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This document contains a collection of exercises on Formal Languages taken from exams of
previous years. The exercises cover the whole program of the Formal Languages course of the
Bachelor in Applied Computer Science. All exercises, except possibly for some in Section 7, can
be solved in a straightforward way by applying the standard techniques and algorithms that are
taught in the course, and that are covered in the textbook Introduction to Automata Theory,
Languages, and Computation (3rd edition), by J.E. Hopcroft, R. Motwani, and J.D. Ullman,
Addison Wesley, 2007.

The exercises in Section 7 are slightly more advanced, and some of them may require an intuition
or a deeper understanding of the subject matter. Such exercises are intended for interested
students, who want to deepen their knowledge of the subject. They are not representative of
exercises that students might be confronted with at the Formal Languages exam.

A rough estimate of the expected time to solve each exercise is 3 minutes per assigned point,
e.g., an exercise of 6 points should be solved in approximately 18 minutes. This corresponds
to solving in 90 minutes exercises that total 30 points, which make up a typical exam. The
Formal Languages exam is a closed book exam, i.e., the only resources allowed are blank paper,
pens, and one’s brain. Hence, for maximum effectiveness, it is suggested to solve at least some
substantial part of the exercises under the same conditions. A complete solution to an exercise
should always contain a sufficiently clear explanation of the reasoning that has brought to the
solution. Such an explanation might either be given explicitly, in particular when requested,
or implicitly, by detailing the steps of an algorithm that has brought to the solution. In any
case, the clarity of the explanations will affect the evaluation given to an exercise, and hence
the overall final grade for the exam.
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1 Properties of Languages

Problem 1.1 [2 points each] Decide which of the following statements holds for all languages
L1 and L2, and which does not hold. To show that a statement does not hold for all languages,
you should give two example languages L1 and L2 for which the statement is false. When a
statement holds, you should give a brief explanation of why this is the case.

(1) L∗
1 ∪ L∗

2 = (L1 ∪ L2)
∗

(2) L∗
1 ∩ L∗

2 = (L1 ∩ L2)
∗

(3) (L∗
1 ∩ L∗

2)
∗ = (L1 ∩ L2)

∗

(4) (L∗
1 · L∗

2)
∗ = (L1 ∪ L2)

∗

(5) (L1 · L2)
∗ = (L1 ∪ L2)

∗

(6) ((L1 ∪ {ε}) · (L2 ∪ {ε}))∗ = (L1 ∪ L2)
∗

(7) (L∗
1 · L∗

2)
+ = (L+

1 · L+
2 )∗

Problem 1.2 [2 points each] Decide which of the following statements is TRUE and which is
FALSE. You must give a brief explanation of your answer to receive full credit.

(1) If L1 is regular and L2 is non-regular, then L1 · L2 is non-regular.

(2) If L1 is regular and L2 is non-regular, then L1 ∩ L2 is regular.

(3) If L1 is regular and L2 is non-regular, then L1 ∪ L2 is non-regular.

(4) If L1 is non-regular and L2 is non-regular, then L1 ∪ L2 can be regular.

(5) If L1 is non-regular and L2 is non-regular, then L1 ∪ L2 is non-regular.

(6) If L1 is regular and L2 is non-regular, then L1 · L2 can be regular.

(7) If L1 is regular and L1 ∪ L2 is regular, then L2 is regular.

(8) If L1 is regular and L2 ⊆ L1, then L2 is regular.

(9) If L1 is non-regular and L1 ⊆ L2, then L2 is non-regular.

(10) If L1 is regular and L2 is regular, then L1 \ L2 is regular.

(11) If L \ {ε} is regular, then L is regular.

(12) If L∗ is regular, then L is regular.

Problem 1.3 [2 points each] Decide which of the following statements is TRUE and which is
FALSE. You must give a brief explanation of your answer to receive full credit.

(1) There exists a language L such that L is not regular but L∗ is regular.

