Constraints
for process framing
In Augmented BPM

Marco Montali _
Free University of Bozen-Bolzano unibz

Al4BPM 2022, Munster, Germany

What do we do

We develop and applied techniques

grounded In , logics, and
formal methods,

to create intelligent agents and information
systems that combine

processes and data.

How to attack these challenges?

Information
Systems

cpn = Business process
Artificial management

|nte||igence Data management

Decision management

Knowledge representation Formal

Automated reasoning
Computational logics Methods

Data

Science Infinite-state systems
Verification

Process mining Petri nets

Data access

and integration

~ Warm up:
what is augmented BPM

— .

- -
Wih 332 . '
. . et T ey
"-"t . -'“:‘.:.:!.mtf% U OO T
& _.‘—..‘.‘M“\‘l
> ~-....\.'"'“ : ’. -9 4 : - _' . K n . : » . :
. . . oy : . . :
”:’ Yy A - - , “ fﬁ‘ﬁ“.. i .

‘.‘ -
AN y .

. » .-
: »— o : - N } - -
- . - - . - . .
- -4) - % ',\ \'..'. 3

Augmented BPM

= I'X]_V > cs > arXiv:2201.12855

Computer Science > Artificial Intelligence

[Submitted on 30 _Jan 2022 (v1), last revised 4 Aug 2022 (this version, v3)]

Augmented Business Process Management Systems: A Research Manifesto

Marlon Dumas, Fabiana Fournier, Lior Limonad, Andrea Marrella, Marco Montali, Jana-Rebecca Rehse, Rafael

Accorsi, Diego Calvanese, Giuseppe De Giacomo, Dirk Fahland, Avigdor Gal, Marcello La Rosa, Hagen Voélzer, Ingo
Weber

Augmented BPM

An increased availability of business process execution data, combined
with advances in Al, have laid the ground for the emergence of
Information systems where the execution flows are not pre-
determined, adaptations do not require explicit changes to software
applications, and

discovered, validated, and enabled on-the-fly.

= I'X]_V > cs > arXiv:2201.12855

Computer Science > Artificial Intelligence

[Submitted on 30 _Jan 2022 (v1), last revised 4 Aug 2022 (this version, v3)]

Augmented Business Process Management Systems: A Research Manifesto

Marlon Dumas, Fabiana Fournier, Lior Limonad, Andrea Marrella, Marco Montali, Jana-Rebecca Rehse, Rafael

Accorsi, Diego Calvanese, Giuseppe De Giacomo, Dirk Fahland, Avigdor Gal, Marcello La Rosa, Hagen Vdlzer, Ingo
Weber

Augmented BPM System

Al-empowered, trustworthy, and process-aware
Information system that
upon data within a set of

constraints and assumptions
with the aim to

a set of business
processes With respect to one or more performance
Indicators

Augmented BPM System

Al-empo
Informatic
reasons a

constraints
with the aim

S-dwdre

of

business
processes formance

Indicators

ABPM lifecycle

Revisiting the BPM lifecycle: from “design” to “framing”

frame

ABPM lifecycle

Revisiting the BPM lifecycle: continuous evolution

—

process-aware execution

ABPM lifecycle

Revisiting the BPM lifecycle: continuous evolution

—

perceive

reason

process-aware execution

ABPM lifecycle

Extending with “pure” Al capabilities

frame

perceive

explain
reason

process-aware execution

Improve

ABPM lifecycle

Continuous interaction with principals

: frame
ﬁ W

perceive

intelligent .
interaction explaln

reason

process-aware execution

Improve

Features of an ABPMS

Framed autonomy

ABPMS acts autonomously
 Lifecycle steps performed proactively and continuously

ABPMS acts “within its frame”
 Maximally permissive, goal-driven strategy

Features of an ABPMS

Framed autonomy

ABPMS acts autonomously
 Lifecycle steps performed proactively and continuously

ABPMS acts “within its frame”
 Maximally permissiye, goal-driven strategy

What does this mean?

Hard vs soft constraints,
reframing, meta-framing, ...

Features of an ABPMS

Conversationally actionable

Autonomy does not mean isolation
* Need of continuous conversation with human principal(s)

Conversational

* | anguage-based communication with humans (proactive
and reactive)

Actionable
* Interaction leads to actual decision making

Features of an ABPMS

Conversationally actionable

Autonomy does not mean isolation
* Need of continuous conversation with human principal(s)

Conversational
* | anguage-bas
and reactive) [V e—

humans (proactive

also models!

