
Open day for schools, NOI Techpark, 18/11/2022

intelligenza artificiale e
smart data factory
Marco Montali

“Intelligenza”
Artificiale

Intelligenza

Artificiale

Intelligenza

Artificiale

Intelligenza

Artificiale

Intelligenza o muscoli?

1996: IBM DeepBlue batte
il campione mondiale di
scacchi Kasparov

2016: DeepMind AlphaGo
batte uno dei massimi

campioni mondiali di Go

Intelligenza

Artificiale

DALL-E2

Intelligenza?

6 Massimiliano de Leoni et al.

package
received

get
length

measure
weight

wrong
inputpLength = undef

∨ pWeight > 10

determine
mode

no shipment

sMode = undef

choose
consent

sign
declaration

fetch
declaration

consent = com consent = ownerconsent = none

ready for shipment

pType

pLength

pWeight

> 0

sMode

consent

Get Length

U
Type Length

(m)

std,large,xl > 0

1 std 0.5

2 large 1

3 xl 2

!
Type "→ pType

Length "→ pLength

"

Determine Mode

U
Length

(m)
Weight

(kg)
Mode

> 0 > 0 car, truck

1 (0, 1] (0, 5] car

2 (1, 2] (0, 5] truck

3 − (5, 10] truck

#
$

%

Length "→ pLength
Weight "→ pWeight

Mode "→ sMode

&
'

(

Choose Consent

U
Mode Weight

(kg)
Consent

car,truck > 0 none, owner, com

1 car > 6 owner

2 truck > 8 com

#
$

%

Mode "→ sMode
Weight "→ pWeight

Consent "→ consent

&
'

(

Fig. 1 A DBPMN (unsound) process for handling packages, their shipment mode, and corresponding
declarations.

2 A Gentle Introduction to DBPMN

In this section we give a gentle introduction to the DBPMN model and its sound-
ness analysis, by means of the running example concerned with the management of
packages by a fictitious company called BLACKSHIP.

To disambiguate the terminology, in this paper we call DBPMN model the inte-
grated model that we formalize, and DBPMN processes the instances of such model.

We describe the DBPMN example process intuitively to highlight the main dis-
tinctive features of the DBPMN model, of which we defer the formal definition to
Section 3. As explained at the end of this section, this process is intentionally flawed
even though this is not immediately apparent. We use this example to motivate our
unified modeling and verification approach by showing how a naive analysis (that
does not consider at once the control-flow, the data objects manipulation and the de-
cision logic) is unable to verify the correctness of these processes.

Process description. The example captures a fragment of a typical order-to-delivery
process and is graphically represented in DBPMN as shown in Figure 1.

Un processo aziendale…

6 Massimiliano de Leoni et al.

package
received

get
length

measure
weight

wrong
inputpLength = undef

∨ pWeight > 10

determine
mode

no shipment

sMode = undef

choose
consent

sign
declaration

fetch
declaration

consent = com consent = ownerconsent = none

ready for shipment

pType

pLength

pWeight

> 0

sMode

consent

Get Length

U
Type Length

(m)

std,large,xl > 0

1 std 0.5

2 large 1

3 xl 2

!
Type "→ pType

Length "→ pLength

"

Determine Mode

U
Length

(m)
Weight

(kg)
Mode

> 0 > 0 car, truck

1 (0, 1] (0, 5] car

2 (1, 2] (0, 5] truck

3 − (5, 10] truck

#
$

%

Length "→ pLength
Weight "→ pWeight

Mode "→ sMode

&
'

(

Choose Consent

U
Mode Weight

(kg)
Consent

car,truck > 0 none, owner, com

1 car > 6 owner

2 truck > 8 com

#
$

%

Mode "→ sMode
Weight "→ pWeight

Consent "→ consent

&
'

(

Fig. 1 A DBPMN (unsound) process for handling packages, their shipment mode, and corresponding
declarations.

2 A Gentle Introduction to DBPMN

In this section we give a gentle introduction to the DBPMN model and its sound-
ness analysis, by means of the running example concerned with the management of
packages by a fictitious company called BLACKSHIP.

To disambiguate the terminology, in this paper we call DBPMN model the inte-
grated model that we formalize, and DBPMN processes the instances of such model.