(2) There exists a language L such that L∗ is not regular but (L∗)∗ is regular.

(3) There exists a language L such that L = L · L.

(4) There exists a language L with ε /∈ L such that L = L∗.

(5) For all languages L, we have that L∗ = (L ∪ ε)∗.
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(6) For all regular languages L1, L2, and L3, if L1 ⊆ L2 and L∗
2 ⊆ L∗

3, then L1 ⊆ L3.

(7) For all languages L1 and L2, if L1 ⊆ L2 and L∗
2 ⊆ L∗

1, then L1 = L2.

(8) For all languages L1 and L2, if L1 ⊆ L2, then L∗
1 ⊆ L∗

2.

(9) For all languages L1 and L2, if L1 ( L2, then L∗
1 ( L∗

2. [N.B. A ( B means A ⊆ B and
A 6= B]

(10) For all languages L1 and L2, if L∗
1 ⊆ L∗

2, then L1 ⊆ L2.

(11) For all languages L1 and L2, if L∗
1 = L∗

2, then L1 = L2.

(12) For all languages L1 and L2, if L1 ∩ L2 = ∅, then either L1 = ∅ or L2 = ∅.
(13) For all languages L1 and L2, if L1 ∩ L2 = ∅ and L1 ∪ L2 = Σ∗, then L1 = L2.

(14) For all languages L1 and L2, if L1 = L2, then L1 ∩ L2 = ∅ and L1 ∪ L2 = Σ∗.

(15) If L is constituted by a finite set of strings, then L is a regular language.

(16) There exist nonempty languages L1 and L2, with L1 6= {ε}, L2 6= {ε}, and L1 6= L2, such
that L1 · L2 = L2 · L1.

(17) A regular expression denotes an infinite language if and only if it contains the ∗ operator.

Problem 1.4 [2 points each] Decide which of the following statements is TRUE and which is
FALSE. You must give a brief explanation of your answer to receive full credit.

(1) If L is not of type 2 (i.e., not context-free), then it is not of type 3 (i.e., not regular).

(2) If L1 is context free and L1 ⊆ L2, then L2 is non-regular.

(3) If L1 is regular and L2 is context-free, then L1 ∩ L2 is regular.

(4) If L is context-free, then L \ {ε} is context-free.

Problem 1.5 [2 points each] For each of the following languages, construct a regular expres-
sion that generates it:

(1) the set of binary strings that have 101 or 010 (or both) as substring;

(2) the set of binary strings that have both 00 and 11 as substrings;

(3) the set of binary strings that have 00 but not 11 as substrings;

(4) the set of strings over the alphabet {a, b, c} that contain the substring aa starting at an
odd position and the substring bb starting at an even position;

(5) the set of strings over the alphabet {x, y, z} that begin with z and end with a sequence of
two or more y’s;

(6) the set of strings over the alphabet {0, 1, 2} that contain an even number of 2’s;

(7) the set of strings over the alphabet {x, y, z} that contain an odd number of y’s;

(8) the set of strings over the alphabet {x, y, z} in which each y is immediately followed by x;

(9) the set of strings over the alphabet {a, b, c} in which each b is immediately preceded by a;
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Problem 1.6 [2 points each] For each of the following languages, construct a deterministic
finite automaton (DFA) that accepts it:

(1) the set of strings over the alphabet {a, b, c} that begin with a sequence of one or more a’s,
and end with a b;

(2) the set of strings over the alphabet {0, 1, 2} in which each 1 is immediately followed by 2;

(3) the set of strings over the alphabet {0, 1, 2} in which each 2 is immediately preceded by 1;

(4) the set of strings over the alphabet {x, y, z} in which each x is immediately preceded or
immediately followed (or both) by y;

Problem 1.7 [2 points] Simplify as much as possible the regular expression

E = (((a+ b)∗ · ((b · ∅) + ε))∗ + (b+ a)∗) + ε

Motivate each simplification step you have applied by an algebraic law for regular expressions.