Actionable
* Interaction leads to actual decision making

Features of an ABPMS

Adaptive

Motto: react to changes and self-improve
* Prediction
* Instance- and model-level adaptations

Features of an ABPMS

Adaptive

Motto: react to changes and self-improve W
. . Barbara Weber
 Prediction Eoabling Flexibility i
) . ~ Enabling Flexibility in
Instance- and model-level adaptations " Process-Aware

Information Systems

Challenges, Methods, Technologies

@ Springer

Features of an ABPMS

Adaptive

Motto: react to changes and self-improve
* Prediction

* Instance- and model-level adaptations
 Multi-objective optimisation

* Evaluation of trade-offs

Features of an ABPMS

Adaptive
Stuart Russell

Motto: react to changes and self-improve HUMAN
e Prediction COMPATIBLE

* Instance- and model-level adaptations
 Multi-objective optimisation \
e Evaluation of trade-offs \ 7

A
——

What if there are multiple

principals? i

Al and the Problem of Control

Quiz: which feature is missing?

ITS AS IF YOU'RE A
TECHNOLOGIST AND
A PHILOSOPHER ALL
IN ONE!

BLAH BLAH
PLATFORM. |

I HIRED A CONSULTANT |= BLAH BLAH CLOUD.
TO HELP US EVOLVE OUR BLAH BLAH CLOUD.
PRODUCTS TO CLOUD BLAH BLAH CLOUD.

COMPUTING. | BLAH BLAH CLOUD.

1//

02011 Scott Adams, Inc./Dist. by UFS, Inc.

WHAT COLOR DO YOU WANT
THAT BLOCKCHAINT

TTHINK ||
MAUVE HAS \

DOES HE UNDERSTAND
WHAT HE SAID OR
IS IT SOMETHING
HE SAW IN A TRADE
MAGAZINE AD?

I THINK WE SHOULD
BUILD A BLOCKCHAIN

ANYES

SCOTTADANSERADL.CON
e Sgadicate. e

E-mall:

i £ 1995 Unred Fearn

Features of an ABPMS

Explainable

An ABPMS should be trustworthy

o “trust is the willingness of a party to be vulnerable to the actions of another
party based on the expectation that the other will perform a particular action
Important to the trustor, irrespective of the ability to monitor or control that
other party”

How to be trustworthy?

e Fair
 Explainable Need of specific focus on
e Auditable “process-aware” systems

e Safe

What is a process?

A possibly Iinfinite set of finite traces

What is a process?

A possibly infinite set of finite traces

Flexibility and control as contrasting forces

The i1ssue of flexibility is widely known

Different ways to address

Manfred Reichert flexibility in processes
Barbara Weber

Enabling Flexibility in

Process-Aware We are interested here in

flexibility by design

Information Systems

Challenges, Methods, Technologies

@ Springer

Is this enough?

“A process is (nhot) a point mass in a vacuum?” (cit.)

Is this enough?

“A process is (nhot) a point mass in a vacuum?” (cit.)

CasSes
53

traditional view
one process instance time
one case

Is this enough?
“A process is (not) a point mass in a vacuum” (cit.)
cases

(g | |

Z>X<
traditional view

one process instance time
one case

Is this enough?
“A process is (not) a point mass in a vacuum” (cit.)
cases/objects

| |
(i | |

Z*

multi-case/object-centric view
one process instance time
many case

Is this enough?
“A process is (not) a point mass in a vacuum” (cit.)
cases/objects

multi-process view
many process instances time
one case

More In general...

multiple multiple
executions executions

single multiple
object objects

single single
execution execution

single case multiple
notion/object objects

multiprocessmining.org

Pu!n,h ‘.
B eiang 3

&
(O
—
e,
-
S
O
= A

the declarative

approach

How to fram

lasw

Outline

the declarative
approach

-'l\)).(

How to deal with deviations?

lasw

Outline

monitoring and
operational support

the declarative
approach

-'l\)).(

How to deal with deviations?

lasw

Outline

monitoring and
operational support

the declarative
approach

-'l\)).(

How to deal with multiple processes and cases?