We describe the DBPMN example process intuitively to highlight the main dis-
tinctive features of the DBPMN model, of which we defer the formal definition to
Section 3. As explained at the end of this section, this process is intentionally flawed
even though this is not immediately apparent. We use this example to motivate our
unified modeling and verification approach by showing how a naive analysis (that
does not consider at once the control-flow, the data objects manipulation and the de-
cision logic) is unable to verify the correctness of these processes.

Process description. The example captures a fragment of a typical order-to-delivery
process and is graphically represented in DBPMN as shown in Figure 1.

Un processo aziendale…

6 Massimiliano de Leoni et al.

package
received

get
length

measure
weight

wrong
inputpLength = undef

∨ pWeight > 10

determine
mode

no shipment

sMode = undef

choose
consent

sign
declaration

fetch
declaration

consent = com consent = ownerconsent = none

ready for shipment

pType

pLength

pWeight

> 0

sMode

consent

Get Length

U
Type Length

(m)

std,large,xl > 0

1 std 0.5

2 large 1

3 xl 2

!
Type "→ pType

Length "→ pLength

"

Determine Mode

U
Length

(m)
Weight

(kg)
Mode

> 0 > 0 car, truck

1 (0, 1] (0, 5] car

2 (1, 2] (0, 5] truck

3 − (5, 10] truck

#
$

%

Length "→ pLength
Weight "→ pWeight

Mode "→ sMode

&
'

(

Choose Consent

U
Mode Weight

(kg)
Consent

car,truck > 0 none, owner, com

1 car > 6 owner

2 truck > 8 com

#
$

%

Mode "→ sMode
Weight "→ pWeight

Consent "→ consent

&
'

(

Fig. 1 A DBPMN (unsound) process for handling packages, their shipment mode, and corresponding
declarations.

2 A Gentle Introduction to DBPMN

In this section we give a gentle introduction to the DBPMN model and its sound-
ness analysis, by means of the running example concerned with the management of
packages by a fictitious company called BLACKSHIP.

To disambiguate the terminology, in this paper we call DBPMN model the inte-
grated model that we formalize, and DBPMN processes the instances of such model.

We describe the DBPMN example process intuitively to highlight the main dis-
tinctive features of the DBPMN model, of which we defer the formal definition to
Section 3. As explained at the end of this section, this process is intentionally flawed
even though this is not immediately apparent. We use this example to motivate our
unified modeling and verification approach by showing how a naive analysis (that
does not consider at once the control-flow, the data objects manipulation and the de-
cision logic) is unable to verify the correctness of these processes.

Process description. The example captures a fragment of a typical order-to-delivery
process and is graphically represented in DBPMN as shown in Figure 1.

Un processo aziendale…

6 Massimiliano de Leoni et al.

package
received

get
length

measure
weight

wrong
inputpLength = undef

∨ pWeight > 10

determine
mode

no shipment

sMode = undef

choose
consent

sign
declaration

fetch
declaration

consent = com consent = ownerconsent = none

ready for shipment

pType

pLength

pWeight

> 0

sMode

consent

Get Length

U
Type Length

(m)

std,large,xl > 0

1 std 0.5

2 large 1

3 xl 2

!
Type "→ pType

Length "→ pLength

"

Determine Mode

U
Length

(m)
Weight

(kg)
Mode

> 0 > 0 car, truck

1 (0, 1] (0, 5] car

2 (1, 2] (0, 5] truck

3 − (5, 10] truck

#
$

%

Length "→ pLength
Weight "→ pWeight

Mode "→ sMode

&
'

(

Choose Consent

U
Mode Weight

(kg)
Consent

car,truck > 0 none, owner, com

1 car > 6 owner

2 truck > 8 com

#
$

%

Mode "→ sMode
Weight "→ pWeight

Consent "→ consent

&
'

(

Fig. 1 A DBPMN (unsound) process for handling packages, their shipment mode, and corresponding
declarations.

2 A Gentle Introduction to DBPMN

In this section we give a gentle introduction to the DBPMN model and its sound-
ness analysis, by means of the running example concerned with the management of
packages by a fictitious company called BLACKSHIP.

To disambiguate the terminology, in this paper we call DBPMN model the inte-
grated model that we formalize, and DBPMN processes the instances of such model.

We describe the DBPMN example process intuitively to highlight the main dis-
tinctive features of the DBPMN model, of which we defer the formal definition to
Section 3. As explained at the end of this section, this process is intentionally flawed
even though this is not immediately apparent. We use this example to motivate our
unified modeling and verification approach by showing how a naive analysis (that
does not consider at once the control-flow, the data objects manipulation and the de-
cision logic) is unable to verify the correctness of these processes.