Problem 1.8 [2 points each]

(a) Show that L∗ = L · L∗ if and only if ε ∈ L.

(b) Give a necessary and sufficient condition for a language L to satisfy the equation L+ = L∗.

Problem 1.9 [2 points] Explain what is wrong in the following argument: “Let L be a
language that is not regular. Since regular languages are closed under the ∗ operator, we have
that also L∗ is not regular.”

Problem 1.10 [4 points] Consider the language L = {x0ny1nz | n ≥ 0, x ∈ L1, y ∈ L2, z ∈
L3}, where L1, L2, L3 are nonempty languages over the alphabet {0, 1}.

(a) Find nonempty regular languages L1, L2, L3 such that L is regular.

(b) Find nonempty regular languages L1, L2, L3 such that L is not regular.

Problem 1.11 [8 points] Describe in detail an algorithm to solve the following problem: Given
a regular expression E with associated language L(E) over the alphabet Σ, construct a regular
expression E such that L(E) = Σ∗ \ L(E). (Notice that set difference is not an operator that
can be used in a regular expressions.)

Illustrate the algorithm on the example of the regular expression 0∗ · 1∗.

Problem 1.12 [8 points] Describe an algorithm to solve the following problem: Given two
regular expressions E1 and E2, respectively with associated languages L(E1) and L(E2) over
the alphabet Σ, construct a regular expression E such that L(E) = L(E1) ∩ L(E2). (Notice
that set intersection is not an operator that can be used in regular expressions.) In describing
the algorithm, you can make use of algorithms that have been discussed in class, without the
need of detailing the various steps of these algorithms.

Illustrate the algorithm on the example of the regular expressions E1 = 0∗ and E2 = 0. Notice
that E1 and E2 are sufficiently simple to allow you to calculate on them the results of the
algorithms discussed in class, without the need of detailing the various steps of these algorithms.
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Problem 1.13 [8 points] Describe an algorithm to solve the following problem: Given two
regular expressions E1 and E2, respectively with associated languages L(E1) and L(E2) over
the alphabet Σ, construct a regular expression E such that L(E) = L(E1)\L(E2). (Notice that
neither set difference, nor set intersection, nor set complement are operators that can be used
in regular expressions.) In describing the algorithm, you can make use of algorithms that have
been discussed in class, without the need of detailing the various steps of these algorithms.

Illustrate the algorithm on the example of the regular expressions E1 = 1∗ and E2 = 1. Notice
that E1 and E2 are sufficiently simple to allow you to calculate on them the results of the
algorithms discussed in class, without the need of detailing the various steps of these algorithms.

2 Regular Expressions and Finite State Automata

Problem 2.1 [6 points each] For each of the following regular expressions E do the following:
Construct an ε-NFA Aε such that L(Aε) = L(E). Try to simplify intermediate results whenever
possible. Then, by eliminating ε-transitions from Aε, construct an NFA A such that L(A) =
L(Aε). Illustrate the steps of the algorithm you have followed to construct Aε and A.

(1) E = 1 · (0∗ + 0 · 1)∗

(2) E = (b+ a)∗ + (a · b)∗

(3) E = ((1 · 0)∗ · 0)∗ + (1 · 1)

(4) E = ((a · b) + (b+ c)∗)∗

(5) E = ((0 · 1) + (1 · 0))∗ · 1∗

(6) E = 0∗ · ((1 · 0) + (0 · 1))∗

Problem 2.2 [6 points each] For each of the following DFAs or NFAs A, construct a regular
expression E such that L(E) = L(A). Illustrate the steps of the algorithm you have followed
to construct E. For each automaton A, give 3 strings (of length at least 4) that are in L(A)
and 3 strings (of length at least 4) that are not in L(A).

