
Introduction to Databases
Exam of 20/02/2025

With Solutions

Diego Calvanese

Bachelor in Computer Science
Faculty of Engineering

Free University of Bozen-Bolzano

http://www.inf.unibz.it/~calvanese/teaching/exams/idb/

Design the Entity-Relationship schema of an application for managing dishes offered by caterers
who deliver them to venues, for which the following information is of interest. Of each caterer,
we are interested in the taxcode (identifier) and the address. Of each dish, we are interested in
the name and type (normal,vegetarian, vegan, etc.), which together identify the dish, the
calories, and the caterers that offer the dish, each with the price at which they offer it. It should
be noted that a dish must be offered by at least one caterer and can be offered by multiple
caterers. Additionally, of each dish, we are interested in the set of venues where it is offered.
This set must not be empty but can change over time, at most once per month, and we are
interested in the date (i.e., the day, in addition to the month and year) since when the set of
venues offers the dish. Gourmet dishes are a type of dish with special ingredients, for which one
of the offering caterers acts as the main provider, who specifies a minimum price for the dish.
Of each gourmet dish we are interested in the number of special ingredients, the main provider,
and the minimum price he has specified for the dish. Notice that no caterer might offer a
gourmet dish at a lower price than the minimum price set by the main provider. Finally, of each
venue we are interested in the name (identifier) and the city where it is located.

Problem 1

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 1

minPrice

daymonthyear
price

typenamecalories

Problem 1: Conceptual schema – Diagram

© Diego Calvanese Introduction to Databases – unibz

cityname

Venue

Contains

addresstaxcode

Caterer

#specialIng

OfferedAt

GourmetDish

SetOfVenuesOffers
(1,n)

Dish

(1,1)

(1,n)

MainProv

(1,1)

(1,n)

Dish

Exam of 20/2/2025 – Solution – 2

“No caterer might offer a gourmet dish at a lower price than the minimum price
set by the main provider.”

Formally: For each instance I of the schema, if(Caterer:mc, Dish:d) ∈
instances(I,MainProv), ((Caterer:mc,Dish:d), mp) ∈ instances(I,minPrice),
(Caterer:c,Dish:d) ∈ instances(I,Offers), and ((Caterer:c,Dish:d), p) ∈
instances(I,price), then mp ≤ p.

Problem 1: Conceptual schema – External constraints

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 3

Carry out the logical design of the database, producing the complete relational
schema with constraints, taking into account the following indications:
1. We access gourmet dishes separately from ordinary dishes.
2. Every time we access a gourmet dish, we always want to know who is the

main provider, the number of special ingredients, and also the calories.
In your design you should follow the methodology adopted in the course, and you
should produce:
• the restructured ER schema (possibly with external constraints),
• the direct translation into the relational model (possibly with external

constraints), and
• the restructured relational schema (again with constraints).

You should motivate explicitly how the above indications affect your design.

Problem 2

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 4

daymonthyear

minPrice

price
typenamecalories

Problem 2: Restructured conceptual schema

© Diego Calvanese Introduction to Databases – unibz

cityname

Venue

Contains

addresstaxcode

Caterer

#specialIng

OfferedAt

GourmetDish

SetOfVenuesOffers
(1,n)

Dish

(1,1)

(1,n)

MainProv

(1,1)

(1,n)

Dish

Exam of 20/2/2025 – Solution – 5

ISA-G-D

(1,1)

(0,1)

1. “No caterer might offer a gourmet dish at a lower price than the minimum
price set by the main provider.”
Formally: For each instance I of the schema, if (Caterer:mc, Dish:gd) ∈
instances(I,MainProv), ((Caterer:mc,Dish:gd), mp) ∈ instances(I,minPrice),
(GourmetDish:gd, Dish:d) ∈ instances(I,ISA-G-D), (Caterer:c,Dish:d) ∈
instances(I,Offers), and ((Caterer:c,Dish:d), p) ∈ instances(I,price),
then mp ≤ p.