Process description. The example captures a fragment of a typical order-to-delivery
process and is graphically represented in DBPMN as shown in Figure 1.

Un processo aziendale…

6 Massimiliano de Leoni et al.

package
received

get
length

measure
weight

wrong
inputpLength = undef

∨ pWeight > 10

determine
mode

no shipment

sMode = undef

choose
consent

sign
declaration

fetch
declaration

consent = com consent = ownerconsent = none

ready for shipment

pType

pLength

pWeight

> 0

sMode

consent

Get Length

U
Type Length

(m)

std,large,xl > 0

1 std 0.5

2 large 1

3 xl 2

!
Type "→ pType

Length "→ pLength

"

Determine Mode

U
Length

(m)
Weight

(kg)
Mode

> 0 > 0 car, truck

1 (0, 1] (0, 5] car

2 (1, 2] (0, 5] truck

3 − (5, 10] truck

#
$

%

Length "→ pLength
Weight "→ pWeight

Mode "→ sMode

&
'

(

Choose Consent

U
Mode Weight

(kg)
Consent

car,truck > 0 none, owner, com

1 car > 6 owner

2 truck > 8 com

#
$

%

Mode "→ sMode
Weight "→ pWeight

Consent "→ consent

&
'

(

Fig. 1 A DBPMN (unsound) process for handling packages, their shipment mode, and corresponding
declarations.

2 A Gentle Introduction to DBPMN

In this section we give a gentle introduction to the DBPMN model and its sound-
ness analysis, by means of the running example concerned with the management of
packages by a fictitious company called BLACKSHIP.

To disambiguate the terminology, in this paper we call DBPMN model the inte-
grated model that we formalize, and DBPMN processes the instances of such model.

We describe the DBPMN example process intuitively to highlight the main dis-
tinctive features of the DBPMN model, of which we defer the formal definition to
Section 3. As explained at the end of this section, this process is intentionally flawed
even though this is not immediately apparent. We use this example to motivate our
unified modeling and verification approach by showing how a naive analysis (that
does not consider at once the control-flow, the data objects manipulation and the de-
cision logic) is unable to verify the correctness of these processes.

Process description. The example captures a fragment of a typical order-to-delivery
process and is graphically represented in DBPMN as shown in Figure 1.

Un processo aziendale…

5.2 Event Logs 129

Table 5.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 register request Pete 50 . . .

35654424 31-12-2010:10.06 examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 check ticket Mike 100 . . .

35654426 06-01-2011:11.18 decide Sara 200 . . .

35654427 07-01-2011:14.24 reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 register request Mike 50 . . .

35654485 30-12-2010:12.12 check ticket Mike 100 . . .

35654487 30-12-2010:14.16 examine casually Pete 400 . . .

35654488 05-01-2011:11.22 decide Sara 200 . . .

35654489 08-01-2011:12.05 pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 register request Pete 50 . . .

35654522 30-12-2010:15.06 examine casually Mike 400 . . .

35654524 30-12-2010:16.34 check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 decide Sara 200 . . .

35654526 06-01-2011:12.18 reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 check ticket Pete 100 . . .

35654531 09-01-2011:09.55 decide Sara 200 . . .

35654533 15-01-2011:10.45 pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 register request Pete 50 . . .

35654643 07-01-2011:12.06 check ticket Mike 100 . . .

35654644 08-01-2011:14.43 examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 decide Sara 200 . . .

35654647 12-01-2011:15.44 reject request Ellen 200 . . .

. .

information is useful when analyzing performance related properties, e.g., the wait-
ing time between two activities. The events in Table 5.1 also refer to resources, i.e.,
the persons executing the activities. Also costs are associated to events. In the con-
text of process mining, these properties are referred to as attributes. These attributes
are similar to the notion of variables in Chap. 4.

Figure 5.2 shows the tree structure of an event log. Using this figure we can list
our assumptions about event logs.

• A process consists of cases.
• A case consists of events such that each event relates to precisely one case.
• Events within a case are ordered.

5.2 Event Logs 129

Table 5.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 register request Pete 50 . . .

35654424 31-12-2010:10.06 examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 check ticket Mike 100 . . .