(1) 0

q1 q2 q30

1

0, 1
1 (2)

0
q1 q2 q3

1

0 1

0

1

(3)

1
q1 q2 q3

1

0

1

00 (4) 1

q1 q2 q3

1

1

0

0

0

(5)

0

q1 q2 q3

0 11

0
1

(6)

1,0

q1 q2 q3

0 0

0
1

1 1

(7)

A B C
0
0

1,0

1
1
0
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3 Transformations between Finite State Automata

Problem 3.1 [6 points each] For each of the following NFAs N , construct a DFA A such that
L(A) = L(N). Illustrate the steps of the algorithm you have followed to construct A.

(1)

1,0

q1 q2 q3
0

1

1

0 0 0 (2)

q2

1

1

00

10,1 0,1

q0 q1

(3)

A B C
1

0

1
0

1,0

10 (4)

A B C
0
1

1,0

1
1
0

Problem 3.2 [6 points] Consider the following ε-NFA N1 over {0, 1}:

A B C
ε 0

0

1,ε

10

(a) Construct an NFA N2 such that L(N2) = L(N1). The algorithm you have followed to
construct N2 should become evident in your construction.

(b) Show all sequences of transitions of N1 and of N2 that lead to acceptance of 0010.

4 Minimization of Deterministic Finite State Automata

Problem 4.1 [6 points each] Consider the following DFAs A. Construct for each of them a
DFA Am with minimal number of states such that L(Am) = L(A). Illustrate the steps of the
algorithm you have followed to construct Am.

(1)

b

A B C

D E F

a
b

a

a aa

a, b

b b

b

(2)

1

A B

D E F

C
0 0

1

1 1

0

0 1
0, 1

0
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(3)
1

A

B

C

D

E

F

G

0

0 0

0, 1

0

01

1

1

0, 1

1
(4)

1

A

B

C

D

E

0

1

1

1

1

F

1

0

0

1
0

0

0

G

0

(5)

1

B

1

1

0

00

0

1
0

1

0
1

1

0

A
C

D E

F G

(6)

A C

D

E

FB

a b

b

a

a

a
b

b

b
b

a

a

(7)

A B

E

C

FD

1

1

0,1

0

0

0

1
0

1

1

0

Problem 4.2 [2 points each] For each of the automata in Problem 4.1, give 3 strings (of
length at least 4) that are in L(A) and 3 strings (of length at least 4) that are not in L(A).
Provide a description of L(A) in plain English.

5 Showing Languages to be Non-regular

Problem 5.1 [6 points each] In each of the following cases, show that the language L is not
regular by exploiting the pumping lemma for regular languages:

(a) L = { ak2 | k > 0 }
(b) L = { anbm | n > m }
(c) L = { aibj | i, j > 0, i 6= j }
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[Hint : Exploit in your argument closure properties of regular languages and the known facts
that the language L1 = {aibj | i, j > 0} is regular and the language L2 = {anbn | n > 0} is
not regular.]

(d) L = {ambnck | m,n, k ≥ 0,m 6= n or m 6= k or n 6= k}
[Hint : Consider first the language L ∩ a∗b∗c∗ and show that it is not regular using the
pumping lemma. Then exploit the closure properties of regular languages.]

(e) L = { xy | x, y ∈ {0, 1}∗ and #0(x) ≥ #0(y) },
where #0(w) denotes the number of 0’s in a string w.

[Hint : Consider e.g., the string 0n12n0n, for a suitable value of n.]

(f) L = { anbm | n ≤ m ≤ 2n }

6 Context Free Languages and Grammars

Problem 6.1 [4 points each] In each of the following cases, show that the language L is context
free by exhibiting a context free grammar that generates it. Be precise in the specification of
the grammar, by providing explicitly all its elements.

(1) L = {uawb | u,w ∈ {a, b}∗, with |u| = |w|}
(2) L = {ambncpdq | m+ n = p+ q}
(3) L = {ambn | m,n ≥ 0,m 6= n}

Problem 6.2 [6 points] Consider the language L over Σ = {0, 1,#} defined as follows:

L = {xR#y | x, y ∈ {0, 1}∗, x is a substring of y}

where xR denotes the reverse string of x.

