
BPM 2022, Münster

Reasoning on
Labelled Petri Nets
and Their Dynamics  
in a Stochastic Setting
Sander Leemans, Fabrizio Maggi, Marco Montali

analytics

analytics

Stochastic process mining
Revived interest in stochastic processes

Σ*

Σ* Σ*

trace process

Stochastic process mining
Revived interest in stochastic processes

Σ*

Σ* Σ*

trace process

Σ* Σ*
uncertain

trace
stochastic

process

Stochastic process mining
Revived interest in stochastic processes

Σ*

Σ*

trace process

Σ*

stochastic conformance checking, probabilistic trace alignment, probabilistic declarative process mining

uncertain

trace

stochastic

process

Σ* Σ*

Σ*

Σ*

Σ* Σ*

stochastic conformance checking, probabilistic trace alignment, probabilistic declarative process mining

uncertain

trace

Σ*

Our focus

stochastic

process

Process control-flow with Petri nets
Characteristics

review claim

claim

received

check

claim

info

complete?

obtain
missing info

check

claim

yes

no

…

Process control-flow with Petri nets
Characteristics

review claim

claim

received

check

claim

info

complete?

obtain
missing info

check

claim

yes

no

…

review
claim

check

claim

obtain missing
info

check

claim …

Process control-flow with Petri nets
Characteristics

review claim

claim

received

check

claim

info

complete?

obtain
missing info

check

claim

yes

no

…

review
claim

check

claim

obtain missing
info

check

claim …

labels
silent

repeated labels

bounded control-flow

Unlogged tasks as silent transitions
4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

𝗂𝗇𝗌𝖾𝗋𝗍
𝗂𝗍𝖾𝗆

Unlogged tasks as silent transitions
4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

Unlogged tasks as silent transitions
4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

silent loop

Semantics via finite traces
Start, end(s)

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

1 marking as initial state 1+ deadlocking markings as final states

Semantics via finite traces
Start, end(s)

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

1 marking as initial state 1+ deadlock markings as final states

initial state

[q0]

final “paid” state

[q6]

final “deleted” state

[q8]

final “rejected” state

[q7]

Semantics via finite traces
Runs and traces

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

1 marking as initial state 1+ deadlock markings as final states

initial state

[q0]

Run: valid sequence of transitions from the initial state to some final state

Trace: projection of the run on labels of visible transitions

How many runs for the same trace?

Potentially infinitely many!

final “paid” state

[q6]

final “deleted” state

[q8]

final “rejected” state

[q7]

Semantics via finite traces
Runs and traces

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

1 marking as initial state 1+ deadlock markings as final states

initial state

[q0]

<open, finalize, accept, finalize, reject>

final “paid” state

[q6]

final “deleted” state

[q8]

final “rejected” state

[q7]

Semantics via finite traces
Runs and traces

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

1 marking as initial state 1+ deadlock markings as final states

initial state

[q0]

final “paid” state

[q6]

final “deleted” state

[q8]

<open, finalize, accept, finalize, reject>

final “rejected” state

[q7]

From net to transition system
4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

initial state

[q0]

final “paid” state

[q6]

final “deleted” state

[q8]

final “rejected” state

[q7]

6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Stochastic Petri nets

Every transition gets a weight

• Immediate transition: relative likelihood to fire

• Timed transition: rate/decay of exponential distribution for waiting time

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

Stochastic Petri nets

Every transition gets a weight

• Immediate transition: relative likelihood to fire

• Timed transition: rate/decay of exponential distribution for waiting time

Our interest: transition firings -> ordering without time

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

Stochastic Petri nets
Focus: next transition firing/completion

P(fire t enabled in m | marking m) =
weight of t

∑t′￼ enabled in m weight of t′￼

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

Works both for set of immediate OR of timed transitions

Stochastic Petri nets
Focus: next transition firing/completion

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

P(fire t enabled in m | marking m) =
weight of t

∑t′￼ enabled in m weight of t′￼

fire with probability
r

a + r

fire with probability
a

a + r

Stochastic Petri nets
Focus: next transition firing/completion

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

Every firing is independent

• Probability of a run = product of firing probabilities

• Probability of a trace = (possibly infinite) sum of probabilities of its runs

Stochastic Petri nets
Focus: next transition firing/completion

4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

Every firing is independent

• Probability of a run = product of firing probabilities

• Probability of a trace = (possibly infinite) sum of probabilities of its runs

So far:

• approximate computation, or

• exact computation for restricted nets (no fully silent loops)

Semantics via stochastic transition systems
4 Sander J.J. Leemans et al.

q0

open

t01

o

q1

⌧

t12

i

(insert item)
q2

⌧

t21

m

finalize

t23

f

q3

reject

t37

r

q7

accept

t35

a

q4

⌧

t51

b

pay

t46

p

q6

⌧ t45d

q5

cancel

t15

c

delete

t58
q8

Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple hQ,T, F, `i, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q \ T = ;); (iii) F ✓ (Q ⇥ T) [(T ⇥ Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ` : T !⌃ is a labelling function mapping
each transition t 2 T to a corresponding label `(t) that is either a task name from ⌃ of
the silent label ⌧ . /

In the paper, we adopt a dot notation to extract the component of interest from a net, that
is, given a net N , its places are denoted by N.Q, etc. We will adopt the same notational
convention for the other definitions as well. Given a net N an element x 2 N.Q[N.T ,
the preset and post-set of x are respectively defined by •x = {y | hy, xi 2 F} and
x• = {y | hx, yi 2 F}. If x is a transition, then its pre- and post-set respectively denote
its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q 2 N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t 2 N.T , we say that:
• t is enabled in m, written m[tiN , if •t  m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[tiN , t fires in m for N producing a new marking m0 of N , written

m[tiNm0, if m0 = (m� •t) + t•; /

initial state

[q0]

final “paid” state

[q6]

final “deleted” state

[q8]

final “rejected” state

[q7]

6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Looks familiar?

Key problems

1. Probability of a trace

2. Probability of satisfying a qualitative property expressed
in temporal logics over finite traces, or as a finite-state
automaton

3. Conformance to a probabilistic Declare specification 
that defines constraint scenarios, each coming with a
different probability (or range of probabilities)

Observation

1. Probability of a trace

2. Probability of satisfying a qualitative property expressed
in temporal logics over finite traces, or as a finite-state
automaton

Encode trace as an
automaton

<open, finalize, accept, finalize, reject>

0 1 2 3 4 5
open finalize accept finalize reject

Attack strategy
Reasoning on states
and probabilities

Reasoning on tasks
and transitions

Attack strategy
Reasoning on states
and probabilities

Reasoning on tasks
and transitions

Markov chains

Qualitative model
checking

Elegant trick to deal with

silent transitions

Attack strategy
Reasoning on states
and probabilities

Reasoning on tasks
and transitions

Markov chains

Qualitative model
checking

Elegant trick to deal with

silent transitions1. Probability of a trace

2. Probability of satisfying a
qualitative property

3. Conformance to a probabilistic
Declare specification

0. Outcome probability 
 Probability of completing the 
 process in some final states

Attack strategy
Reasoning on states
and probabilities

Reasoning on tasks
and transitions

Markov chains

Qualitative model
checking

Elegant trick to deal with

silent transitions1. Probability of a trace

2. Probability of satisfying a
qualitative property

3. Conformance to a probabilistic
Declare specification

0. Outcome probability 
 Probability of completing the 
 process in some final states

Recall the good-old days of studying?

Recall the good-old days of studying?

Outcome probability
What is the probability of ending with order paid?6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Outcome probability
What is the probability of ending with order paid?

What matters: progression from state to state -> Markov chain

6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Outcome probability
What is the probability of ending with order paid?

Each state -> variable for probability of reaching the desired one from there

3 cases:

• final desired state (good deadlock)

• final non-desired state (bad deadlock)

• other states…

6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Outcome probability
What is the probability of ending with order paid?

Each state -> variable for probability of reaching the desired one from there

3 cases:

• final desired state (good deadlock) -> 1

• final non-desired state (bad deadlock) -> 0

• other states… -> recursive definition via linear equations

6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

x6 = 1

x8 = 0

x1 = ρix2 + ρcx5

Outcome probability
What is the probability of ending with order paid?

Each state -> variable for probability of reaching the desired one from there

3 cases:

• final desired state (good deadlock) -> 1

• final non-desired state (bad deadlock) -> 0

• other states… -> recursive definition via linear equations

6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

} Solve for initial state variable!

x6 = 1

x8 = 0

x1 = ρix2 + ρcx5

Outcome probability
What is the probability of ending with order paid?6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 9

q0

a

t01

a

q1

b

t02

b

q2

c

t23

c

q3

d

t32

d

e t33

e

(a) Stochastic net.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

a
⇢a =

a
a+b

b
⇢b = b

a+b c

d

⇢d = d
d+e e

⇢e = e
e+d

(b) Reachability graph.

Fig. 4: Reachability graph (b) of a bounded stochastic PNP with net shown in (a), initial
marking [q0] and final marking [q1]. States s2 and s3 are livelock markings.

By recalling that states of RG(N) are markings of N , the schema (1) of equations
deals with final (deadlock) states, that in (1) with non-final deadlock states, and that in
(1) with non-final, non-deadlock states.