35654426 06-01-2011:11.18 decide Sara 200 . . .

35654427 07-01-2011:14.24 reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 register request Mike 50 . . .

35654485 30-12-2010:12.12 check ticket Mike 100 . . .

35654487 30-12-2010:14.16 examine casually Pete 400 . . .

35654488 05-01-2011:11.22 decide Sara 200 . . .

35654489 08-01-2011:12.05 pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 register request Pete 50 . . .

35654522 30-12-2010:15.06 examine casually Mike 400 . . .

35654524 30-12-2010:16.34 check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 decide Sara 200 . . .

35654526 06-01-2011:12.18 reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 check ticket Pete 100 . . .

35654531 09-01-2011:09.55 decide Sara 200 . . .

35654533 15-01-2011:10.45 pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 register request Pete 50 . . .

35654643 07-01-2011:12.06 check ticket Mike 100 . . .

35654644 08-01-2011:14.43 examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 decide Sara 200 . . .

35654647 12-01-2011:15.44 reject request Ellen 200 . . .

. .

information is useful when analyzing performance related properties, e.g., the wait-
ing time between two activities. The events in Table 5.1 also refer to resources, i.e.,
the persons executing the activities. Also costs are associated to events. In the con-
text of process mining, these properties are referred to as attributes. These attributes
are similar to the notion of variables in Chap. 4.

Figure 5.2 shows the tree structure of an event log. Using this figure we can list
our assumptions about event logs.

• A process consists of cases.
• A case consists of events such that each event relates to precisely one case.
• Events within a case are ordered.

Demo

(a) (b) (c) (d)

Figure 4: Examples of successful impersonation and dodging attacks. Fig. (a) shows SA (top) and SB (bottom) dodging
against DNNB . Fig. (b)–(d) show impersonations. Impersonators carrying out the attack are shown in the top row and
corresponding impersonation targets in the bottom row. Fig. (b) shows SA impersonating Milla Jovovich (by Georges Biard;
source: https://goo.gl/GlsWlC); (c) SB impersonating SC ; and (d) SC impersonating Carson Daly (by Anthony Quintano;
source: https://goo.gl/VfnDct).

Figure 5: The eyeglass frames used by SC for dodging recog-
nition against DNNB .

postors) never occurs, while true acceptance remains high.
Following a similar procedure, we found that a threshold of
0.90 achieved a reasonable tradeo↵ between security and us-
ability for DNNC ; the true acceptance rate became 92.01%
and the false acceptance rate became 4e�3. Attempting
to decrease the false acceptance rate to 0 reduced the true
acceptance rate to 41.42%, making the FRS unusable.

Using thresholds changes the definition of successful im-
personation: to successfully impersonate the target t, the
probability assigned to ct must exceed the threshold. Eval-
uating the previous impersonation attempts under this def-
inition, we found that success rates generally decreased but
remained high enough for the impersonations to be consid-
ered a real threat (see Table 2). For example, SB ’s success
rate when attempting to fool DNNB and impersonate SC

decreased from 88.00% without threshold to 75.00% when
using a threshold.

Time Complexity The DNNs we use in this work are
large, e.g., the number of connections in DNNB , the small-
est DNN, is about 3.86e8. Thus, the main overhead when
solving the optimization problem via GD is computing the
derivatives of the DNNs with respect to the input images.
For NI images used in the optimizations and NC connec-
tions in the DNN, the time complexity of each GD iteration
is O(NI ⇤NC). In practice, when using about 30 images, one
iteration of GD on a MacBook Pro (equipped with 16GB of
memory and a 2.2GHz Intel i7 CPU) takes about 52.72 sec-
onds. Hence, running the optimization up to 300 iterations
may take about 4.39 hours.

6. EXTENSION TO BLACK-BOX MODELS
So far we have examined attacks where the adversary has

access to the model she is trying to deceive. In general,
previous work on fooling ML systems has assumed knowl-
edge of the architecture of the system (see Sec. 2). In this
section we demonstrate how similar attacks can be applied
in a black-box scenario. In such a scenario, the adversary
would typically have access only to an oracle O which out-
puts a result for a given input and allows a limited number of
queries. The threat model we consider here is one in which
the adversary has access only to the oracle.

We next briefly describe a commercial FRS that we use in
our experiments (Sec. 6.1), and then describe and evaluate
preliminary attempts to carry out impersonation attacks in
a black-box setting (Sec. 6.2–6.3).

