
Free University of Bozen-Bolzano – Faculty of Computer Science
Master of Science in Computer Science
Theory of Computing – A.A. 2004/2005

Final exam – 7/6/2005 – Part 2

Solutions

Problem 2.1 [6 points] Decide which of the following statements is TRUE and which is FALSE.
You must give a brief explanation of your answer to receive full credit.

(a) For all languages L, if L is in NP, then its complement L is in P.

(b) For all languages L1 and L2, if L1 is in P and L1 <poly L2, then L2 is in NP.

(c) The class NP is closed under intersection.

(d) There exists a language L such that L is recursively enumerable and L is recursive.

Solution:

(a) If L is in NP, then its complement L is in coNP. In fact, we do not know whether coNP is
equal to P or not, so we do not know whether the statement is TRUE or FALSE.

(b) FALSE. If we know that L1 is in P and L1 <poly L2, then we have in fact no upper bound on
L2, and in particular we do not know whether L2 is in NP.

(c) TRUE. Given two NTM M1 and M2 accepting respectively L1 and L2 in polynomial time, we
can construct an NTM M accepting L1 ∩ L2 in polynomial time as follows. M is a 2-tape
TM that first copies the content of the input tape (tape 1) to tape 2, then runs M1 on tape 1,
and from the accepting state of M1 moves to a state that runs M2 on tape 2. M accepts if
M2 accepts. Since M1 and M2 run in polynomial time, and the additional bookkeeping can
be done in polynomial time, also M runs in polynomial time. Moreover, the 2-tape TM can
be simulated in polynomial time by a 1-tape TM.

(d) TRUE. Every recursive language is such a language (and all such languages are recursive).
Indeed, a recursive language is recursively enumerable and its complement L is recursive.
(Note that L should be “recursively enumerable”, and not “recursively enumerable and non-
recursive”.)

Problem 2.2 [6 points] Consider the context-free grammar G = ({S, A,B}, {a, b, c}, P, S), where
P consists of the following productions

S −→ aA
A −→ BA | a
B −→ bS | cS

Construct a PDA M that accepts L(G) by empty stack. Draw the parse tree of G for the string
abaaa, and show the corresponding execution trace for M .

Solution: Parse tree for the string abaaa:

b

A a
A a

a
SB

A
S

a

M = ({q0}, {a, b, c}, {a, b, c, S, A, B}, δ, q0, S, ∅), with δ defined as follows:

δ(q0, ε, S) = {(q0, aA)}
δ(q0, ε, A) = {(q0, BA), (q0, a)}
δ(q0, ε, B) = {(q0, bS), (q0, cS)}

δ(q0, a, a) = {(q0, ε)}
δ(q0, b, b) = {(q0, ε)}
δ(q0, c, c) = {(q0, ε)}

Execution trace of M for the string abaaa: (q0, abaaa, S) ` (q0, abaaa, aA) ` (q0, baaa, A) `
(q0, baaa, BA) ` (q0, baaa, bSA) ` (q0, aaa, SA) ` (q0, aaa, aAA) ` (q0, aa,AA) ` (q0, aa, aA) `
(q0, a, A) ` (q0, a, a) ` (q0, ε, ε)

Problem 2.3 [6 points] Consider the context free grammar G = ({S, A,B, C}, {a, b}, P, S) where
P consists of the following productions:

S −→ aAb | bBa | AA
A −→ S | B

B −→ C
C −→ S | ε

Convert G into Chomsky Normal Form. Illustrate the various steps of the algorithm.

Solution:

1. Eliminate ε-productions. The nullable non-terminal symbols are C, B,A, S, i.e., all non-
terminals. By eliminating ε-productions (except for the start symbol S) we obtain the gram-
mar G1 accepting L(G) \ {ε}:

S −→ aAb | bBa | AA | ab | ba | A
A −→ S | B

B −→ C
C −→ S

2. Eliminate unit productions. We have that

S ⇒ A ⇒ B ⇒ C ⇒ S ⇒ aAb | bBa | AA | ab | ba

Hence, by eliminating the unit productions we obtain the grammar G2 equivalent to G1:

S −→ aAb | bBa | AA | ab | ba
A −→ aAb | bBa | AA | ab | ba
B −→ aAb | bBa | AA | ab | ba
C −→ aAb | bBa | AA | ab | ba

3. Eliminate non-generating symbols. All symbols are generating.

4. Eliminate unreachable symbols. The symbol C is unreachable. By eliminating C and the
productions involving C we obtain the grammar G3 equivalent to G2:

S −→ aAb | bBa | AA | ab | ba
A −→ aAb | bBa | AA | ab | ba
B −→ aAb | bBa | AA | ab | ba

5. Convert into Chomsky Normal Form. By arranging bodies of length 2 or more to consist only
of variables, and then breaking bodies of length 3 or more into a cascade of productions, we
obtain the grammar G4 that is in Chomsky Normal Form and is equivalent to G3, and hence
to G2, G1, and G:

S −→ A′D | B′E | AA | A′B′ | B′A′

A −→ A′D | B′E | AA | A′B′ | B′A′

B −→ A′D | B′E | AA | A′B′ | B′A′

A′ −→ a
B′ −→ b
D −→ AB′

E −→ BA′

Problem 2.4 [6 points] Describe how to obtain, for any given TM M , a new TM M ′ such that
L(M ′) = L(M), but when M ′ halts its tape is exactly as in the initial configuration (i.e., it contains
the input string w, and the head of M ′ is positioned on the leftmost symbol of w). You can make
use of standard constructions presented in the course.