EF
N has always at least a solution. However, it may be indeterminate and thus admit

infinitely many ones, requiring in that case to pick the least committing (i.e., minimal
non-negative) solution. The latter case happens when N contains livelock markings.
This is illustrated in the following examples.

Example 2. Consider bounded stochastic PNP Norder (Figure 2). We want to solve the
problem OUTCOME-PROB(Norder, [q6]), to compute the probability that a created order
eventually completes the process by being paid. To do so, we solve E [q6]

Norder
by encoding

the reachability graph of Figure 3 into:

xs8 = 0 xs5 = xs8 xs2 = ⇢mxs1 + ⇢fxs3

xs7 = 0 xs4 = ⇢bxs1 + ⇢dxs5 + ⇢pxs6 xs1 = ⇢ixs2 + ⇢cxs5

xs6 = 1 xs3 = ⇢axs4 + ⇢rxs7 xs0 = xs1

This yields xs0 =
⇢i⇢f⇢a⇢pxs6+⇢i⇢f⇢rxs7+(⇢i⇢f⇢a⇢d+⇢c)xs8

1�⇢i⇢m�⇢i⇢f⇢a⇢b
= ⇢i⇢f⇢a⇢p

1�⇢i⇢m�⇢i⇢f⇢a⇢b
, which

is the only solution. If we assume that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform, leading to ⇢i = ⇢f =
⇢m = ⇢a = 1

2 and ⇢p = ⇢b = 1
3 , and, in turn, that the probability of completing the

process by paying the order is xs0 = 1
17 ⇠ 0.06.

With an analogous approach, we can prove that the probability that an order gets
deleted is 13

17 , and the one that an order gets rejected is 3
17 . Notice that the sum of all

such probabilities is, as intuitively expected, 1, witnessing that every order gets paid,
deleted or rejected. /

Example 3. Consider the bounded stochastic PNP Nlive in Figure 4. To compute the
outcome probability of its single final state, we solve E [q1]

Nlive
by encoding the reachability

graph of Figure 4(b) into:

xs0 = ⇢axs1 + ⇢bxs2 xs1 = 1 xs2 = xs3 xs3 = ⇢dxs2 + ⇢exs3

We get xs3 = ⇢dxs3 + ⇢exs3 = (⇢d+ ⇢e)xs3 = xs3 , making the system indeterminate.
Its minimal non-negative solution is then the one where xs3 = 0, and in turn xs0 = ⇢a./

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 9

q0

a

t01

a

q1

b

t02

b

q2

c

t23

c

q3

d

t32

d

e t33

e

(a) Stochastic net.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

a
⇢a =

a
a+b

b
⇢b = b

a+b c

d

⇢d = d
d+e e

⇢e = e
e+d

(b) Reachability graph.

Fig. 4: Reachability graph (b) of a bounded stochastic PNP with net shown in (a), initial
marking [q0] and final marking [q1]. States s2 and s3 are livelock markings.

By recalling that states of RG(N) are markings of N , the schema (1) of equations
deals with final (deadlock) states, that in (1) with non-final deadlock states, and that in
(1) with non-final, non-deadlock states.

EF
N has always at least a solution. However, it may be indeterminate and thus admit

infinitely many ones, requiring in that case to pick the least committing (i.e., minimal
non-negative) solution. The latter case happens when N contains livelock markings.
This is illustrated in the following examples.

Example 2. Consider bounded stochastic PNP Norder (Figure 2). We want to solve the
problem OUTCOME-PROB(Norder, [q6]), to compute the probability that a created order
eventually completes the process by being paid. To do so, we solve E [q6]

Norder
by encoding

the reachability graph of Figure 3 into:

xs8 = 0 xs5 = xs8 xs2 = ⇢mxs1 + ⇢fxs3

xs7 = 0 xs4 = ⇢bxs1 + ⇢dxs5 + ⇢pxs6 xs1 = ⇢ixs2 + ⇢cxs5

xs6 = 1 xs3 = ⇢axs4 + ⇢rxs7 xs0 = xs1

This yields xs0 =
⇢i⇢f⇢a⇢pxs6+⇢i⇢f⇢rxs7+(⇢i⇢f⇢a⇢d+⇢c)xs8

1�⇢i⇢m�⇢i⇢f⇢a⇢b
= ⇢i⇢f⇢a⇢p

1�⇢i⇢m�⇢i⇢f⇢a⇢b
, which

is the only solution. If we assume that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform, leading to ⇢i = ⇢f =
⇢m = ⇢a = 1

2 and ⇢p = ⇢b = 1
3 , and, in turn, that the probability of completing the

process by paying the order is xs0 = 1
17 ⇠ 0.06.

With an analogous approach, we can prove that the probability that an order gets
deleted is 13

17 , and the one that an order gets rejected is 3
17 . Notice that the sum of all

such probabilities is, as intuitively expected, 1, witnessing that every order gets paid,
deleted or rejected. /

Example 3. Consider the bounded stochastic PNP Nlive in Figure 4. To compute the
outcome probability of its single final state, we solve E [q1]

Nlive
by encoding the reachability

graph of Figure 4(b) into:

xs0 = ⇢axs1 + ⇢bxs2 xs1 = 1 xs2 = xs3 xs3 = ⇢dxs2 + ⇢exs3

We get xs3 = ⇢dxs3 + ⇢exs3 = (⇢d+ ⇢e)xs3 = xs3 , making the system indeterminate.
Its minimal non-negative solution is then the one where xs3 = 0, and in turn xs0 = ⇢a./

Outcome probability
What is the probability of ending with order paid?6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

}x0 =
ρiρf ρaρp

1 − ρiρm − ρiρf ρaρb

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 9

q0

a

t01

a

q1

b

t02

b

q2

c

t23

c

q3

d

t32

d

e t33

e

(a) Stochastic net.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

a
⇢a =

a
a+b

b
⇢b = b

a+b c

d

⇢d = d
d+e e

⇢e = e
e+d

(b) Reachability graph.

Fig. 4: Reachability graph (b) of a bounded stochastic PNP with net shown in (a), initial
marking [q0] and final marking [q1]. States s2 and s3 are livelock markings.

By recalling that states of RG(N) are markings of N , the schema (1) of equations
deals with final (deadlock) states, that in (1) with non-final deadlock states, and that in
(1) with non-final, non-deadlock states.

EF
N has always at least a solution. However, it may be indeterminate and thus admit

infinitely many ones, requiring in that case to pick the least committing (i.e., minimal
non-negative) solution. The latter case happens when N contains livelock markings.
This is illustrated in the following examples.

Example 2. Consider bounded stochastic PNP Norder (Figure 2). We want to solve the
problem OUTCOME-PROB(Norder, [q6]), to compute the probability that a created order
eventually completes the process by being paid. To do so, we solve E [q6]

Norder
by encoding

the reachability graph of Figure 3 into:

xs8 = 0 xs5 = xs8 xs2 = ⇢mxs1 + ⇢fxs3

xs7 = 0 xs4 = ⇢bxs1 + ⇢dxs5 + ⇢pxs6 xs1 = ⇢ixs2 + ⇢cxs5

xs6 = 1 xs3 = ⇢axs4 + ⇢rxs7 xs0 = xs1

This yields xs0 =
⇢i⇢f⇢a⇢pxs6+⇢i⇢f⇢rxs7+(⇢i⇢f⇢a⇢d+⇢c)xs8

1�⇢i⇢m�⇢i⇢f⇢a⇢b
= ⇢i⇢f⇢a⇢p

1�⇢i⇢m�⇢i⇢f⇢a⇢b
, which

is the only solution. If we assume that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform, leading to ⇢i = ⇢f =
⇢m = ⇢a = 1

2 and ⇢p = ⇢b = 1
3 , and, in turn, that the probability of completing the

process by paying the order is xs0 = 1
17 ⇠ 0.06.

With an analogous approach, we can prove that the probability that an order gets
deleted is 13

17 , and the one that an order gets rejected is 3
17 . Notice that the sum of all

such probabilities is, as intuitively expected, 1, witnessing that every order gets paid,
deleted or rejected. /

Example 3. Consider the bounded stochastic PNP Nlive in Figure 4. To compute the
outcome probability of its single final state, we solve E [q1]

Nlive
by encoding the reachability

graph of Figure 4(b) into:

xs0 = ⇢axs1 + ⇢bxs2 xs1 = 1 xs2 = xs3 xs3 = ⇢dxs2 + ⇢exs3

We get xs3 = ⇢dxs3 + ⇢exs3 = (⇢d+ ⇢e)xs3 = xs3 , making the system indeterminate.
Its minimal non-negative solution is then the one where xs3 = 0, and in turn xs0 = ⇢a./

Outcome probability
What is the probability of ending with order paid?6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

}x0 =
ρiρf ρaρp

1 − ρiρm − ρiρf ρaρb

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 9

q0

a

t01

a

q1

b

t02

b

q2

c

t23

c

q3

d

t32

d

e t33

e

(a) Stochastic net.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

a
⇢a =

a
a+b

b
⇢b = b

a+b c

d

⇢d = d
d+e e

⇢e = e
e+d

(b) Reachability graph.