6.1 Face++: A Commercial FRS
Face++ is a cross-platform commercial state-of-the-art

FRS that is widely used by applications for facial recog-
nition, detection, tracking, and analysis [46]. It has been
shown to achieve accuracy over 97.3% on LFW [8]. Face++
allows users to upload training images and labels and trains
an FRS that can be queried by applications. Given an im-
age, the output from Face++ is the top three most proba-
ble classes of the image along with their confidence scores.
Face++ is marketed as“face recognition in the cloud.” Users
have no access to the internals of the training process and
the model used, nor even to a precise explanation of the
meaning of the confidence scores. Face++ is rate-limited to
50,000 free queries per month per user.

To train the Face++ model, we used the same training
data used for DNNB in Sec. 4.1 to create a 10-class FRS.

6.2 Impersonation Attacks on Face++
The goal of our black-box attack is for an adversary to

alter an image to which she has access so that it is mis-
classified. We attempted dodging attacks with randomly
colored glasses and found that it worked immediately for
several images. Therefore, in this section we focus on the
problem of impersonation from a given source to a target .

����

ceeded. Noteworthy is the low number of queries needed for
the attacks, which shows that rate-limiting access to services
will not always stop an online attack.

7. EXTENSION TO FACE DETECTION
In this section, we show how to generalize the basic ap-

proach presented in Sec. 4.2 to achieve invisibility to facial
biometric systems. In an invisibility attack, an adversary
seeks to trick an ML system not into misclassifying one per-
son as another, but into simply failing to detect the presence
of a person.

We examine this category of attacks for two reasons. First,
most ML systems for identifying faces have two phases: de-
tecting the presence of a face and then identifying the de-
tected face. The detection phase is typically less closely tied
to training data than the recognition phase. Hence, tech-
niques to circumvent detection have the potential to apply
more broadly across multiple systems.

Second, avoiding detection corresponds naturally to one
type of motivation—the desire to achieve privacy. In seeking
to achieve privacy, a person may specifically want to avoid
causing culpability to be placed on another person. Simi-
larly, a mislabeling of a face might be more likely to arouse
suspicion or alert authorities than would the failure to notice
the presence of a face at all, as might occur at an airport
security checkpoint where faces detected by FDSs are con-
firmed against face images of passengers expected to travel,
or faces of people wanted by the authorities.

In this work, we show how to perform invisibility attacks
while attempting to maintain plausible deniability through
the use of facial accessories. We defer the examination of
the physical realizability of these attacks to future work.

7.1 The Viola-Jones Face Detector
As mentioned in Sec. 2, the Viola-Jones (VJ) face detector

was designed with e�ciency and accuracy in mind. The key
idea to achieve both goals is to use a cascade of classifiers
that have an ascending order of complexity. Each classifier
is trained to detect the majority of the positive instances
(presence of a face) and reject a large number of the negative
instances. To detect an object in an image, several sub-
windows are taken from the image and are evaluated by the
detector. To be detected as a positive example, the sub-
window needs to be classified as a positive example by all
the classifiers in the cascade. On the other hand, being
rejected by one classifier in the cascade results in classifying
a sub-window as a negative example. Sub-windows that are
rejected by simple classifiers are not further evaluated by
the more sophisticated classifiers.

A classifier in the cascade is composed of a combination
of weak classifiers. A weak classifier i is a simple classifier
that outputs one of two possible values, ãi or âi, based on
one feature value, fi(·), and a threshold bi. Given a classifier
that is composed of C weak classifiers, its decision function
is defined as:

Classify(x) =

✓ CX

i=1

⇣
(ãi � âi)(fi(x) > bi) + âi

⌘◆
> T

where T is the passing threshold of the classifier, x is the
sub-window, and fi(x) > bi evaluates to 1 if true and 0
otherwise.

As explained above, the VJ detector rejects a sub-window

Figure 6: An example of an invisibility attack. Left: original
image of actor Kiefer Sutherland. Middle: Invisibility by
perturbing pixels that overlay the face. Right: Invisibility
with the use of accessories.

in case one of its classifiers rejects it. Thus, to evade de-
tection it is su�cient to fool one cascade stage. Since the
trained VJ is an open source (i.e., white-box) classifier [19],
to find a minimal perturbation that can be used for eva-
sion, we could potentially adapt and utilize the solution
proposed by Szegedy et al. [39]. However, to solve the op-
timization problem, we need the classification function to
be di↵erentiable—as previously explained in Section 3.2—
which Classify(x) is not. Therefore, we utilize the sigmoid
function, sig (as is often done in ML [37]), and formulate
the optimization problem as:

argmin
r

 ✓ CX

i=1

⇣
(ãi�âi)·sig(k·(fi(x+r)�bi))+âi

⌘
�T

◆
+c|r|

!

