Free University of Bozen-Bolzano - Faculty of Computer Science Master of Science in Computer Science
 Theory of Computing - A.A. 2004/2005
 Final exam - 7/6/2005 - Part 1

Solutions

Problem 1.1 [4.5 points] Decide which of the following statements is TRUE and which is FALSE. You must give a brief explanation of your answer to receive full credit.
(a) For all languages L_{1} and L_{2}, it holds that $L_{1}^{*} \cap L_{2}^{*}=\left(L_{1} \cap L_{2}\right)^{*}$.
(b) If L_{1} is regular and L_{2} is non-regular, then $L_{1} \cup L_{2}$ must be non-regular.
(c) There exists a language L such that L is not regular but L^{*} is regular.

Solution:

(a) FALSE. Consider for example $L_{1}=\{a\}$ and $L_{2}=\{a a\}$. Then $L_{1}^{*} \cap L_{2}^{*}=(a a)^{*}$, but $L_{1} \cap L_{2}=\emptyset$, and hence $\left(L_{1} \cap L_{2}\right)^{*}=\varepsilon$.
(b) FALSE. Consider for example $L_{1}=\Sigma^{*}$ and L_{2} some arbitrary language over Σ. Then $L_{1} \cup L_{2}=$ Σ^{*}, which is regular.
(c) TRUE. Consider $L=\{a\} \cup\left\{a^{n} \mid n\right.$ is prime $\}$. Then L is not regular. On the other hand, $L^{*}=a^{*}$, since already $a \in L$ generates in L^{*} strings of arbitrary length of a 's. Hence L^{*} is regular.

Problem 1.2 [1.5 points] Show that $L^{*}=L \cdot L^{*}$ if and only if $\varepsilon \in L$.

Solution: Let $L^{+}=L \cdot L^{*}$. By definition, $L^{*}=\bigcup_{n \geq 0} L^{n}$, and $L^{+}=L \cdot L^{*}=\bigcup_{n \geq 1} L^{n}$. Hence, $L^{+} \subseteq L^{*}$, and L^{+}and L^{*} might differ only due to $L^{0}=\varepsilon$. If $\varepsilon \in L$, then also $\varepsilon \in L^{+}$, and hence $L^{+}=L^{*}$. If $\varepsilon \notin L$, then also $\varepsilon \notin L^{+}$, while $\varepsilon \in L^{*}$, and hence $L^{+} \neq L^{*}$.

Problem 1.3 [6 points] Consider the regular expression $E=\left((1 \cdot 0)^{*} \cdot 0\right)^{*}+(1 \cdot 1)$. Construct an ε-NFA A_{ε} such that $\mathcal{L}\left(A_{\varepsilon}\right)=\mathcal{L}(E)$. Simplify intermediate results whenever possible. Then, by eliminating ε-transitions from A_{ε}, construct an NFA A such that $\mathcal{L}(A)=\mathcal{L}\left(A_{\varepsilon}\right)$. Illustrate the steps of the algorithm you have followed to construct A_{ε} and A.

Solution: Construction of A_{ε} :
$1 \cdot 0$
$(1 \cdot 0)^{*}$
$(1 \cdot 0)^{*} \quad$ simplified
$(1 \cdot 0)^{*} \cdot 0$
$\left((1 \cdot 0)^{*} \cdot 0\right)^{*}$
$\left((1 \cdot 0)^{*} \cdot 0\right)^{*}$ simplified

$\left((1 \cdot 0)^{*} \cdot 0\right)^{*}+(1 \cdot 1)$
$\left((1 \cdot 0)^{*} \cdot 0\right)^{*}+(1 \cdot 1)$
simplified