[,CAISE22] F¥ it
dealing with
multiple processes e

vg
"
5

L
-'. ‘
T
S
L
V- 4

dealing with multiple

objects

dealing with
uncertainty monitoring and

operational support

the declarative
approach

Outline

[,CAISE2

dealing with

multiple process) dealing with multiple
objects

dealing with
uncertainty monitoring and

operational support

- - '

~J B S LI R
ST l.o}-fv‘\oq_o e i Tl
M A H o e Ay

_ _.’;. . ’. .‘.‘." . : "‘. \ , .: .VI .‘ '..“_’b.f-. R .- . - ...“ : N : o " e s AR J"-

X ’ - y _ : = . B L N . - " .- . - v N . > Lol - . 5 - - J » N - y v - : . o e

J-:‘- ‘.:J3wh\' 0?." B L, . ot ‘: o' “. i S LA " 3 Yo . ’ - - o sl e + » (%, V) e ~ s : ' " e . LN -“::.:_.‘:.': :".‘
' R ARG a1 P SN s CEA) e e il i

- = L P L Y Mt 4 - ". - - - -") ' . 3 ','.{'s"‘/:'.';““ e) ; .

LS i (R N AL ! . L TAREIRY R A NG T AT YNy 4 "-‘“R:'Y‘a ' "g_' Y
o W g ' nosd ! : Ayt ';.prs. G v A LR
' R \ &!“ "‘,M\ " | 't ' ;9. . - | - b ‘.~\E.c'o"r‘-~ AR S R T
. . '. . - " .\ .:\.. .l . \") q ; - . : - ‘ ,
' ~” * ” ' N A o\ ". " ' « ; ‘: .

. - . J e A i
) SN R SR LD

e

- .l; S ’ -) . A R 4 - - .
S 8 J & : ' - 2 . st r‘.’k' (wsf g e el 3
-) . 4 " N 5 ' . P

Control

degree to which a
central
orchestrator
decides how to
execute the
process

Lasagna
processes

Flexibility

degree to which
process
stakeholders
locally decide how
to execute the
process

A process...

... and an imperative model of 1t

Generalisation

-.fv‘ o
- Simplicity
i

- cannot be
obtained by

- sweeping
complexity

under the

carpet

Compact Reality
specification

Our goal

represents -

The class of “regular”

spaghetti processes
(not all)

Compact Reality
specification

Framing via declarative specifications

Process Imperative Declarative
model specification

Framing via declarative specifications

Process Imperative Declarative
model specification

Constraint-based specifications of behaviour

 Multiagent systems: declarative agent programs |Fisher,JSC1996]
and interaction protocols |Singh,AAMAS2003]

 Data management: cascaded transactional updates
[DavulcuEtAl,PODS1998]

* BPM (1st wave): loosely-coupled subprocesses [SadigEtAlLER2007]

* BPM (2nd wave): process constraints

e DECLARE [PesicEtALEDOC2007]

 Dynamic Condition-Response (DCR) Graphs
[HildebrandtEtAl,PLACES2010]

Origin of Declare...

Language, formalisation, reasoning, enactment

Constraint-Based

Workflow Management Systems:
Shifting Control to Users

PROEFSCHRIFT

LNBIP 56

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de :
Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een A Lognc-Based hppanCh
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op woensdag 8 oktober 2008 om 16.00 uur

door

Maja Pesic¢

geboren te Belgrado, Servié

Which constraints are useful?

Patterns in Property Specifications
for Finite-State Verification*

Matthew B. Dwyer
Kansas State University
Department of Computing
and Information Sciences
Manhattan, KS 66506-2302
+1 785 532 6350
dwyer@cis.ksu.edu

ABSTRACT

Model checkers and other finite-state verification tools
allow developers to detect certain kinds of errors au-
tomatically. Nevertheless, the transition of this tech-
nology from research to practice has been slow. While
there are a number of potential causes for reluctance to
adopt such formal methods, we believe that a primary
cause is that practitionérs are unfamiliar with specifi-
cation processes, notations, and strategies. In a recent
paper, we proposed a pattern-based approach to the
presentation, codification and reuse of property specifi-
cations for finite-state verification. Since then, we have
carried out a survey of available specifications, collect-
ing over 500 examples of property specifications. We
found that most are instances of our proposed patterns.
Furthermore, we have updated our pattern system to
accommodate new patterns and variations of existing
patterns encountered in this survey. This paper reports
the results of the survey and the current status of our
pattern system.