(1)
where k is a positive real number that can be tuned to
control the precision of the approximation. With this ap-
proximation, we can perform gradient descent to solve the
optimization problem.

7.2 Experiment Results
By generating a perturbation to evade a specific stage of

the detector via the above technique, we are able to learn
how to tweak pixel intensities in specific regions to success-
fully evade the whole cascade. To test this approach, we
randomly selected 20 frontal images from the PubFig [21]
face dataset, and tested whether each could be permuted to
evade detection by fooling the first classifier in the cascade.
We generated perturbed images as follows: we limited the
perturbation to the area of the face, set c to 0.015 (as we
found this to yield smaller perturbations in practice), and
then performed line search on k to find the minimal per-
turbation necessary to evade the classifier, using a Limited
BFGS [29] solver to solve the optimization (Eqn. 1).

For 19 out of the 20 images it was possible to evade de-
tection. For the images that achieved evasion, the mean
perturbation—the aggregate change in the value of the R,
G, and B channels—of a pixel that overlays the face was
16.06 (standard deviation 6.35), which is relatively high and
noticeable. As Fig. 6 shows, in some cases even the minimal
perturbation necessary to evade detection required making
changes to faces that could draw increased attention.

In another version of the attack, in which we sought to
increase both the success rate and plausible deniability, we
first added facial accessories specifically selected for their
colors and contrast to the image; we then perturbed the im-
age as in the previous attack. The accessories we used were:
eyeglasses, a blond wig, bright eye contacts, eye blacks, and
a winter hat. With this approach, it was possible to evade
detection for all 20 face images. In addition, the amount by
which each pixel needed to be perturbed dropped remark-

����

ceeded. Noteworthy is the low number of queries needed for
the attacks, which shows that rate-limiting access to services
will not always stop an online attack.

7. EXTENSION TO FACE DETECTION
In this section, we show how to generalize the basic ap-

proach presented in Sec. 4.2 to achieve invisibility to facial
biometric systems. In an invisibility attack, an adversary
seeks to trick an ML system not into misclassifying one per-
son as another, but into simply failing to detect the presence
of a person.

We examine this category of attacks for two reasons. First,
most ML systems for identifying faces have two phases: de-
tecting the presence of a face and then identifying the de-
tected face. The detection phase is typically less closely tied
to training data than the recognition phase. Hence, tech-
niques to circumvent detection have the potential to apply
more broadly across multiple systems.

Second, avoiding detection corresponds naturally to one
type of motivation—the desire to achieve privacy. In seeking
to achieve privacy, a person may specifically want to avoid
causing culpability to be placed on another person. Simi-
larly, a mislabeling of a face might be more likely to arouse
suspicion or alert authorities than would the failure to notice
the presence of a face at all, as might occur at an airport
security checkpoint where faces detected by FDSs are con-
firmed against face images of passengers expected to travel,
or faces of people wanted by the authorities.

In this work, we show how to perform invisibility attacks
while attempting to maintain plausible deniability through
the use of facial accessories. We defer the examination of
the physical realizability of these attacks to future work.

7.1 The Viola-Jones Face Detector
As mentioned in Sec. 2, the Viola-Jones (VJ) face detector

was designed with e�ciency and accuracy in mind. The key
idea to achieve both goals is to use a cascade of classifiers
that have an ascending order of complexity. Each classifier
is trained to detect the majority of the positive instances
(presence of a face) and reject a large number of the negative
instances. To detect an object in an image, several sub-
windows are taken from the image and are evaluated by the
detector. To be detected as a positive example, the sub-
window needs to be classified as a positive example by all
the classifiers in the cascade. On the other hand, being
rejected by one classifier in the cascade results in classifying
a sub-window as a negative example. Sub-windows that are
rejected by simple classifiers are not further evaluated by
the more sophisticated classifiers.