2. Constraint due to the elimination of ISA between MainProv and Offer.
Formally: For each instance I of the schema, if (Caterer:c, Dish:gd) ∈
instances(I,MainProv) and (GourmetDish:gd, Dish:d) ∈ instances(I,ISA-G-D),
then (Caterer:c,Dish:d) ∈ instances(I,Offers),

Problem 2: Restructured conceptual schema –
External constraints

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 6

Caterer(taxcode, address)
Dish(name, type, calories)

inclusion: Dish[name,type] Í Offers[dishName,dishType]
inclusion: Dish[name,type] Í SetOfVenues[dishName,dishType]

GourmetDish(name, type, #specialIng)
foreign key: GourmetDish[name,type] Í Dish[name,type]
foreign key: GourmetDish[name,type] Í MainProv[dishName,dishType]

Venue(name, city)
SetOfVenues(dishName, dishType, year, month, day)

foreign key: SetOfVenues[dishName,dishType] Í Dish[name,type]
inclusion: SetOfVenues[dishName,dishType,year,month] Í Contains[dishName,dishType,year,month]

Offers(caterer, dishName, dishType, price)
foreign key: Offers[caterer] Í Caterer[taxcode]
foreign key: Offers[dishName,dishType] Í Dish[name,type]

MainProv(caterer, dishName, dishType, minPrice)
foreign key: MainProv[caterer] Í Caterer[taxcode]
foreign key: MainProv[dishName,dishType] Í GourmetDish[name,type]
foreign key: MainProv[caterer,dishName,dishType] Í Offers[caterer,dishName,dishType]

Contains(dishName, dishType, year, month, venue)
foreign key: Contains[dishName,dishType,year,month] Í SetOfVenues[dishName,dishType,year,month]
foreign key: Contains[venue] Í Venue[name]

Problem 2: Direct translation

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 7

1. “No caterer might offer a gourmet dish at a lower price than the minimum
price set by the main provider.”
We capture this through a CHECK constraint on MainProv:
CHECK (minPrice <=
 ALL (SELECT O.price from Offers O
 WHERE dishName = O.dishName AND
 dishType = O.dishType))

2. External constraint 2, introduced due to the elimination of ISA between
MainProv and Offer, is captured by the last foreign key on MainProv.

Problem 2: Direct translation –
External constraints

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 8

Indications:
1. We access gourmet dishes separately from ordinary dishes.
2. Every time we access a gourmet dish, we always want to know who is the main

provider, the number of special ingredients, and also the calories.

• We take into account Indication 1 by performing a horizontal decomposition of
relation Dish into DishGourmet into DishNonGourmet.

• We take into account Indication 2 by merging GourmetDish and DishGourmet,
(which are strongly coupled), into a new relation (for which we chose the name
DishGourmet), and by further merging MainProv and DishGourmet (which are
also strongly coupled).

Problem 2: Restructuring of the relational schema

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 9

We specify here only the relations with their constraints that have been modified with respect to the relational schema
obtained through the direct translation.
Specifically, the relations Caterer, Venue, and Contains are not modified, and the relations Dish, GourmetDish, and
MainProv are replaced by the relations DishNonGourmet and DishGourmet, defined as follows:
DishNonGourmet(name, type, calories)

inclusion: DishNonGourmet[name,type] Í Offers[dishName,dishType]
inclusion: DishNonGourmet[name,type] Í SetOfVenues[dishName,dishType]

DishGourmet(name, type, calories, #specialIng, mainProv, minPrice)
inclusion: DishGourmet[name,type] Í Offers[dishName,dishType]
inclusion: DishGourmet[name,type] Í SetOfVenues[dishName,dishType]
foreign key: DishGourmet[mainProv] Í Caterer[taxcode]
foreign key: DishGourmet[mainProv,name,type] Í Offers[caterer,dishName,dishType]
constraint: DishGourmet[name,type] ∩ DishNonGourmet[name,type] = ∅

SetOfVenues(dishName, dishType, year, month, year)
constraint: SetOfVenues[dishName,dishType] Í DishGourmet[name,type] ∪ DishNonGourmet[name,type]
inclusion: SetOfVenues[dishName,dishType,year,month] Í Contains[dishName,dishType,year,month]

Offers(caterer, dishName, dishType, price)
foreign key: Offers[caterer] Í Caterer[taxcode]
constraint: Offers[dishName,dishType] Í DishGourmet[name,type] ∪ DishNonGourmet[name,type]

Problem 2: Restructured relational schema

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 10

1. “No caterer might offer a gourmet dish at a lower price than the minimum
price set by the main provider.”
We capture this through a CHECK constraint on DishGourmet:
CHECK (minPrice <=
 ALL (SELECT O.price from Offers O
 WHERE name = O.dishName AND
 type = O.dishType))

2. External constraint 2, introduced due to the elimination of ISA between
MainProv and Offer, is captured by the last foreign key on DishGourmet.

Problem 2: Restructured relational schema –
External constraints

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 11

Consider a database D containing the two relations:
i. Activity(code,type), which stores the code and the type (a string) of the

activities offered by a resort;
ii. Schedule(guest,activitycode,time), with a foreign key constraint

from activitycode to code of Activity, which stores the activities that
guests have scheduled to perform at the resort.

