
Introduction to Databases
Exam of 05/07/2024

With Solutions

Diego Calvanese

Bachelor in Computer Science
Faculty of Engineering

Free University of Bozen-Bolzano

http://www.inf.unibz.it/~calvanese/teaching/exams/idb/

Design the Entity-Relationship schema of an application for managing mountain
excursions, for which the following information is of interest. Of each excursion,
we are interested in the code (identifier), the cost, the persons who took part in
the excursion (at least one), and the mountain climbings it includes (at least one).
For each excursion, a maximum of one climbing per day takes place, and of each
such climbing (which is specific to that excursion) we are interested in the date
on which it took place, the duration, and the main mountain climbed. In
addition, there are special climbings, for which we are interested also in the
required skill level and the mountains (at least one) climbed in addition to the
main one (these mountains are called secondary mountains of the climbing),
each with the extra climbing time and the person who acted as guide in the
climbing of that secondary mountain. Note that a person may not act as guide in
more than one climbing of a secondary mountain on the same day (but they may
on different days). Of each mountain, we are interested in the name (identifier),
the height, and the GPS coordinates. Of each person, we are interested in the
ssn (identifier), the first name, the surname, and the age.

Problem 1

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 1

Problem 1: Conceptual schema – Diagram

© Diego Calvanese Introduction to Databases – unibz

surnamefirstname

time

Secondary

skillLevelgpsCoordheight

name

ssn age

durationdatecostcode

Main

Person

ExcursionTakesPart
(1,n)

Mountain

Climbing

SpClimbing

Includes
(1,1)(1,n)

(1,n)

(1,1)

Guide

Note that the explicit identifier on the Secondary relationship is needed to take into account that
the guide is determined by the special climbing and the mountain.

Exam of 5/7/2024 – Solution – 2

For each instance I of the schema:

1. If (SpClimbing:c, Mountain:m, Guide:g) ∈ instances(I,Secondary), then
(Climbing:c, Mountain:m) ∉ instances(I,Main).

2. If (SpClimbing:c1, Mountain:m1, Guide:g) ∈ instances(I,Secondary),
(SpClimbing:c2, Mountain:m2, Guide:g) ∈ instances(I,Secondary),
(c1,d1) ∈ instances(I,date), and (c2,d2) ∈ instances(I,date), then d1 ≠ d2.

Problem 1: Conceptual schema – External constraints

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 3

Carry out the logical design of the database, producing the complete relational schema
with constraints, taking into account the following indications.
1. Every time we access a climbing, we are also interested in its main mountain.
2. Every time we access the information about a climbing, we always want to know

whether it is a special climbing, and if so, we want to know the required skill level.

In your design you should follow the methodology adopted in the course, and you should
produce:
• the restructured ER schema (possibly with external constraints),
• the direct translation into the relational model (possibly with external constraints), and
• the restructured relational schema (again with constraints).

You should motivate explicitly how the above indications affect your design.

Problem 2

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 4

Problem 2: Restructured conceptual schema

© Diego Calvanese Introduction to Databases – unibz

surnamefirstname

time

Secondary

skillLevelgpsCoordheight

name

ssn age

durationdatecostcode

Main

Person

ExcursionTakesPart
(1,n)

Mountain

Climbing

SpClimbing

Includes
(1,1)(1,n)

(1,n)

(1,1)

Guide

(0,1)

ISA-S-C

(1,1)

Exam of 5/7/2024 – Solution – 5

For each instance I of the schema:

1. If (SpClimbing:s, Mountain:m, Guide:g) ∈ instances(I,Secondary), and
(SpClimbing:s, Climbing:c) ∈ instances(I,ISA-S-C),
then (Climbing:c, Mountain:m) ∉ instances(I,Main).

2. If (SpClimbing:s1, Mountain:m1, Guide:g) ∈ instances(I,Secondary),
(SpClimbing:s2, Mountain:m2, Guide:g) ∈ instances(I,Secondary),
(SpClimbing:s1, Climbing:c1) ∈ instances(I,ISA-S-C),
(SpClimbing:s2, Climbing:c2) ∈ instances(I,ISA-S-C),
(c1,d1) ∈ instances(I,date), and (c2,d2) ∈ instances(I,date), then d1 ≠ d2.

