Free University of Bozen-Bolzano - Faculty of Computer Science Master of Science in Computer Science
 Theory of Computing - A.A. 2004/2005
 Midterm exam - 24/11/2004
 Duration: 90 minutes

Problem 1 [6 points] Decide which of the following statements is TRUE and which is FALSE. You must give a brief explanation of your answer to receive full credit.
(a) For all languages L_{1} and L_{2}, it holds that $L_{1}^{*} \cup L_{2}^{*}=\left(L_{1} \cup L_{2}\right)^{*}$.
(b) If L_{1} is regular and L_{2} is non-regular, then $L_{1} \cap L_{2}$ must be regular.
(c) If L is not of type 2 (i.e., not context-free), then it is not of type 3 (i.e., not regular).
(d) If the language L^{*} is regular, then L must be regular.

Problem 2 [3 points] Consider the regular expression $E=1 \cdot\left(0^{*}+0 \cdot 1\right)^{*}$. Construct an ϵ-NFA A such that $\mathcal{L}(A)=\mathcal{L}(E)$. Illustrate the steps of the algorithm you have followed to construct A.

Problem 3 [6 points] Consider the following DFA A over $\{0,1\}$:

Construct a regular expression E such that $\mathcal{L}(E)=\mathcal{L}(A)$. Illustrate the steps of the algorithm you have followed to construct E.

Problem 4 [6 points] Consider the following DFA A over $\{a, b\}$:

Construct a DFA A_{m} with minimal number of states such that $\mathcal{L}\left(A_{m}\right)=\mathcal{L}(A)$. Illustrate the steps of the algorithm you have followed to construct A_{m}.

Problem 5 [4 points] Show that the language $L=\left\{a^{i} b^{j} \mid i, j \geqslant 0, i \neq j\right\}$ is not regular. [Hint: Exploit in your argument closure properties of regular languages and the known facts that the language $L_{1}=\left\{a^{i} b^{j} \mid i, j \geqslant 0\right\}$ is regular and the language $L_{2}=\left\{a^{n} b^{n} \mid n \geqslant 0\right\}$ is not regular.]

Problem 6 [5 points] Consider the grammar $G=(\{S\},\{a, b\}, P, S)$, where P consists of the following productions

$$
S \longrightarrow S a|b S S| S S b|S b S| a
$$

Prove that every string in $\mathcal{L}(G)$ has more a 's than b 's.