Fig. 4: Reachability graph (b) of a bounded stochastic PNP with net shown in (a), initial
marking [q0] and final marking [q1]. States s2 and s3 are livelock markings.

By recalling that states of RG(N) are markings of N , the schema (1) of equations
deals with final (deadlock) states, that in (1) with non-final deadlock states, and that in
(1) with non-final, non-deadlock states.

EF
N has always at least a solution. However, it may be indeterminate and thus admit

infinitely many ones, requiring in that case to pick the least committing (i.e., minimal
non-negative) solution. The latter case happens when N contains livelock markings.
This is illustrated in the following examples.

Example 2. Consider bounded stochastic PNP Norder (Figure 2). We want to solve the
problem OUTCOME-PROB(Norder, [q6]), to compute the probability that a created order
eventually completes the process by being paid. To do so, we solve E [q6]

Norder
by encoding

the reachability graph of Figure 3 into:

xs8 = 0 xs5 = xs8 xs2 = ⇢mxs1 + ⇢fxs3

xs7 = 0 xs4 = ⇢bxs1 + ⇢dxs5 + ⇢pxs6 xs1 = ⇢ixs2 + ⇢cxs5

xs6 = 1 xs3 = ⇢axs4 + ⇢rxs7 xs0 = xs1

This yields xs0 =
⇢i⇢f⇢a⇢pxs6+⇢i⇢f⇢rxs7+(⇢i⇢f⇢a⇢d+⇢c)xs8

1�⇢i⇢m�⇢i⇢f⇢a⇢b
= ⇢i⇢f⇢a⇢p

1�⇢i⇢m�⇢i⇢f⇢a⇢b
, which

is the only solution. If we assume that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform, leading to ⇢i = ⇢f =
⇢m = ⇢a = 1

2 and ⇢p = ⇢b = 1
3 , and, in turn, that the probability of completing the

process by paying the order is xs0 = 1
17 ⇠ 0.06.

With an analogous approach, we can prove that the probability that an order gets
deleted is 13

17 , and the one that an order gets rejected is 3
17 . Notice that the sum of all

such probabilities is, as intuitively expected, 1, witnessing that every order gets paid,
deleted or rejected. /

Example 3. Consider the bounded stochastic PNP Nlive in Figure 4. To compute the
outcome probability of its single final state, we solve E [q1]

Nlive
by encoding the reachability

graph of Figure 4(b) into:

xs0 = ⇢axs1 + ⇢bxs2 xs1 = 1 xs2 = xs3 xs3 = ⇢dxs2 + ⇢exs3

We get xs3 = ⇢dxs3 + ⇢exs3 = (⇢d+ ⇢e)xs3 = xs3 , making the system indeterminate.
Its minimal non-negative solution is then the one where xs3 = 0, and in turn xs0 = ⇢a./

Outcome probability
What is the probability of ending with order paid?6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

}x0 =
ρiρf ρaρp

1 − ρiρm − ρiρf ρaρb

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 9

q0

a

t01

a

q1

b

t02

b

q2

c

t23

c

q3

d

t32

d

e t33

e

(a) Stochastic net.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

a
⇢a =

a
a+b

b
⇢b = b

a+b c

d

⇢d = d
d+e e

⇢e = e
e+d

(b) Reachability graph.

Fig. 4: Reachability graph (b) of a bounded stochastic PNP with net shown in (a), initial
marking [q0] and final marking [q1]. States s2 and s3 are livelock markings.

By recalling that states of RG(N) are markings of N , the schema (1) of equations
deals with final (deadlock) states, that in (1) with non-final deadlock states, and that in
(1) with non-final, non-deadlock states.

EF
N has always at least a solution. However, it may be indeterminate and thus admit

infinitely many ones, requiring in that case to pick the least committing (i.e., minimal
non-negative) solution. The latter case happens when N contains livelock markings.
This is illustrated in the following examples.

Example 2. Consider bounded stochastic PNP Norder (Figure 2). We want to solve the
problem OUTCOME-PROB(Norder, [q6]), to compute the probability that a created order
eventually completes the process by being paid. To do so, we solve E [q6]

Norder
by encoding

the reachability graph of Figure 3 into:

xs8 = 0 xs5 = xs8 xs2 = ⇢mxs1 + ⇢fxs3

xs7 = 0 xs4 = ⇢bxs1 + ⇢dxs5 + ⇢pxs6 xs1 = ⇢ixs2 + ⇢cxs5

xs6 = 1 xs3 = ⇢axs4 + ⇢rxs7 xs0 = xs1

This yields xs0 =
⇢i⇢f⇢a⇢pxs6+⇢i⇢f⇢rxs7+(⇢i⇢f⇢a⇢d+⇢c)xs8

1�⇢i⇢m�⇢i⇢f⇢a⇢b
= ⇢i⇢f⇢a⇢p

1�⇢i⇢m�⇢i⇢f⇢a⇢b
, which

is the only solution. If we assume that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform, leading to ⇢i = ⇢f =
⇢m = ⇢a = 1

2 and ⇢p = ⇢b = 1
3 , and, in turn, that the probability of completing the

process by paying the order is xs0 = 1
17 ⇠ 0.06.

With an analogous approach, we can prove that the probability that an order gets
deleted is 13

17 , and the one that an order gets rejected is 3
17 . Notice that the sum of all

such probabilities is, as intuitively expected, 1, witnessing that every order gets paid,
deleted or rejected. /

Example 3. Consider the bounded stochastic PNP Nlive in Figure 4. To compute the
outcome probability of its single final state, we solve E [q1]

Nlive
by encoding the reachability

graph of Figure 4(b) into:

xs0 = ⇢axs1 + ⇢bxs2 xs1 = 1 xs2 = xs3 xs3 = ⇢dxs2 + ⇢exs3

We get xs3 = ⇢dxs3 + ⇢exs3 = (⇢d+ ⇢e)xs3 = xs3 , making the system indeterminate.
Its minimal non-negative solution is then the one where xs3 = 0, and in turn xs0 = ⇢a./

Outcome probability
What is the probability of ending with order paid?6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

}x0 =
ρiρf ρaρp

1 − ρiρm − ρiρf ρaρb

More care needed…

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 9

q0

a

t01

a

q1

b

t02

b

q2

c

t23

c

q3

d

t32

d

e t33

e

(a) Stochastic net.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

a
⇢a =

a
a+b

b
⇢b = b

a+b c

d

⇢d = d
d+e e

⇢e = e
e+d

(b) Reachability graph.

Fig. 4: Reachability graph (b) of a bounded stochastic PNP with net shown in (a), initial
marking [q0] and final marking [q1]. States s2 and s3 are livelock markings.

By recalling that states of RG(N) are markings of N , the schema (1) of equations
deals with final (deadlock) states, that in (1) with non-final deadlock states, and that in
(1) with non-final, non-deadlock states.

EF
N has always at least a solution. However, it may be indeterminate and thus admit

infinitely many ones, requiring in that case to pick the least committing (i.e., minimal
non-negative) solution. The latter case happens when N contains livelock markings.
This is illustrated in the following examples.

Example 2. Consider bounded stochastic PNP Norder (Figure 2). We want to solve the
problem OUTCOME-PROB(Norder, [q6]), to compute the probability that a created order
eventually completes the process by being paid. To do so, we solve E [q6]

Norder
by encoding

the reachability graph of Figure 3 into:

xs8 = 0 xs5 = xs8 xs2 = ⇢mxs1 + ⇢fxs3

xs7 = 0 xs4 = ⇢bxs1 + ⇢dxs5 + ⇢pxs6 xs1 = ⇢ixs2 + ⇢cxs5

xs6 = 1 xs3 = ⇢axs4 + ⇢rxs7 xs0 = xs1

This yields xs0 =
⇢i⇢f⇢a⇢pxs6+⇢i⇢f⇢rxs7+(⇢i⇢f⇢a⇢d+⇢c)xs8

1�⇢i⇢m�⇢i⇢f⇢a⇢b
= ⇢i⇢f⇢a⇢p

1�⇢i⇢m�⇢i⇢f⇢a⇢b
, which

is the only solution. If we assume that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform, leading to ⇢i = ⇢f =
⇢m = ⇢a = 1

2 and ⇢p = ⇢b = 1
3 , and, in turn, that the probability of completing the

process by paying the order is xs0 = 1
17 ⇠ 0.06.

With an analogous approach, we can prove that the probability that an order gets
deleted is 13

17 , and the one that an order gets rejected is 3
17 . Notice that the sum of all

such probabilities is, as intuitively expected, 1, witnessing that every order gets paid,
deleted or rejected. /

Example 3. Consider the bounded stochastic PNP Nlive in Figure 4. To compute the
outcome probability of its single final state, we solve E [q1]

Nlive
by encoding the reachability

graph of Figure 4(b) into:

xs0 = ⇢axs1 + ⇢bxs2 xs1 = 1 xs2 = xs3 xs3 = ⇢dxs2 + ⇢exs3

We get xs3 = ⇢dxs3 + ⇢exs3 = (⇢d+ ⇢e)xs3 = xs3 , making the system indeterminate.
Its minimal non-negative solution is then the one where xs3 = 0, and in turn xs0 = ⇢a./

initial state

[q0]

final state

[q1]

More care needed…

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 9

q0

a

t01

a

q1

b

t02

b

q2

c

t23

c

q3

d

t32

d

e t33

e

(a) Stochastic net.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

a
⇢a =

a
a+b

b
⇢b = b

a+b c

d

⇢d = d
d+e e

⇢e = e
e+d

(b) Reachability graph.