Problem 2: Restructured conceptual schema –
External constraints

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 6

Excursion(code, cost)
inclusion: Excursion[code] Í Climbing[excursion]
inclusion: Excursion[code] Í TakesPart[person]

Climbing(date, excursion, duration)
foreign key: Climbing[excursion] Í Excursion[code]
foreign key: Climbing[date,excursion] Í Main[climbing,excursion]

Person(ssn, firstname, lastname, age)
TakesPart(person, excursion)

foreign key: TakesPart[person] Í Person[ssn]
foreign key: TakesPart[excursion] Í Excursion[code]

SpClimbing(date, excursion, skillLevel)
foreign key: SpClimbing[date,excursion] Í Climbing[date,excursion]
inclusion: SpClimbing[date,excursion] Í Secondary[spClimbing,excursion]

Problem 2: Direct translation (1/2)

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 7

Mountain(name, height, gpsCoordinates)
Main(date, excursion, mountain)

foreign key: Main[date,excursion] Í Climbing[date,excursion]
foreign key: Main[mountain] Í Mountain[name]

Secondary(date, excursion, mountain, guide, time)
foreign key: Secondary[date,excursion] Í SpClimbing[date,excursion]
foreign key: Secondary[mountain] Í Mountain[name]
foreign key: Secondary[guide] Í Person[ssn]
key: date, guide

External constraint:
Main[date,excursion,mountain] ∩ Secondary[date,excursion,mountain] = ∅
Notice that the second external constraint has been translated into the additional key constraint
on the relation Secondary.

Problem 2: Direct translation (2/2)

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 8

1. Every time we access a climbing, we are also interested in its main mountain.
2. Every time we access the information about a climbing, we always want to

know whether it is a special climbing, and if so, we want to know the required
skill level.

• We take into account indication 1 by merging relation Main into Climbing.
• We take into account indication 2 by merging relation SpClimbing into

Climbing. Notice that this requires making the attributes skillLevel nullable, and
in fact we can use this attribute as a flag to indicate whether a climbing is special
or not: a tuple in Climbing represents a special climbing if and only if the value
of skillLevel is not NULL.

Problem 2: Restructuring of the relational schema

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 9

We specify here only the relations with their constraints that have been changed with respect to
the schema obtained through the direct translation.

The relations Climbing, SpClimbing, and Main are replaced by the following one:
Climbing(date, excursion, mountain, duration, skillLevel*)

foreign key: Climbing[excursion] Í Excursion[code]
foreign key: Climbing[mountain] Í Mountain[name]

The inclusion from SpClimbing to Secondary is replaced by the constraint on Climbing:
CHECK (skillLevel IS NULL OR

(date,excursion) IN (SELECT date, excursion FROM Secondary))

The foreign key from Secondary to SpClimbing is replaced by the constraint on Secondary:
CHECK ((date,excursion) IN (SELECT date, excursion FROM Climbing
 WHERE skillLevel IS NOT NULL))

The external constraint becomes:
Climbing[date,excursion,mountain] ∩ Secondary[date,excursion,mountain] = ∅

Problem 2: Restructured relational schema

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 10

Consider a database B containing the two tables: Nodes(node), which stores all the
nodes of a directed graph G, and Edges(start,end), which stores all the edges of G,
where an edge from node n1 to node n2 is represented by the tuple t = <n1,n2> in the
relation Edges for which t.start = n1 and t.end = n2.
If G contains the edge from n1 to n2, then n2 is said to be a successor of n1 in G and n1 is
said to be a predecessor of n2 in G. Furthermore, a node is said to be a source if it has
at least one successor and no predecessor.
We know that the database B satisfies both the foreign key constraint from start of
Edges to node of Nodes, i.e., Edges[start] ⊆ Nodes[node], and the foreign key
constraint from end of Edges to node of Nodes, i.e., Edges[end] ⊆ Nodes[node].
1. Write a SQL query that returns the average number of predecessors of the nodes of

G (remember to consider also nodes having no predecessors).
2. Write a relational algebra query that computes all nodes of G that have as

predecessors only source nodes (i.e., all nodes of G that have no predecessor that
is not a source node).

