitions of M (either read or written) are replaced in M^{\prime} with \sharp, where \sharp is a new symbols not occurring in the tape alphabet of M.
2. The final states of M are no longer final in M^{\prime}. Instead, for each final state q_{f} of M, we add to M^{\prime} transitions $\delta\left(q_{f}, x\right)=\left(q_{f}, 1, R\right)$, for every tape symbol x.
3. Similarly, for each state q and tape symbol x for which $\delta(q, x)$ is undefined in M (and hence M would block), we add to M^{\prime} a transition $\delta(q, x)=\left(q_{f}, 1, R\right)$.

It is easy to see that M will eventually halt when started on the blank tape if and only if M^{\prime} will eventually write a 1 somewhere on the tape.