A classifier in the cascade is composed of a combination
of weak classifiers. A weak classifier i is a simple classifier
that outputs one of two possible values, ãi or âi, based on
one feature value, fi(·), and a threshold bi. Given a classifier
that is composed of C weak classifiers, its decision function
is defined as:

Classify(x) =

✓ CX

i=1

⇣
(ãi � âi)(fi(x) > bi) + âi

⌘◆
> T

where T is the passing threshold of the classifier, x is the
sub-window, and fi(x) > bi evaluates to 1 if true and 0
otherwise.

As explained above, the VJ detector rejects a sub-window

Figure 6: An example of an invisibility attack. Left: original
image of actor Kiefer Sutherland. Middle: Invisibility by
perturbing pixels that overlay the face. Right: Invisibility
with the use of accessories.

in case one of its classifiers rejects it. Thus, to evade de-
tection it is su�cient to fool one cascade stage. Since the
trained VJ is an open source (i.e., white-box) classifier [19],
to find a minimal perturbation that can be used for eva-
sion, we could potentially adapt and utilize the solution
proposed by Szegedy et al. [39]. However, to solve the op-
timization problem, we need the classification function to
be di↵erentiable—as previously explained in Section 3.2—
which Classify(x) is not. Therefore, we utilize the sigmoid
function, sig (as is often done in ML [37]), and formulate
the optimization problem as:

argmin
r

 ✓ CX

i=1

⇣
(ãi�âi)·sig(k·(fi(x+r)�bi))+âi

⌘
�T

◆
+c|r|

!

(1)
where k is a positive real number that can be tuned to
control the precision of the approximation. With this ap-
proximation, we can perform gradient descent to solve the
optimization problem.

7.2 Experiment Results
By generating a perturbation to evade a specific stage of

the detector via the above technique, we are able to learn
how to tweak pixel intensities in specific regions to success-
fully evade the whole cascade. To test this approach, we
randomly selected 20 frontal images from the PubFig [21]
face dataset, and tested whether each could be permuted to
evade detection by fooling the first classifier in the cascade.
We generated perturbed images as follows: we limited the
perturbation to the area of the face, set c to 0.015 (as we
found this to yield smaller perturbations in practice), and
then performed line search on k to find the minimal per-
turbation necessary to evade the classifier, using a Limited
BFGS [29] solver to solve the optimization (Eqn. 1).
For 19 out of the 20 images it was possible to evade de-

tection. For the images that achieved evasion, the mean
perturbation—the aggregate change in the value of the R,
G, and B channels—of a pixel that overlays the face was
16.06 (standard deviation 6.35), which is relatively high and
noticeable. As Fig. 6 shows, in some cases even the minimal
perturbation necessary to evade detection required making
changes to faces that could draw increased attention.
In another version of the attack, in which we sought to

increase both the success rate and plausible deniability, we
first added facial accessories specifically selected for their
colors and contrast to the image; we then perturbed the im-
age as in the previous attack. The accessories we used were:
eyeglasses, a blond wig, bright eye contacts, eye blacks, and
a winter hat. With this approach, it was possible to evade
detection for all 20 face images. In addition, the amount by
which each pixel needed to be perturbed dropped remark-

����

nessuna

persona

Kiefer

Sutherland

https://mobile.twitter.com/abidlabs/status/1291165311329341440

https://mobile.twitter.com/abidlabs/status/1291165311329341440

?

SMART DATA FACTORY
The Faculty of Computer Science

at NOI techpark

SDF team
The SDF Team

Diego Calvanese
Director

Daniela D’Auria
Medical Devices and
Robotics

Andrea Janes
Lean/Agile Software En-
gineering

Paola Lecca
Computational Methods
for Complex Systems

Alan Ianeselli
Computational Biophysics

Alessandro Mosca
Knowledge Representa-
tion and Databases

Floriano Zini
Smart Health

Research Activities at the SDF and the Faculty of CS
Davide Lanti 6 – 25

Sviluppare assieme…
Typical Interaction with a Company

Contact Problem Team Workplan Contract Results

Brainstorming: SDF presents
portfolio to the company and the
company presents problems for
which it needs support

Company selects results it wants to obtain and SDF evaluates whether
the collaboration is of interest and identifies the required team

Company and SDF define the technology transfer activities

Collaboration contract is prepared by UNIBZ research office and
signed by the company and the university

Execution of the planned activities

Research Activities at the SDF and the Faculty of CS
Davide Lanti 3 – 25