Fig. 4: Reachability graph (b) of a bounded stochastic PNP with net shown in (a), initial
marking [q0] and final marking [q1]. States s2 and s3 are livelock markings.

By recalling that states of RG(N) are markings of N , the schema (1) of equations
deals with final (deadlock) states, that in (1) with non-final deadlock states, and that in
(1) with non-final, non-deadlock states.

EF
N has always at least a solution. However, it may be indeterminate and thus admit

infinitely many ones, requiring in that case to pick the least committing (i.e., minimal
non-negative) solution. The latter case happens when N contains livelock markings.
This is illustrated in the following examples.

Example 2. Consider bounded stochastic PNP Norder (Figure 2). We want to solve the
problem OUTCOME-PROB(Norder, [q6]), to compute the probability that a created order
eventually completes the process by being paid. To do so, we solve E [q6]

Norder
by encoding

the reachability graph of Figure 3 into:

xs8 = 0 xs5 = xs8 xs2 = ⇢mxs1 + ⇢fxs3

xs7 = 0 xs4 = ⇢bxs1 + ⇢dxs5 + ⇢pxs6 xs1 = ⇢ixs2 + ⇢cxs5

xs6 = 1 xs3 = ⇢axs4 + ⇢rxs7 xs0 = xs1

This yields xs0 =
⇢i⇢f⇢a⇢pxs6+⇢i⇢f⇢rxs7+(⇢i⇢f⇢a⇢d+⇢c)xs8

1�⇢i⇢m�⇢i⇢f⇢a⇢b
= ⇢i⇢f⇢a⇢p

1�⇢i⇢m�⇢i⇢f⇢a⇢b
, which

is the only solution. If we assume that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform, leading to ⇢i = ⇢f =
⇢m = ⇢a = 1

2 and ⇢p = ⇢b = 1
3 , and, in turn, that the probability of completing the

process by paying the order is xs0 = 1
17 ⇠ 0.06.

With an analogous approach, we can prove that the probability that an order gets
deleted is 13

17 , and the one that an order gets rejected is 3
17 . Notice that the sum of all

such probabilities is, as intuitively expected, 1, witnessing that every order gets paid,
deleted or rejected. /

Example 3. Consider the bounded stochastic PNP Nlive in Figure 4. To compute the
outcome probability of its single final state, we solve E [q1]

Nlive
by encoding the reachability

graph of Figure 4(b) into:

xs0 = ⇢axs1 + ⇢bxs2 xs1 = 1 xs2 = xs3 xs3 = ⇢dxs2 + ⇢exs3

We get xs3 = ⇢dxs3 + ⇢exs3 = (⇢d+ ⇢e)xs3 = xs3 , making the system indeterminate.
Its minimal non-negative solution is then the one where xs3 = 0, and in turn xs0 = ⇢a./

initial state

[q0]

final state

[q1]

livelock

More care needed…

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 9

q0

a

t01

a

q1

b

t02

b

q2

c

t23

c

q3

d

t32

d

e t33

e

(a) Stochastic net.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

a
⇢a =

a
a+b

b
⇢b = b

a+b c

d

⇢d = d
d+e e

⇢e = e
e+d

(b) Reachability graph.

Fig. 4: Reachability graph (b) of a bounded stochastic PNP with net shown in (a), initial
marking [q0] and final marking [q1]. States s2 and s3 are livelock markings.

By recalling that states of RG(N) are markings of N , the schema (1) of equations
deals with final (deadlock) states, that in (1) with non-final deadlock states, and that in
(1) with non-final, non-deadlock states.

EF
N has always at least a solution. However, it may be indeterminate and thus admit

infinitely many ones, requiring in that case to pick the least committing (i.e., minimal
non-negative) solution. The latter case happens when N contains livelock markings.
This is illustrated in the following examples.

Example 2. Consider bounded stochastic PNP Norder (Figure 2). We want to solve the
problem OUTCOME-PROB(Norder, [q6]), to compute the probability that a created order
eventually completes the process by being paid. To do so, we solve E [q6]

Norder
by encoding

the reachability graph of Figure 3 into:

xs8 = 0 xs5 = xs8 xs2 = ⇢mxs1 + ⇢fxs3

xs7 = 0 xs4 = ⇢bxs1 + ⇢dxs5 + ⇢pxs6 xs1 = ⇢ixs2 + ⇢cxs5

xs6 = 1 xs3 = ⇢axs4 + ⇢rxs7 xs0 = xs1

This yields xs0 =
⇢i⇢f⇢a⇢pxs6+⇢i⇢f⇢rxs7+(⇢i⇢f⇢a⇢d+⇢c)xs8

1�⇢i⇢m�⇢i⇢f⇢a⇢b
= ⇢i⇢f⇢a⇢p

1�⇢i⇢m�⇢i⇢f⇢a⇢b
, which

is the only solution. If we assume that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform, leading to ⇢i = ⇢f =
⇢m = ⇢a = 1

2 and ⇢p = ⇢b = 1
3 , and, in turn, that the probability of completing the

process by paying the order is xs0 = 1
17 ⇠ 0.06.

With an analogous approach, we can prove that the probability that an order gets
deleted is 13

17 , and the one that an order gets rejected is 3
17 . Notice that the sum of all

such probabilities is, as intuitively expected, 1, witnessing that every order gets paid,
deleted or rejected. /

Example 3. Consider the bounded stochastic PNP Nlive in Figure 4. To compute the
outcome probability of its single final state, we solve E [q1]

Nlive
by encoding the reachability

graph of Figure 4(b) into:

xs0 = ⇢axs1 + ⇢bxs2 xs1 = 1 xs2 = xs3 xs3 = ⇢dxs2 + ⇢exs3

We get xs3 = ⇢dxs3 + ⇢exs3 = (⇢d+ ⇢e)xs3 = xs3 , making the system indeterminate.
Its minimal non-negative solution is then the one where xs3 = 0, and in turn xs0 = ⇢a./

initial state

[q0]

final state

[q1]

livelock x3 = 0x2 = 0

General case
Exit/absorption probability computation from Markov chains

8 Sander J.J. Leemans et al.

knowing the probability that the bounded stochastic PNP Norder of our running example
(Figure 2) evolves an order from opening to payment.

Technically, given a bounded stochastic PNP N , we borrow the standard notion
of conditional probability and indicate the probability that N evolves marking m into
some marking from a set M as PN (M |m1). Formally, this corresponds to the sum of
the probabilities of all executions of N from m1 to some marking in M (in the sense of
Definition 3). This leads us to the formulation of the OUTCOME-PROB(N , F) problem:
Input: Bounded stochastic PNP N , set F ✓ N .Mf of desired final states;
Output: Probability value PN (F |N .m0) =

P
⌘ run of N ending in m2F PN (⌘).

Notice that the same problem can also get, as input, a stochastic transition system in
place of a bounded stochastic PNP.

OUTCOME-PROB cannot be solved exactly through an enumeration of runs, as they
may be infinitely many. It can be approximated by fixing a maximum threshold either
on the length of runs [12], or on their minimum probability [2]. To obtain an exact
answer, we start from the observation that bounded stochastic PNPs closely resemble
discrete-time Markov chains [9]:

Remark 3. The reachability graph RG(N) = hS, s0, Sf , %, pi of a bounded stochastic
PNP N can be seen as a discrete-time Markov chain C where: (i) S is the finite set of
states of C, with s0 the initial state; (ii) Sf are the absorption/exit states of C; (iii) %
and p define the transition matrix of C, where the entry for a pair s1, s2 2 S gets value
p(s, l, s0) for some label l 2⌃ if hs, l, s0i 2, 0 otherwise. /

We exploit this, noticing that the OUTCOME-PROB problem corresponds to the prob-
lem of calculating exit distributions in a discrete-time Markov chain [9] (also called the
problem of calculating absorption/hit probabilities [10]). To analytically solve the prob-
lem, we take OUTCOME-PROB(N , F) and create a system of equations, starting from
the reachability graph RG(N), where
• Each state si of RG(N).S corresponds to a state variable xsi denoting the probability
PN (F |s) of reaching one of the states in F from s; hence xRG(N).s0 represents the
solution of the problem.

• Each equation defines the value of one of the state variables xs as follows:
Base case if s has no successor states (i.e., is a deadlock marking), then xsi = 1 if s

corresponds to a final marking, otherwise xsi = 0 (witnessing that F cannot be
reached);

Inductive case if s has at least one successor, then its variable is equal to sum of the
state variables of its successor states, weighted by the transition probability to
move to that successor.