Problem 3

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 11

Nodes(node) Edges(start,end)

1. Write a SQL query that returns the average number of predecessors of the
nodes of G (remember to consider also nodes having no predecessors).

WITH CountPred AS
(SELECT N.node, COUNT(E.start) AS numPred
FROM Nodes N LEFT JOIN Edges E ON N.node = E.end
GROUP BY N.node)

SELECT AVG(numPred)
FROM CountPred

Problem 3: Solution (1/2)

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 12

Nodes(node) Edges(start,end)

2. Write a relational algebra query that computes all nodes of G that have as
predecessors only source nodes (i.e., all nodes of G that have no predecessor that
is not a source node).

Nodes – RENnode ⟵ end (
PROJend(Edges JOIN start = node (Nodes – (RENnode ⟵ start (PROJstart(Edges))

– RENnode ⟵ end (PROJend(Edges))))))

Comments:
• (RENnode ⟵ start (PROJstart(Edges)) – RENnode ⟵ end (PROJend(Edges)))

computes the source nodes.
• (Nodes – ...) computes the nodes that are not source nodes.
• RENnode ⟵ end (PROJend(Edges JOIN start = node (Nodes – ...)))

computes the nodes that have a predecessor that is not a source node.

Problem 3: Solution (2/2)

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 13

Still referring to the database B described in Problem 3, suppose the foreign key
constraint from start of Edges to node of Nodes is defined as ON DELETE
RESTRICT, while the foreign key constraint from end of Edges to node of
Nodes is defined as ON DELETE CASCADE.

Answer the following questions.
1. Is it always possible to obtain the deletion of any given tuple from the Nodes

relation of graph G by executing only operations of the form ``DELETE FROM
Nodes WHERE...''? If the answer is positive, give reasons; if it is negative,
say which nodes can be deleted and which cannot, again giving reasons.

2. Answer the question in the previous point when the graph G is a tree, which,
remember, is a particular graph in which an edge from n1 to n2 indicates the
hierarchical relationship between the parent node n1 and the child node n2.

Problem 4

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 14

It is not always possible to obtain the deletion of any given tuple from the Nodes
relation of graph G by executing only operations of the form ``DELETE FROM Nodes
WHERE...’’.
Specifically, the “ON DELETE RESTRICT” policy on the foreign key constraint from
start of Edges to node of Nodes forbids the deletion from the Nodes relation of
nodes that appear in the start column of the Edges relation, i.e., of nodes that have a
successor. To delete such a node n, we first have to delete all its descendent nodes,
i.e., all nodes reachable from n in G, starting from nodes that have no successor.
However, this is not possible if:
• the node n is part of a cycle in G, i.e., of a sequence n1, ..., nk of nodes such that G

contains an edge from ni to ni+1, for all1 ≤ i ≤ k-1, and an edge from nk to n1, or
• from the node n one can reach in G a node that is part of a cycle in G.
In all other cases, we can obtain the deletion of a node n of G from the Nodes relation,
by proceeding as explained in the following answer to question 2.

Problem 4: Solution (1/2)

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 15

When the graph G is a tree, it is always possible to obtain the deletion of any
given tuple from the Nodes relation of G by executing only operations of the form
``DELETE FROM Nodes WHERE...’’.
This is because a tree does not contain cycles. Therefore, it is always possible to
obtain the deletion of a node n of G, by first deleting all its descendant nodes in
the tree starting from the leaves, i.e., from those nodes reachable from n in G
that have no successor. Indeed, the “ON DELETE CASCADE” policy on the
foreign key constraint from end of Edges to node of Nodes ensures that, when
a node m without successors is deleted from Nodes, also the edges to m are
deleted from Edges. Hence, after deleting all leaf nodes, the nodes that had
edges only to leaf nodes will become themselves leaf nodes, and therefore can
be deleted. We can proceed deleting in this way, until the node n is deleted from
Nodes.

Problem 4: Solution (2/2)

© Diego Calvanese Introduction to Databases – unibz Exam of 5/7/2024 – Solution – 16