Solution: Let M = (Q,Σ, Γ, δ, q0, B, F). Without loss of generality, we can assume that the tape
alphabet Γ does not contain the symbol], that there is a single final state qf , i.e., F = {qf}, and
that δ does not contain transitions from qf . We first construct a 2-tape TM M ′ that performs the
same transitions as M , except for the following modifications:

1. It first copies the content of tape 1 (the input tape) to tape 2, positions the head on the first
symbol of tape 1, and then moves to the initial state q0 of M .

2. Whenever M would write a B on the tape, M ′ writes a] instead (we have assumed that] is
not part of the tape alphabet of M). This will allow M ′ to erase the tape content at the end.

3. For each transition δ(q, B) = (q′, x, d) of M , M ′ contains also a transition δ(q,]) = (q′, y, d),
where y = x if x 6= B, and y =] if x = B. This takes into account that M ′ behaves on a]
exactly in the same way as M does on a B.

4. The accepting state qf of M is not accepting for M ′. Instead, M ′ contains the following
transitions:

δ(qf , x) = (qa
r , x, R), for each x ∈ Σ ∪ {]}

δ(qa
r , x) = (qa

r , x, R), for each x ∈ Σ ∪ {]} \ {B}
δ(qa

r , B) = (qa
e , B, L)

δ(qa
e , x) = (qa

e , B, L), for each x ∈ Σ ∪ {]} \ {B}
δ(qa

e , B) = (qa
c , B, R)

Notice that we have written the above transitions as if M ′ were a single-tape TM, i.e., ignoring
tape 2. Intuitively, when in qf , M ′ switches to qa

r in which it sweeps to the rightmost symbol
on the tape. Then it switches to qa

e from where it sweeps left till it finds a B, erasing the tape
while doing so. Then it moves to state qa

c .

From state qa
c , M ′ copies the content of tape 2 to tape 1, and then positions head 1 on the

leftmost symbol on tape 1, and moves to an accepting state.

5. Similarly as for the moves above from the accepting state qf , for each state q and tape
symbol x for which δ(q, x) is undefined, M ′ contains a transition δ(q, x) = (qn

r , x,R), and
then transitions for states qn

r , qn
e , and qn

c that are analogous to those for states qa
r , qa

e , and
qa
c , respectively, except that, in this case, at the end M ′ rejects instead of accepting.

Finally, we can convert M ′ to a single-tape TM using the standard construction.

Problem 2.5 [6 points] For a TM M , let E(M) denote the encoding of M . Consider the language
L = {E(M) | M , when started on a blank tape eventually writes a 1 somewhere on the tape}.

(a) Show that L is recursively enumerable. [Hint : Make use of a universal TM.]

(b) Show that L is not recursive. [Hint : Exploit a reduction from the halting problem.]

Solution:

(a) We can construct a TM ML that accepts L as follows. We first let ML transform its input
E(M) so that it becomes the encoding of the pair 〈E(M), ε〉. Then ML behaves as a universal
TM U , except that, when U would accept, ML blocks in a non-final state, and when U would
write a 1 on the tape, ML moves instead to an accepting state.

(b) Let H = {E(M) | M , when started on a blank tape eventually halts} be the halting language,
i.e., the language of codes of TMs that halt on the blank tape. Given a TM M , we show how
to convert it to a TM M ′ such that E(M) ∈ H if and only if E(M ′) ∈ L. The conversion we
are going to describe is such that it can be performed by a TM that always terminates, i.e.,
an algorithm, that takes E(M) as input and leaves E(M ′) as output on the tape. Hence, it
provides a reduction from the halting language H to the language L. Since H is not recursive,
neither can be L.

To obtain M ′, the TM M is modified as follows:

1. All occurrences of symbol 1 in the transitions of M (either read or written) are replaced
in M ′ with], where] is a new symbols not occurring in the tape alphabet of M .

2. The final states of M are no longer final in M ′. Instead, for each final state qf of M , we
add to M ′ transitions δ(qf , x) = (qf , 1, R), for every tape symbol x.

3. Similarly, for each state q and tape symbol x for which δ(q, x) is undefined in M (and
hence M would block), we add to M ′ a transition δ(q, x) = (qf , 1, R).

It is easy to see that M will eventually halt when started on the blank tape if and only if M ′

will eventually write a 1 somewhere on the tape.