Construction of A : Let $A_{\varepsilon}=\left(Q, \Sigma, \delta_{\varepsilon}, q_{0}, F_{\varepsilon}\right)$. Then $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\delta(q, a)=\operatorname{Eclose}\left(\bigcup_{p_{i} \in \operatorname{Eclose}(q)} \delta_{\varepsilon}\left(p_{i}, a\right)\right), \quad \text { for each } q \in Q \text { and } a \in \Sigma
$$

and

$$
F= \begin{cases}F_{\varepsilon}, & \text { if } \varepsilon \notin \mathcal{L}\left(A_{\varepsilon}\right) \\ F_{\varepsilon} \cup\left\{q_{0}\right\}, & \text { if } \varepsilon \in \mathcal{L}\left(A_{\varepsilon}\right)\end{cases}
$$

In our case, we obtain:

Problem 1.4 [6 points] Consider the following DFA A over $\{0,1\}$:

Construct a regular expression E such that $\mathcal{L}(E)=\mathcal{L}(A)$. Illustrate the steps of the algorithm you have followed to construct E.

Solution: We construct the regular expressions $E_{i j}^{k}$ inductively. For the inductive case, we use the following rule:

$$
E_{i j}^{k}=E_{i j}^{k-1}+E_{i k}^{k-1} \cdot\left(E_{k k}^{k-1}\right)^{*} \cdot E_{k j}^{k-1}
$$

The expressions $E_{i j}^{k}$ are as follows (we have specified only those that are necessary to construct E):

k	E_{11}^{k}	E_{12}^{k}	E_{13}^{k}	E_{21}^{k}	E_{22}^{k}	E_{23}^{k}	E_{31}^{k}	E_{32}^{k}	E_{33}^{k}
0	ε	0	1	1	0	\emptyset	\emptyset	1	0
1	ε	0	0	1	$0+10$	11	\emptyset	1	0
2	-	$0+0(0+10)^{*}$ $(0+10)$	$0+$ $0(0+10)^{*} 11$	-	-	-	-	$1+1(0+10)^{*}$ $(0+10)$	$0+$
$1(0+10)^{*} 0$									
3	-	$E_{12}^{2}+$ $E_{13}^{2} \cdot\left(E_{33}^{2}\right)^{*} \cdot E_{32}^{2}$	-	-	-	-	-	-	-

Then, $E=E_{12}^{3}=\left(0+0(0+10)^{*}(0+10)\right)+\left(0+0(0+10)^{*} 11\right) \cdot\left(0+1(0+10)^{*} 0\right)^{*} \cdot\left(1+1(0+10)^{*}(0+10)\right)$.

Problem 1.5 [5 points] The quotient L_{1} / L_{2} of two languages L_{1} and L_{2} is defined as

$$
L_{1} / L_{2}=\left\{x \mid \text { there is } y \in L_{2} \text { such that } x y \in L_{1}\right\}
$$

For example, if $L_{1}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has an even number of 0 's $\}, L_{2}=\{0\}$, and $L_{3}=\{0,00\}$, then $L_{1} / L_{2}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has an odd number of 0 's $\}$, and $L_{1} / L_{3}=\{0,1\}^{*}$.
Show that, for an arbitrary language L_{2}, if L_{1} is regular, then L_{1} / L_{2} is also regular.
[Hint: Start from a DFA A for L_{1}, and show how to modify the set of final states of A to obtain a DFA for L_{1} / L_{2}.]