Formally, OUTCOME-PROB(N , F) with RG(N) = hS, s0, Sf , %, pi gets encoded into
the following linear optimisation problem EF

N :

Return xs0 from the minimal non-negative solution of
xsi = 1 for each si 2 F (1)
xsj = 0 for each sj 2 S \ F s.t. |succRG(N)(sj)| = 0 (2)

xsk =
X

hsk,l,s0ki2succRG(N)(sk)

p(hsk, l, s0ki) · xs0k
for each sk 2 S s.t. |succRG(N)(sk)| > 0 (3)

8 Sander J.J. Leemans et al.

knowing the probability that the bounded stochastic PNP Norder of our running example
(Figure 2) evolves an order from opening to payment.

Technically, given a bounded stochastic PNP N , we borrow the standard notion
of conditional probability and indicate the probability that N evolves marking m into
some marking from a set M as PN (M |m1). Formally, this corresponds to the sum of
the probabilities of all executions of N from m1 to some marking in M (in the sense of
Definition 3). This leads us to the formulation of the OUTCOME-PROB(N , F) problem:
Input: Bounded stochastic PNP N , set F ✓ N .Mf of desired final states;
Output: Probability value PN (F |N .m0) =

P
⌘ run of N ending in m2F PN (⌘).

Notice that the same problem can also get, as input, a stochastic transition system in
place of a bounded stochastic PNP.

OUTCOME-PROB cannot be solved exactly through an enumeration of runs, as they
may be infinitely many. It can be approximated by fixing a maximum threshold either
on the length of runs [12], or on their minimum probability [2]. To obtain an exact
answer, we start from the observation that bounded stochastic PNPs closely resemble
discrete-time Markov chains [9]:

Remark 3. The reachability graph RG(N) = hS, s0, Sf , %, pi of a bounded stochastic
PNP N can be seen as a discrete-time Markov chain C where: (i) S is the finite set of
states of C, with s0 the initial state; (ii) Sf are the absorption/exit states of C; (iii) %
and p define the transition matrix of C, where the entry for a pair s1, s2 2 S gets value
p(s, l, s0) for some label l 2⌃ if hs, l, s0i 2, 0 otherwise. /

We exploit this, noticing that the OUTCOME-PROB problem corresponds to the prob-
lem of calculating exit distributions in a discrete-time Markov chain [9] (also called the
problem of calculating absorption/hit probabilities [10]). To analytically solve the prob-
lem, we take OUTCOME-PROB(N , F) and create a system of equations, starting from
the reachability graph RG(N), where
• Each state si of RG(N).S corresponds to a state variable xsi denoting the probability
PN (F |s) of reaching one of the states in F from s; hence xRG(N).s0 represents the
solution of the problem.

• Each equation defines the value of one of the state variables xs as follows:
Base case if s has no successor states (i.e., is a deadlock marking), then xsi = 1 if s

corresponds to a final marking, otherwise xsi = 0 (witnessing that F cannot be
reached);

Inductive case if s has at least one successor, then its variable is equal to sum of the
state variables of its successor states, weighted by the transition probability to
move to that successor.

Formally, OUTCOME-PROB(N , F) with RG(N) = hS, s0, Sf , %, pi gets encoded into
the following linear optimisation problem EF

N :

Return xs0 from the minimal non-negative solution of
xsi = 1 for each si 2 F (1)
xsj = 0 for each sj 2 S \ F s.t. |succRG(N)(sj)| = 0 (2)

xsk =
X

hsk,l,s0ki2succRG(N)(sk)

p(hsk, l, s0ki) · xs0k
for each sk 2 S s.t. |succRG(N)(sk)| > 0 (3)

General case
Exit/absorption probability computation from Markov chains

8 Sander J.J. Leemans et al.

knowing the probability that the bounded stochastic PNP Norder of our running example
(Figure 2) evolves an order from opening to payment.

Technically, given a bounded stochastic PNP N , we borrow the standard notion
of conditional probability and indicate the probability that N evolves marking m into
some marking from a set M as PN (M |m1). Formally, this corresponds to the sum of
the probabilities of all executions of N from m1 to some marking in M (in the sense of
Definition 3). This leads us to the formulation of the OUTCOME-PROB(N , F) problem:
Input: Bounded stochastic PNP N , set F ✓ N .Mf of desired final states;
Output: Probability value PN (F |N .m0) =

P
⌘ run of N ending in m2F PN (⌘).

Notice that the same problem can also get, as input, a stochastic transition system in
place of a bounded stochastic PNP.

OUTCOME-PROB cannot be solved exactly through an enumeration of runs, as they
may be infinitely many. It can be approximated by fixing a maximum threshold either
on the length of runs [12], or on their minimum probability [2]. To obtain an exact
answer, we start from the observation that bounded stochastic PNPs closely resemble
discrete-time Markov chains [9]:

Remark 3. The reachability graph RG(N) = hS, s0, Sf , %, pi of a bounded stochastic
PNP N can be seen as a discrete-time Markov chain C where: (i) S is the finite set of
states of C, with s0 the initial state; (ii) Sf are the absorption/exit states of C; (iii) %
and p define the transition matrix of C, where the entry for a pair s1, s2 2 S gets value
p(s, l, s0) for some label l 2⌃ if hs, l, s0i 2, 0 otherwise. /

We exploit this, noticing that the OUTCOME-PROB problem corresponds to the prob-
lem of calculating exit distributions in a discrete-time Markov chain [9] (also called the
problem of calculating absorption/hit probabilities [10]). To analytically solve the prob-
lem, we take OUTCOME-PROB(N , F) and create a system of equations, starting from
the reachability graph RG(N), where
• Each state si of RG(N).S corresponds to a state variable xsi denoting the probability
PN (F |s) of reaching one of the states in F from s; hence xRG(N).s0 represents the
solution of the problem.

• Each equation defines the value of one of the state variables xs as follows:
Base case if s has no successor states (i.e., is a deadlock marking), then xsi = 1 if s

corresponds to a final marking, otherwise xsi = 0 (witnessing that F cannot be
reached);

Inductive case if s has at least one successor, then its variable is equal to sum of the
state variables of its successor states, weighted by the transition probability to
move to that successor.

Formally, OUTCOME-PROB(N , F) with RG(N) = hS, s0, Sf , %, pi gets encoded into
the following linear optimisation problem EF

N :

Return xs0 from the minimal non-negative solution of
xsi = 1 for each si 2 F (1)
xsj = 0 for each sj 2 S \ F s.t. |succRG(N)(sj)| = 0 (2)

xsk =
X

hsk,l,s0ki2succRG(N)(sk)

p(hsk, l, s0ki) · xs0k
for each sk 2 S s.t. |succRG(N)(sk)| > 0 (3)

8 Sander J.J. Leemans et al.

knowing the probability that the bounded stochastic PNP Norder of our running example
(Figure 2) evolves an order from opening to payment.

Technically, given a bounded stochastic PNP N , we borrow the standard notion
of conditional probability and indicate the probability that N evolves marking m into
some marking from a set M as PN (M |m1). Formally, this corresponds to the sum of
the probabilities of all executions of N from m1 to some marking in M (in the sense of
Definition 3). This leads us to the formulation of the OUTCOME-PROB(N , F) problem:
Input: Bounded stochastic PNP N , set F ✓ N .Mf of desired final states;
Output: Probability value PN (F |N .m0) =

P
⌘ run of N ending in m2F PN (⌘).

Notice that the same problem can also get, as input, a stochastic transition system in
place of a bounded stochastic PNP.

OUTCOME-PROB cannot be solved exactly through an enumeration of runs, as they
may be infinitely many. It can be approximated by fixing a maximum threshold either
on the length of runs [12], or on their minimum probability [2]. To obtain an exact
answer, we start from the observation that bounded stochastic PNPs closely resemble
discrete-time Markov chains [9]:

Remark 3. The reachability graph RG(N) = hS, s0, Sf , %, pi of a bounded stochastic
PNP N can be seen as a discrete-time Markov chain C where: (i) S is the finite set of
states of C, with s0 the initial state; (ii) Sf are the absorption/exit states of C; (iii) %
and p define the transition matrix of C, where the entry for a pair s1, s2 2 S gets value
p(s, l, s0) for some label l 2⌃ if hs, l, s0i 2, 0 otherwise. /

We exploit this, noticing that the OUTCOME-PROB problem corresponds to the prob-
lem of calculating exit distributions in a discrete-time Markov chain [9] (also called the
problem of calculating absorption/hit probabilities [10]). To analytically solve the prob-
lem, we take OUTCOME-PROB(N , F) and create a system of equations, starting from
the reachability graph RG(N), where
• Each state si of RG(N).S corresponds to a state variable xsi denoting the probability
PN (F |s) of reaching one of the states in F from s; hence xRG(N).s0 represents the
solution of the problem.

• Each equation defines the value of one of the state variables xs as follows:
Base case if s has no successor states (i.e., is a deadlock marking), then xsi = 1 if s

corresponds to a final marking, otherwise xsi = 0 (witnessing that F cannot be
reached);

Inductive case if s has at least one successor, then its variable is equal to sum of the
state variables of its successor states, weighted by the transition probability to
move to that successor.