(a) Show that L is context free by exhibiting a context free grammar G that generates L. Be
precise in the specification of the grammar, by providing explicitly all its elements.

(b) Show the leftmost derivation according to G for the string 110#001110 and for the string
10#1010011. Draw the corresponding parse trees.

(c) Is the grammar you have provided ambiguous? Argue convincingly.

Problem 6.3 [6 points]

(a) Describe the algorithm to eliminate the ε-productions from a context free grammar.

(b) Describe the algorithm to eliminate non-generating symbols from a context free grammar.

Apply first algorithm (a) and then algorithm (b) to the grammar G =
({S,A,B,C}, {a, b}, P, S), where P consists of the following productions:

S −→ C | bAAa | CaA
A −→ Aa | CB | ε

B −→ CB | BA | Ba
C −→ Ca | CB | ε
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Problem 6.4 [6 points]

(a) Describe the algorithm to eliminate the ε-productions from a context free grammar.

(b) Describe the algorithm to eliminate the non-reachable symbols from a context free grammar.

Apply first algorithm (a) and then algorithm (b) to the grammar G =
({S,A,B,C,D}, {a, b, c}, P, S), where P consists of the following productions:

S −→ B | BaBb | DbB
A −→ DC | Aac | Bbc
B −→ Bb | DC | ε

C −→ DC | CB | Ba
D −→ Db | DC | ε

Problem 6.5 [6 points]

(a) Describe the algorithm to eliminate the unit-productions from a context free grammar.

(b) Describe the algorithm to eliminate the non-generating symbols from a context free gram-
mar.

Apply first algorithm (a) and then algorithm (b) to the grammar G =
({S,A,B,C,D}, {a, b, c}, P, S), where P consists of the following productions:

S −→ A | AaBb | Da
A −→ Aa | C | D
B −→ BD | Cc | C

C −→ AB | aB | Ca
D −→ c | aA

Problem 6.6 [6 points each] Describe the steps, in the correct order, that are necessary to
convert a context free grammar into Chomsky Normal Form. Apply these steps to each of the
following grammars G.

(1) G = ({S,A,B,C}, {a, b}, P, S), where P consists of the following productions:

S −→ B | BaBb | AbB
A −→ Ab | AC

B −→ Bb | AC | ε
C −→ AC | CB | Ba

(2) G = ({S,A,B,C,D}, {a, b}, P, S), where P consists of the following productions:

S −→ aAa | bBb | ε
A −→ C | a
B −→ C | b

C −→ CDE | ε
D −→ A | B | ab

(3) G = ({S,A,B,C}, {a, b}, P, S), where P consists of the following productions:

S −→ aAb | bBa | AA
A −→ S | B

B −→ C
C −→ S | ε

(4) G = ({S,A}, {0}, P, S), where P consists of the following productions:

S −→ ASA | A | ε A −→ 00 | ε
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(5) G = ({S,A,B,C}, {a, b}, P, S), where P consists of the following productions:

S −→ A | ABa | AbA
A −→ Aa | ε

B −→ Bb | BC
C −→ CB | CA | bB

(6) G = ({S,A,B,C}, {a, b}, P, S), where P consists of the following productions:

S −→ ABCa | aAbb | ε
A −→ ε

B −→ bB | b | AC
C −→ aCa | ε

(7) G = ({S,A,B,C,D,E}, {a, b}, P, S), where P consists of the following productions:

S −→ AB | BBB | C
A −→ Ab | DA | EaE
B −→ aa | bB | C

C −→ ε
D −→ aCa | ε
E −→ Eb | AaA
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7 Advanced Exercises

The following exercises are optional, and go beyond what has been covered in the Formal Lan-
guages course. They are intended for interested students, who want to deepen their knowledge
of the subject.

Problem 7.1 [6 points] The quotient L1/L2 of two languages L1 and L2 is defined as

L1/L2 = { x | there is y ∈ L2 such that xy ∈ L1 }.