Solution: Since L_{1} is regular, there is a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $\mathcal{L}(A)=L_{1}$. We show that the DFA $A^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$, with $F^{\prime}=\left\{q \in Q \mid\right.$ there is $y \in L_{2}$ s.t. $\left.\hat{\delta}(q, y) \in F\right\}$, accepts L_{1} / L_{2}. This proves that L_{1} / L_{2} is regular.
Consider a word $x \in L_{1} / L_{2}$. By definition of L_{1} / L_{2}, there is a word $y \in L_{2}$ such that $x y \in L_{1}$. Since $x y \in L_{1}$, we have that $\hat{\delta}\left(q_{0}, x y\right) \in F$, and moreover there is a state $q \in Q$ such that $\hat{\delta}\left(q_{0}, x\right)=q$. We have that $\hat{\delta}(q, y)=\hat{\delta}\left(\hat{\delta}\left(q_{0}, x\right), y\right)=\hat{\delta}\left(q_{0}, x y\right)$. Hence $\hat{\delta}(q, y) \in F$, and since $y \in L_{2}$, it follows that $q \in F^{\prime}$, and therefore $x \in \mathcal{L}\left(A^{\prime}\right)$.
Conversely, consider a word $x \in \mathcal{L}\left(A^{\prime}\right)$. By definition of language accepted by a DFA, we have that $q=\hat{\delta}\left(q_{0}, x\right) \in F^{\prime}$, and by definition of F^{\prime}, there is a word $y \in L_{2}$ such that $\hat{\delta}(q, y) \in F$. Hence, $\hat{\delta}\left(q_{0}, x y\right)=\hat{\delta}\left(\hat{\delta}\left(q_{0}, x\right), y\right)=\hat{\delta}(q, y) \in F$, and it follows that $x y \in \mathcal{L}(A)=L_{1}$. By definition of L_{1} / L_{2}, we have that $x \in L_{1} / L_{2}$.
Note that in the above proof we did not make use of any assumption on L_{2}, which in fact may be an arbitrary language (possibly non-regular, or even non-recursively enumerable).

Problem 1.6 [3 points] Show that the language $\left\{u a w b \mid u, w \in\{a, b\}^{*}\right.$, with $\left.|u|=|w|\right\}$ is context free by exhibiting a context free grammar that generates it.

Solution: A grammar that generates the language $\left\{u a w b \mid u, w \in\{a, b\}^{*}\right.$, with $\left.|u|=|w|\right\}$ is $G=(\{S, T, X\},\{a, b\}, P, S)$, where P consists of the following productions:

$$
\begin{aligned}
& S \quad \longrightarrow T b \\
& T \longrightarrow a \mid X T X \\
& X \longrightarrow a \mid b
\end{aligned}
$$

Problem 1.7 [4 points] Consider the grammar $G=(\{S, T\},\{0,1\}, P, S)$, where P consists of the following productions

$$
\begin{aligned}
& S \quad \longrightarrow \quad 0 S|1 T| 0 \\
& T \quad \longrightarrow \quad 1 T \mid 1
\end{aligned}
$$

Show that no string in the language $\mathcal{L}(G)$ contains the substring 10 .

Solution: Let α be a sentential form (i.e., a sequence of terminals and non-terminals) derived using G. We show by induction on the length n of the derivation of α that α does not contain any of the substrings $10,1 S, S 0, S S, T 0$, or $T S$. The claim then follows.

Base case: $n=1$. The possible derivations of length 1 of sentential forms for G are $S \Rightarrow 0 S$, $S \Rightarrow 1 T$, and $S \Rightarrow 0$. Neither $0 S$, nor $1 T$, nor 0 contain as substring $10,1 S, S 0, S S, T 0$, or $T S$.
Inductive case: Let $S \stackrel{*}{\Rightarrow} \alpha \Rightarrow \beta$ be a derivation of β of length $n+1$. By inductive hypothesis, α does not contain as substring $10,1 S, S 0, S S, T 0$, or $T S$.

- If the last derivation step uses $S \longrightarrow 0 S$, since α does not contain $1 S$ or $T S$, the derivation step cannot introduce 10 or $T 0$ in β.
- If the last derivation step uses $S \longrightarrow 1 T$, since α does not contain $S 0$ or $S S$, the derivation step cannot introduce $T 0$ or $T S$ in β.
- If the last derivation step uses $S \longrightarrow 0$, since α does not contain $1 S, S S$, or $T S$, the derivation step cannot introduce $10, S 0$, or $T 0$ in β.
- If the last derivation step uses $T \longrightarrow 1 T$, since α does not contain $T 0$ or $T S$, the derivation step cannot introduce $T 0$ or $T S$ in β.
- If the last derivation step uses $T \longrightarrow 1$, since α does not contain $T 0$ or $T S$, the derivation step cannot introduce 10 or $1 S$ in β.