Formally, OUTCOME-PROB(N , F) with RG(N) = hS, s0, Sf , %, pi gets encoded into
the following linear optimisation problem EF

N :

Return xs0 from the minimal non-negative solution of
xsi = 1 for each si 2 F (1)
xsj = 0 for each sj 2 S \ F s.t. |succRG(N)(sj)| = 0 (2)

xsk =
X

hsk,l,s0ki2succRG(N)(sk)

p(hsk, l, s0ki) · xs0k
for each sk 2 S s.t. |succRG(N)(sk)| > 0 (3)

10 Sander J.J. Leemans et al.

Example 3 illustrates how the technique implicitly gets rid of livelock markings,
associating to them a 0 probability. This captures the essential fact that, by definition,
a livelock marking can never reach any final marking. More in general, we can in fact
solve OUTCOME-PROB(N , F) by turning the linear optimisation problem EF

N into the
following system of equalities, which is guaranteed to have exactly one solution:

xsi = 1 for each deadlock marking si 2 F (4)
xsj = 0 for each deadlock marking sj 2 S \ F (5)
xsk = 0 for each livelock marking sk 2 S (6)

xsh =
X

hsh,l,s0hi2succRG(N)(sh)

p(hsh, l, s0hi) · xs0h
for each remaining marking sh 2 S (7)

Recall that checking whether a marking s is livelock can be done over RG(N) by
checking (non-)reachability of some deadlock marking in RG(N) from s. This check
does not involve probabilities at all, but extends to probabilistic settings as per Defini-
tion 10, all transitions have a non-zero weight.

5 Qualitative Verification and Trace Probability

We now further leverage the connection between bounded stochastic PNPs and discrete-
time Markov chains (cf. Remark 3), to deal with the verification of (qualitative, i.e.,
non-probabilistic) temporal/dynamic properties over bounded stochastic PNPs. This
amounts to compute the probability that a run of the PNP indeed satisfies the property of
interest. We rely on [1, Ch. 10] and employ automata-theoretic techniques coupled with
the computation of outcome probabilities to solve the problem. We then show how this
technique also solves another, related problem: that of computing trace probabilities.

5.1 Verification of Temporal Properties

Properties of interest intensionally describe a (possibly infinite) set of desired finite-
length traces that may be induced by runs of the stochastic PNP under scrutiny. Such
traces are defined over the task names in ⌃ (without ⌧). We opt for a very general
formalism to describe such properties: (deterministic) finite-state automata.

Definition 12 (DFA, acceptance, language). A deterministic finite-state automaton
(DFA) over L is a tuple A = hL, S, s0, Sf , �i, where: (i) L is a finite alphabet of
symbols; (ii) S is a finite set of states, with s0 2 S the initial state and Sf ✓ S the
set of final states; (iii) � : S ⇥ L ! S is a transition transition function that, given a
state s 2 S and a label l 2 L, returns the successor state �(s, l). A accepts a trace
� = l0, . . . , ln over L? if there exists a sequence of states s0, . . . , sn+1 starting from
the initial state and such that: (i) sn+1 2 Sf , and (ii) for every i 2 {0, . . . , n}, we have
si+1 = �(si, li). The language L(A) of A is the set of all traces accepted by A. /

This accounts for non-deterministic automata (NFAs), as each NFA can be encoded
into a corresponding DFA. Also, it makes our approach directly operational for other
property specification languages, as long as they can get encoded into DFAs. This holds,
e.g., when for regular expressions, LTLf /LDLf temporal formulae over finite traces [6],
and Declare possibly extended with meta-constraints [5].

Attack strategy
Reasoning on states
and probabilities

Reasoning on tasks
and transitions

Markov chains

Qualitative model
checking

Elegant trick to deal with

silent transitions1. Probability of a trace

2. Probability of satisfying a
qualitative property

3. Conformance to a probabilistic
Declare specification

0. Outcome probability 
 Probability of completing the 
 process in some final states

Model checking
What are the traces of the net that satisfy my property?6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

property: good, finite traces (via an automaton)

Model checking
What are the traces of the net that satisfy my property?

What matters: transitions and their labels -> transition system

6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

property: good, finite traces (via an automaton)

Automata-based product
6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

0 1 2 3 4 5
open finalize accept finalize reject

Automata-based product
6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

0 1 2 3 4 5
open finalize accept finalize reject

X

Automata-based product
6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 13

s0 s1 s2

s3s4s5

⌧ ⌧ ⌧

⌧⌧⌧

open fin

acc
finrej

(a) DFAs A� and Ā� .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5

open

1 ⌧
⇢i

⌧
⇢m fin

⇢f

acc
⇢a

⌧⇢b⌧
⇢i

⌧
⇢m

fin
⇢f

rej
⇢r

(b) Product system between Ā� and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes � as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace � = a0, . . . , an over ⌃, its trace DFA A� is
the DFA h⌃, S, s0, Sf , �i over ⌃ defined as follows: (a) S = {s0, . . . , sn+1} contains
n + 1 states; (b) Sf = {sn+1}; (c) for every i 2 {0, . . . , n}, �(si, ai) = si+1 (and
nothing else is in �).

Theorem 2. For every bounded stochastic PNP N and every trace � over ⌃⇤, we have
that TRACE-PROB(N ,�) = OUTCOME-PROB(N , A�). /

Proof. Direct from the definition of the problems, noticing that L(A�) = {�}. a

Example 5. We compute the probability that Norder generates trace � =
open, fin, acc, fin, rej, where an order is filled, finalized, accepted, then modified, final-
ized again, and this second time rejected. Following the described technique, we first
transform � into its trace DFA A� , and then further into its run DFA Ā� . This is shown
in Figure 6(a). We then compute the product system ⌥ Ā

RG(Norder)
of Ā� and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct Eh7,5i

⌥ Ā
RG(Norder)

getting x00 = ⇢i⇢f⇢a⇢b⇢i⇢f⇢r

(1�⇢i⇢m)2 ,

which yields the solution to the TRACE-PROB(Norder,�) problem. /

6 Stochastic Conformance with Probabilistic Declare

We now employ the verification machinery introduced in Section 5 to check how the
probabilistic behaviour encoded in a stochastic PNP relates to the one declaratively
specified using ProbDeclare [15]. We start by providing a gentle introduction to Prob-
Declare, then showing how we can check whether a bounded stochastic PNP conforms
to a ProbDeclare model, and finally discussing how one can measure the stochastic
distance between the two in case of non-conformance.

6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare

0 1 2 3 4 5
open finalize accept finalize reject

X
???

Properties must “enjoy the silence”
6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

0 1 2 3 4 5
open finalize accept finalize reject

Properties must “enjoy the silence”
6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

0 1 2 3 4 5
open finalize accept finalize reject

τ τ τ τ τ τ

Silence-preserving cross-product
6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 13

s0 s1 s2

s3s4s5

⌧ ⌧ ⌧

⌧⌧⌧

open fin

acc
finrej

(a) DFAs A� and Ā� .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5

open

1 ⌧
⇢i

⌧
⇢m fin

⇢f

acc
⇢a

⌧⇢b⌧
⇢i

⌧
⇢m

fin
⇢f

rej
⇢r

(b) Product system between Ā� and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes � as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace � = a0, . . . , an over ⌃, its trace DFA A� is
the DFA h⌃, S, s0, Sf , �i over ⌃ defined as follows: (a) S = {s0, . . . , sn+1} contains
n + 1 states; (b) Sf = {sn+1}; (c) for every i 2 {0, . . . , n}, �(si, ai) = si+1 (and
nothing else is in �).

Theorem 2. For every bounded stochastic PNP N and every trace � over ⌃⇤, we have
that TRACE-PROB(N ,�) = OUTCOME-PROB(N , A�). /

Proof. Direct from the definition of the problems, noticing that L(A�) = {�}. a

Example 5. We compute the probability that Norder generates trace � =
open, fin, acc, fin, rej, where an order is filled, finalized, accepted, then modified, final-
ized again, and this second time rejected. Following the described technique, we first
transform � into its trace DFA A� , and then further into its run DFA Ā� . This is shown
in Figure 6(a). We then compute the product system ⌥ Ā

RG(Norder)
of Ā� and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct Eh7,5i

⌥ Ā
RG(Norder)

getting x00 = ⇢i⇢f⇢a⇢b⇢i⇢f⇢r

(1�⇢i⇢m)2 ,

which yields the solution to the TRACE-PROB(Norder,�) problem. /

6 Stochastic Conformance with Probabilistic Declare

We now employ the verification machinery introduced in Section 5 to check how the
probabilistic behaviour encoded in a stochastic PNP relates to the one declaratively
specified using ProbDeclare [15]. We start by providing a gentle introduction to Prob-
Declare, then showing how we can check whether a bounded stochastic PNP conforms
to a ProbDeclare model, and finally discussing how one can measure the stochastic
distance between the two in case of non-conformance.

6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare

0 1 2 3 4 5
open finalize accept finalize reject

X

τ τ τ τ τ τ

Silence-preserving cross-product
6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 13

s0 s1 s2

s3s4s5

⌧ ⌧ ⌧

⌧⌧⌧

open fin

acc
finrej

(a) DFAs A� and Ā� .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5

open

1 ⌧
⇢i

⌧
⇢m fin

⇢f

acc
⇢a

⌧⇢b⌧
⇢i

⌧
⇢m

fin
⇢f

rej
⇢r

(b) Product system between Ā� and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes � as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace � = a0, . . . , an over ⌃, its trace DFA A� is
the DFA h⌃, S, s0, Sf , �i over ⌃ defined as follows: (a) S = {s0, . . . , sn+1} contains
n + 1 states; (b) Sf = {sn+1}; (c) for every i 2 {0, . . . , n}, �(si, ai) = si+1 (and
nothing else is in �).