For example, if

L1 = { w ∈ {0, 1}∗ | w has an even number of 0’s },
L2 = { 0 },
L3 = { 0, 00 },

then
L1/L2 = { w ∈ {0, 1}∗ | w has an odd number of 0’s },
L1/L3 = { 0, 1 }∗.

Show that, for an arbitrary language L2, if L1 is regular, then L1/L2 is also regular.

[Hint : Start from a DFA A for L1, and show how to modify the set of final states of A to obtain
a DFA for L1/L2.]

Problem 7.2 [6 points] Let L1 be the set of strings over {a, b} that do not have aab as a
substring. Let further L2 be the language over {a, b} inductively defined as follows:

1. ε is in L2;

2. for every w in L2, also wa, bw, and abw are in L2;

3. nothing else is in L2.

(a) Prove that L2 ⊆ L1, making all steps of the proof explicit. [Hint: use structural induction
on the rules used to define L2.]

(b) Prove that L1 ⊆ L2, making all steps of the proof explicit. [Hint: use induction on the
length of a string in L1.]

Problem 7.3 [6 points] A nonrestarting DFA is a DFA (Q,Σ, δ, q0, F ) such that the initial
state q0 has no incoming transition, i.e., δ(q, a) 6= q0, for all q ∈ Q and all a ∈ Σ. Prove that
for every regular language L there is an effective way to construct a nonrestarting DFA Dnr

such that L(Dnr) = L.

[Hint : Describe first how to construct, from an arbitrary DFA D, a suitable nonrestarting DFA
Dnr, and then show, by induction, that the DFA Dnr that you have constructed is such that
(1) each string accepted by D is also accepted by Dnr, and (2) each string accepted by Dnr is
also accepted by D.]
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Problem 7.4 [4 points] Consider the grammar G = ({S, T}, {0, 1}, P, S), where P consists of
the following productions

S −→ 0S | 1T | 0
T −→ 1T | 1

Show that no string in the language L(G) contains the substring 10.

Problem 7.5 [6 points] Consider the grammar G = ({S,A,B}, {0, 1}, P, S), where P consists
of the following productions

S −→ A | B
A −→ 0A | AA1 | 0
B −→ B1 | 0BB | 1

Prove that in every word of the language L(G) the number of 0’s and the number of 1’s are
different.

Problem 7.6 [6 points] Consider a context-free grammar G = (VN , VT , P, S) in which every
production in P is of the form A −→ xB or A −→ x, with A,B ∈ VN and x ∈ V ∗

T . Show that
the language generated by G is regular. Does this still hold if we allow in G also productions
of the form A −→ Bx? Argue convincingly.

Problem 7.7 [4 points] A context-free grammar G = (VN , VT , P, S) is said to be linear if
every production in P is of the form A −→ xB or A −→ Bx or A −→ x, where A,B ∈ VN and
x ∈ V ∗

T . Show that the language generated by a linear grammar is not necessarily regular.

Problem 7.8 [6 points each] Let L be the language generated by the grammar G =
({S}, {a, b}, P, S), where P consists of the following productions

S −→ ε | Sa | bS | abS

(a) Prove that no string generated by G has aab as a substring. Make all steps of the proof
explicit.

[Hint: Use an induction on the length of the derivation according to G of a sentential form
w1Sw2, establishing properties that hold for w1 and w2.]

(b) Prove that each string that does not have aab as a substring is generated by G, making all
steps of the proof explicit.

[Hint: use induction on the length of the string w, and distinguish different cases according
to the first two symbols or the last symbol of w.]

Problem 7.9 [6 points] Consider the context-free grammar G = (VN , VT , P, S) with VN =
{S,X, Y }, VT = {a, b}, and P constituted by the following productions:

S → XY X → aX
X → ε

Y → bY
Y → ε

(a) Prove that L(G) is a regular language.

(b) Prove that there is no leftmost derivation of the sentential form X (even though S
∗⇒ X).
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