Note that the set of all activity types is given by all types that appear as the type
of some activity that is being offered by the resort.
1. Write in relational algebra a query over D that computes all pairs (g,t) such

that no activity of type t appears in the schedule of guest g.
2. Write in SQL a query over D that computes all guests who have in their

schedule at least one activity of each type.

Problem 3

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 12

Activity(code,type) Schedule(guest,activitycode,time)

1. Write in relational algebra a query over D that computes all pairs (g,t) such
that no activity of type t appears in the schedule of guest g.

PROJguest,type (Schedule JOIN Activity) –
PROJguest,type (Schedule JOINactivitycode = code Activity)

Notice that the first join is actually a cartesian product, returning all possible pairs
of a schedule and an activity.

Problem 3: Solution 1

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 13

Activity(code,type) Schedule(guest,activitycode,time)

2. Write in SQL a query over D that computes all guests who have in their
schedule at least one activity of each type.

SELECT S.guest
FROM Schedule S
WHERE NOT EXISTS

(SELECT type
FROM Activity
WHERE type NOT IN
(SELECT type
FROM Schedule JOIN Activity ON activitycode = code
WHERE guest = S.guest))

Problem 3: Solution 2

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 14

Provide the definition of integrity constraint and of referential integrity constraint.
Then consider the following relational schema S (in which primary keys are underlined and
attributes with an asterisk may contain NULL):
R(A, B*, C) Q(D, E, F)

tuple constraint: B is not NULL implies B = A foreign key: Q[D,E,F] Í R[A,B,C]

For each of the following three items, say whether there exists at least one database instance
that is correct with respect to schema S with the corresponding property:

1. the set { B } is not a superkey for R;
2. the set { C } is not a superkey for R;
3. the set { D, E } is not a superkey for Q.

For each of the three items listed above, if the answer is positive, then show the corresponding
database instance; if the answer is negative, then describe in detail the reason why a database
instance that is correct with respect to schema S does not exist.

Problem 4

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 15

For the definition of integrity constraint and of referential integrity constraint, we
refer to the course slides.
The answer is no. We show that there is no database instance that is correct
w.r.t. schema S in which the set { B } is not a superkey for R, by showing that a
database instance I in which { B } is not a superkey for R is not correct w.r.t. S.
Indeed, in I, relation R would contain two distinct tuples with the same non-null
value for B, say (a1,b,c1) and (a2,b,c2), with b ≠ NULL.
Then, either one or both of the two tuples do not satify the tuple constraint for R,
i.e., a1 ≠ b or a2 ≠ b, and then I is not correct w.r.t. S.
Or they both satisfy the tuple constraint, i.e., a1 = a2 = b, and since the two
tuples are distinct, c1 ≠ c2. Then we have in R two tuples with the same value b
for attribute A but different values for attribute C, which constitutes a violation of
the primary key constraint for R. Hence, I is not correct w.r.t. S.

Problem 4: Solution of Item 1

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 16

The answer is yes. We show that there exists a database instance I that is
correct w.r.t. schema S in which the set { C } is not a superkey for R.
Indeed, it suffices to define I as the database instance where relation Q is empty
and relation R contains two tuples (a1,a1,c) and (a2,a2,c). It is immediate to see
that I is correct w.r.t. schema S. Moreover, since R contains two tuples with the
same value c for attribute C, but different values for attribute A (and for attribute
B), the set { C } is not a superkey for R.

Problem 4: Solution of Item 2

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 17

The answer is no. We show that there is no database instance that is correct
w.r.t. schema S in which the set { D, E } is not a superkey for Q, by showing that
a database instance I in which { D, E } is not a superkey for Q is not correct w.r.t.
S.
Indeed, in I, relation Q would contain two distinct tuples, say (d,e,f1) and (d,e,f2),
with the same (non-null) values for both D and E, and different values f1 ≠ f2 for
F. Then, either I does not satify the foreign key constraint for Q, and then I is not
correct w.r.t. S. Or I satifies the foreign key constraint for Q, and then relation R
contains the two tuples (d,e,f1) and (d,e,f2). But these two tuples in R have the
same value d for attribute A and different values f1 and f2 for attribute C. Hence,
they violate the primary key constraint for relation R, and I is not correct w.r.t. S.

Problem 4: Solution of Item 3

© Diego Calvanese Introduction to Databases – unibz Exam of 20/2/2025 – Solution – 18