Theorem 2. For every bounded stochastic PNP N and every trace � over ⌃⇤, we have
that TRACE-PROB(N ,�) = OUTCOME-PROB(N , A�). /

Proof. Direct from the definition of the problems, noticing that L(A�) = {�}. a

Example 5. We compute the probability that Norder generates trace � =
open, fin, acc, fin, rej, where an order is filled, finalized, accepted, then modified, final-
ized again, and this second time rejected. Following the described technique, we first
transform � into its trace DFA A� , and then further into its run DFA Ā� . This is shown
in Figure 6(a). We then compute the product system ⌥ Ā

RG(Norder)
of Ā� and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct Eh7,5i

⌥ Ā
RG(Norder)

getting x00 = ⇢i⇢f⇢a⇢b⇢i⇢f⇢r

(1�⇢i⇢m)2 ,

which yields the solution to the TRACE-PROB(Norder,�) problem. /

6 Stochastic Conformance with Probabilistic Declare

We now employ the verification machinery introduced in Section 5 to check how the
probabilistic behaviour encoded in a stochastic PNP relates to the one declaratively
specified using ProbDeclare [15]. We start by providing a gentle introduction to Prob-
Declare, then showing how we can check whether a bounded stochastic PNP conforms
to a ProbDeclare model, and finally discussing how one can measure the stochastic
distance between the two in case of non-conformance.

6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare

0 1 2 3 4 5
open finalize accept finalize reject

X

τ τ τ τ τ τ

How to compute the
probability that the

specification is satisfied
by a net trace?

Attack strategy
Reasoning on states
and probabilities

Reasoning on tasks
and transitions

Markov chains

Qualitative model
checking

Elegant trick to deal with

silent transitions1. Probability of a trace

2. Probability of satisfying a
qualitative property

3. Conformance to a probabilistic
Declare specification

0. Outcome probability 
 Probability of completing the 
 process in some final states

1. Infuse the cross-product with net probabilities6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 13

s0 s1 s2

s3s4s5

⌧ ⌧ ⌧

⌧⌧⌧

open fin

acc
finrej

(a) DFAs A� and Ā� .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5

open

1 ⌧
⇢i

⌧
⇢m fin

⇢f

acc
⇢a

⌧⇢b⌧
⇢i

⌧
⇢m

fin
⇢f

rej
⇢r

(b) Product system between Ā� and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes � as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace � = a0, . . . , an over ⌃, its trace DFA A� is
the DFA h⌃, S, s0, Sf , �i over ⌃ defined as follows: (a) S = {s0, . . . , sn+1} contains
n + 1 states; (b) Sf = {sn+1}; (c) for every i 2 {0, . . . , n}, �(si, ai) = si+1 (and
nothing else is in �).

Theorem 2. For every bounded stochastic PNP N and every trace � over ⌃⇤, we have
that TRACE-PROB(N ,�) = OUTCOME-PROB(N , A�). /

Proof. Direct from the definition of the problems, noticing that L(A�) = {�}. a

Example 5. We compute the probability that Norder generates trace � =
open, fin, acc, fin, rej, where an order is filled, finalized, accepted, then modified, final-
ized again, and this second time rejected. Following the described technique, we first
transform � into its trace DFA A� , and then further into its run DFA Ā� . This is shown
in Figure 6(a). We then compute the product system ⌥ Ā

RG(Norder)
of Ā� and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct Eh7,5i

⌥ Ā
RG(Norder)

getting x00 = ⇢i⇢f⇢a⇢b⇢i⇢f⇢r

(1�⇢i⇢m)2 ,

which yields the solution to the TRACE-PROB(Norder,�) problem. /

6 Stochastic Conformance with Probabilistic Declare

We now employ the verification machinery introduced in Section 5 to check how the
probabilistic behaviour encoded in a stochastic PNP relates to the one declaratively
specified using ProbDeclare [15]. We start by providing a gentle introduction to Prob-
Declare, then showing how we can check whether a bounded stochastic PNP conforms
to a ProbDeclare model, and finally discussing how one can measure the stochastic
distance between the two in case of non-conformance.

6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare

1. Infuse the cross-product with net probabilities6 Sander J.J. Leemans et al.

s0
[q0]

s1
[q1]

s2
[q2]

s3
[q3]

s4
[q4]

s7
[q7]

s5
[q5]

s6
[q6]

s8
[q8]

1

open

⇢i = i
i+c

⌧

⇢m = m
m+f⌧

⇢f = f
m+f

fin ⇢a =
a
a+

r

acc

⇢r =
r

a+r

rej

⇢b = b
b+p+d

⌧

⇢c = c
i+c can

⇢d = d
b+p+d⌧

⇢p = d
b+p+d

pay

1
del

Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
have a double countour.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
hS, s0, Sf , %i where: (i) S is a (possibly infinite) set of states; (ii) s0 2 S is the ini-
tial state; (iii) Sf ✓ S is the set of accepting states; (iv) % ✓ S ⇥⌃ ⇥ S is a⌃-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with %. /

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N) of a PNP N is a
labelled transition system hS, s0, Sf , %i whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 2 S;
2. for every state m 2 S, every transition t 2 T such that m[tiN , and every marking

m0 2 M(Q), we have that (a) m0 2 S; (b) if m0 2 N .Mf , then m0 2 Sf ;
(c) hm, `(t),m0i 2 %. /

The runs of RG(N) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N)(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m 2 RG(N).S and every place q 2 N .N.Q, we
have m(p)  k. /

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [7] and well-known techniques exist. In the
remainder of this paper, we assume bounded stochastic PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision

making to determine which enabled transition to fire. Technically, this is done by

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 13

s0 s1 s2

s3s4s5

⌧ ⌧ ⌧

⌧⌧⌧

open fin

acc
finrej

(a) DFAs A� and Ā� .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5

open

1 ⌧
⇢i

⌧
⇢m fin

⇢f

acc
⇢a

⌧⇢b⌧
⇢i

⌧
⇢m

fin
⇢f

rej
⇢r

(b) Product system between Ā� and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes � as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace � = a0, . . . , an over ⌃, its trace DFA A� is
the DFA h⌃, S, s0, Sf , �i over ⌃ defined as follows: (a) S = {s0, . . . , sn+1} contains
n + 1 states; (b) Sf = {sn+1}; (c) for every i 2 {0, . . . , n}, �(si, ai) = si+1 (and
nothing else is in �).

Theorem 2. For every bounded stochastic PNP N and every trace � over ⌃⇤, we have
that TRACE-PROB(N ,�) = OUTCOME-PROB(N , A�). /

Proof. Direct from the definition of the problems, noticing that L(A�) = {�}. a

Example 5. We compute the probability that Norder generates trace � =
open, fin, acc, fin, rej, where an order is filled, finalized, accepted, then modified, final-
ized again, and this second time rejected. Following the described technique, we first
transform � into its trace DFA A� , and then further into its run DFA Ā� . This is shown
in Figure 6(a). We then compute the product system ⌥ Ā

RG(Norder)
of Ā� and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct Eh7,5i

⌥ Ā
RG(Norder)

getting x00 = ⇢i⇢f⇢a⇢b⇢i⇢f⇢r

(1�⇢i⇢m)2 ,

which yields the solution to the TRACE-PROB(Norder,�) problem. /

6 Stochastic Conformance with Probabilistic Declare

We now employ the verification machinery introduced in Section 5 to check how the
probabilistic behaviour encoded in a stochastic PNP relates to the one declaratively
specified using ProbDeclare [15]. We start by providing a gentle introduction to Prob-
Declare, then showing how we can check whether a bounded stochastic PNP conforms
to a ProbDeclare model, and finally discussing how one can measure the stochastic
distance between the two in case of non-conformance.

6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare

2. Focus on states

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 13

s0 s1 s2

s3s4s5

⌧ ⌧ ⌧

⌧⌧⌧

open fin

acc
finrej

(a) DFAs A� and Ā� .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5

open

1 ⌧
⇢i

⌧
⇢m fin

⇢f

acc
⇢a

⌧⇢b⌧
⇢i

⌧
⇢m

fin
⇢f

rej
⇢r

(b) Product system between Ā� and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes � as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace � = a0, . . . , an over ⌃, its trace DFA A� is
the DFA h⌃, S, s0, Sf , �i over ⌃ defined as follows: (a) S = {s0, . . . , sn+1} contains
n + 1 states; (b) Sf = {sn+1}; (c) for every i 2 {0, . . . , n}, �(si, ai) = si+1 (and
nothing else is in �).

Theorem 2. For every bounded stochastic PNP N and every trace � over ⌃⇤, we have
that TRACE-PROB(N ,�) = OUTCOME-PROB(N , A�). /

Proof. Direct from the definition of the problems, noticing that L(A�) = {�}. a

Example 5. We compute the probability that Norder generates trace � =
open, fin, acc, fin, rej, where an order is filled, finalized, accepted, then modified, final-
ized again, and this second time rejected. Following the described technique, we first
transform � into its trace DFA A� , and then further into its run DFA Ā� . This is shown
in Figure 6(a). We then compute the product system ⌥ Ā

RG(Norder)
of Ā� and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct Eh7,5i

⌥ Ā
RG(Norder)

getting x00 = ⇢i⇢f⇢a⇢b⇢i⇢f⇢r

(1�⇢i⇢m)2 ,

which yields the solution to the TRACE-PROB(Norder,�) problem. /

6 Stochastic Conformance with Probabilistic Declare

We now employ the verification machinery introduced in Section 5 to check how the
probabilistic behaviour encoded in a stochastic PNP relates to the one declaratively
specified using ProbDeclare [15]. We start by providing a gentle introduction to Prob-
Declare, then showing how we can check whether a bounded stochastic PNP conforms
to a ProbDeclare model, and finally discussing how one can measure the stochastic
distance between the two in case of non-conformance.

6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare

2. Focus on states

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 13

s0 s1 s2

s3s4s5

⌧ ⌧ ⌧

⌧⌧⌧

open fin

acc
finrej

(a) DFAs A� and Ā� .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5

open

1 ⌧
⇢i

⌧
⇢m fin

⇢f

acc
⇢a

⌧⇢b⌧
⇢i

⌧
⇢m

fin
⇢f

rej
⇢r

(b) Product system between Ā� and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes � as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace � = a0, . . . , an over ⌃, its trace DFA A� is
the DFA h⌃, S, s0, Sf , �i over ⌃ defined as follows: (a) S = {s0, . . . , sn+1} contains
n + 1 states; (b) Sf = {sn+1}; (c) for every i 2 {0, . . . , n}, �(si, ai) = si+1 (and
nothing else is in �).

Theorem 2. For every bounded stochastic PNP N and every trace � over ⌃⇤, we have
that TRACE-PROB(N ,�) = OUTCOME-PROB(N , A�). /

Proof. Direct from the definition of the problems, noticing that L(A�) = {�}. a

Example 5. We compute the probability that Norder generates trace � =
open, fin, acc, fin, rej, where an order is filled, finalized, accepted, then modified, final-
ized again, and this second time rejected. Following the described technique, we first
transform � into its trace DFA A� , and then further into its run DFA Ā� . This is shown
in Figure 6(a). We then compute the product system ⌥ Ā

RG(Norder)
of Ā� and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct Eh7,5i

⌥ Ā
RG(Norder)

getting x00 = ⇢i⇢f⇢a⇢b⇢i⇢f⇢r

(1�⇢i⇢m)2 ,

which yields the solution to the TRACE-PROB(Norder,�) problem. /

6 Stochastic Conformance with Probabilistic Declare

We now employ the verification machinery introduced in Section 5 to check how the
probabilistic behaviour encoded in a stochastic PNP relates to the one declaratively
specified using ProbDeclare [15]. We start by providing a gentle introduction to Prob-
Declare, then showing how we can check whether a bounded stochastic PNP conforms
to a ProbDeclare model, and finally discussing how one can measure the stochastic
distance between the two in case of non-conformance.

6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare

An
“incomplete”
Markov chain

3. Solve the “outcome probability problem”

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 13

s0 s1 s2

s3s4s5

⌧ ⌧ ⌧

⌧⌧⌧

open fin

acc
finrej

(a) DFAs A� and Ā� .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5

open

1 ⌧
⇢i

⌧
⇢m fin

⇢f

acc
⇢a

⌧⇢b⌧
⇢i

⌧
⇢m

fin
⇢f

rej
⇢r

(b) Product system between Ā� and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes � as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace � = a0, . . . , an over ⌃, its trace DFA A� is
the DFA h⌃, S, s0, Sf , �i over ⌃ defined as follows: (a) S = {s0, . . . , sn+1} contains
n + 1 states; (b) Sf = {sn+1}; (c) for every i 2 {0, . . . , n}, �(si, ai) = si+1 (and
nothing else is in �).

Theorem 2. For every bounded stochastic PNP N and every trace � over ⌃⇤, we have
that TRACE-PROB(N ,�) = OUTCOME-PROB(N , A�). /

Proof. Direct from the definition of the problems, noticing that L(A�) = {�}. a

Example 5. We compute the probability that Norder generates trace � =
open, fin, acc, fin, rej, where an order is filled, finalized, accepted, then modified, final-
ized again, and this second time rejected. Following the described technique, we first
transform � into its trace DFA A� , and then further into its run DFA Ā� . This is shown
in Figure 6(a). We then compute the product system ⌥ Ā

RG(Norder)
of Ā� and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct Eh7,5i

⌥ Ā
RG(Norder)

getting x00 = ⇢i⇢f⇢a⇢b⇢i⇢f⇢r

(1�⇢i⇢m)2 ,

which yields the solution to the TRACE-PROB(Norder,�) problem. /

6 Stochastic Conformance with Probabilistic Declare

We now employ the verification machinery introduced in Section 5 to check how the
probabilistic behaviour encoded in a stochastic PNP relates to the one declaratively
specified using ProbDeclare [15]. We start by providing a gentle introduction to Prob-
Declare, then showing how we can check whether a bounded stochastic PNP conforms
to a ProbDeclare model, and finally discussing how one can measure the stochastic
distance between the two in case of non-conformance.

6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare

An
“incomplete”
Markov chain

3. Solve the “outcome probability problem”

Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 13

s0 s1 s2

s3s4s5

⌧ ⌧ ⌧

⌧⌧⌧

open fin

acc
finrej

(a) DFAs A� and Ā� .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5

open

1 ⌧
⇢i

⌧
⇢m fin

⇢f

acc
⇢a

⌧⇢b⌧
⇢i

⌧
⇢m

fin
⇢f

rej
⇢r

(b) Product system between Ā� and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes � as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace � = a0, . . . , an over ⌃, its trace DFA A� is
the DFA h⌃, S, s0, Sf , �i over ⌃ defined as follows: (a) S = {s0, . . . , sn+1} contains
n + 1 states; (b) Sf = {sn+1}; (c) for every i 2 {0, . . . , n}, �(si, ai) = si+1 (and
nothing else is in �).

Theorem 2. For every bounded stochastic PNP N and every trace � over ⌃⇤, we have
that TRACE-PROB(N ,�) = OUTCOME-PROB(N , A�). /

Proof. Direct from the definition of the problems, noticing that L(A�) = {�}. a

Example 5. We compute the probability that Norder generates trace � =
open, fin, acc, fin, rej, where an order is filled, finalized, accepted, then modified, final-
ized again, and this second time rejected. Following the described technique, we first
transform � into its trace DFA A� , and then further into its run DFA Ā� . This is shown
in Figure 6(a). We then compute the product system ⌥ Ā

RG(Norder)
of Ā� and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct Eh7,5i

⌥ Ā
RG(Norder)

getting x00 = ⇢i⇢f⇢a⇢b⇢i⇢f⇢r

(1�⇢i⇢m)2 ,

which yields the solution to the TRACE-PROB(Norder,�) problem. /

6 Stochastic Conformance with Probabilistic Declare

We now employ the verification machinery introduced in Section 5 to check how the
probabilistic behaviour encoded in a stochastic PNP relates to the one declaratively
specified using ProbDeclare [15]. We start by providing a gentle introduction to Prob-
Declare, then showing how we can check whether a bounded stochastic PNP conforms
to a ProbDeclare model, and finally discussing how one can measure the stochastic
distance between the two in case of non-conformance.

6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare

An
“incomplete”
Markov chain

x00 =
ρiρf ρaρbρiρf ρr

1 − (ρiρm)2

Applications in stochastic process mining
Probabilistic trace alignment

Compare with distributions over traces
Induced distribution via qualitative verification

Set of traces

(behaviour)

Compare with distributions over traces
Induced distribution via qualitative verification

“Regular” scenarios

(Partition of behaviour)

Compare with distributions over traces
Induced distribution via qualitative verification

“Regular” scenarios

(Partition of behaviour)

Specification

distribution

Compare with distributions over traces
Induced distribution via qualitative verification

ProbDeclare

specification

“Regular” scenarios

(Partition of behaviour)

Specification

distribution

bounded

stochastic

Petri net

Compare with distributions over traces
Induced distribution via qualitative verification

ProbDeclare

specification

“Regular” scenarios

(Partition of behaviour)

Specification

distribution

Induced

distribution

bounded

stochastic

Petri net

Using our
approach

Compare with distributions over traces
Induced distribution via qualitative verification

ProbDeclare

specification

“Regular” scenarios

(Partition of behaviour)

Specification

distribution

Induced

distribution

(Earth mover’s) distance

bounded

stochastic

Petri net

Conclusions

Stochastic process mining calls for techniques to reason on stochastic
process models

Existing techniques do not readily apply due to the features of stochastic
process models we are interested in (silent transitions)

Analytic solution to key problems related to computing probabilities of
behaviour
• Combination and extension of techniques from Markov chain analysis and

qualitative model checking of quantitative systems

Just the beginning: 
timed analysis, discovery, more integration of mining&reasoning, …

Thank you!
montali@inf.unibz.it