George S. Avrunin
University of Massachusetts
Department of Mathematics

and Statistics
Ambherst, MA 01003-4515

+1 413 545 4251
avrunin@math.umass.edu

James C. Corbett
University of Hawai‘i
Department of Information
and Computer Science
Honolulu, HI 96822

+1 808 956 6107
corbett@hawaii.edu

cess support for formal methods.

We believe that the recent availability of tool support
for finite-state verification provides an opportunity to
overcome some of these barriers. Finite-state verifica-
tion refers to a set of techniques for proving properties
of finite-state models of computer systems. Properties
are typically specified with temporal logics or regular
expressions, while systems are specified as finite-state
transition systems of some kind. Tool support is avail-
able for a variety of verification techniques including,
for example, techniques based on model checking [19],
bisimulation [4], language containment [14], flow anal-
ysis [10], and inequality necessary conditions [1]. In
contrast to mechanical theorem proving, which often
requires guidance by an expert, most finite-state verifi-
cation techniques can be fully automated, relieving the
user of the need to understand the inner workings of the
verification process. Finite-state verification techniques
are especially critical in the development of concurrent

e eorvds /e M “vl-\nstt\ - N An‘-nwm:rr:a‘-:n "\nl‘\n!r;t\i‘ mobna #nai—

Constraint templates

Constraint types defined on activity placeholders, each with a specific
meaning

* ... then instantiated on actual activities (by grounding)

Dimensions
» Activities: how many are involved

 Time: temporal orientation (past, future, either) and strength (when)
 EXxpectation: negative vs positive

Much richer than the precedence flow relation of imperative languages

Declare specification

A set of constraints (templates grounded on the
activities of interest)

* Constraints have to be all satisfied globally over
each, complete trace

* Compositional approach by conjunction

Flexible shopper In Declare

“Whenever you close an order, you have to pay later at least once”

Pi ak Q l. <> (empty trace)
ltem L <iiLi>
.<1,1,1,c,p>
Close Pa
order Y

.<1,1,1,c,p,pP>

. <EFE35p;E>

&6.<i,c,p,i,i,c,p>

Accepts all {i,c,p}*

Flexible shopper In Declare

“Whenever you close an order, you have to pay later at least once”

. <> (empty trace)

Pick
i1tem

. <1,1,1>
.<1,1,1,c,p>

.<1,1,1,c,p,p>

Pay . <EFE35p;E>

response

.<1,c,p,1,1,c,p>

Interaction among constraints

Aka hidden dependencies

If you cancel the order,

Cancel you cannot pay for it
order

Pay

Close
If you close the order,
order :
you must pay for it

To close an order, you
must first pick an item

Pick
1tem

Interaction among constraints

Aka hidden dependencies

If you cancel the order,

Cancel you cannot pay for it
order

Pay

Close
© If you close the order,
order :
you must pay for it

Implied: cannot

cancel and
confirm!

To close an order, you
must first pick an item

Pick
i1tem

Interaction among constraints

Aka hidden dependencies

If you cancel the order, Key questions

Cancel you cannot pay for it
order . How to
characterise the

language of a
Declare
specification?

Implied: cannot

cancel and
confirm!

Pay

To close an order, you . How to
must first pick an item understand

whether a
Pick Close y SO spemflf?atlon IS
item order you close Ihe oraer, COITECtL:
you must pay for it

Back to the roots

Patterns in Property Specifications
for Finite-State Verification*

Matthew B. Dwyer
Kansas State University
Department of Computing
and Information Sciences
Manhattan, KS 66506-2302
+1 785 532 6350
dwyer@cis.ksu.edu

ABSTRACT

Model checkers and other finite-state verification tools
allow developers to detect certain kinds of errors au-
tomatically. Nevertheless, the transition of this tech-
nology from research to practice has been slow. While
there are a number of potential causes for reluctance to
adopt such formal methods, we believe that a primary
cause is that practitionérs are unfamiliar with specifi-
cation processes, notations, and strategies. In a recent
paper, we proposed a pattern-based approach to the
presentation, codification and reuse of property specifi-
cations for finite-state verification. Since then, we have
carried out a survey of available specifications, collect-
ing over 500 examples of property specifications. We
found that most are instances of our proposed patterns.
Furthermore, we have updated our pattern system to
accommodate new patterns and variations of existing
patterns encountered in this survey. This paper reports
the results of the survey and the current status of our
pattern system.

George S. Avrunin
University of Massachusetts
Department of Mathematics

and Statistics
Ambherst, MA 01003-4515

+1 413 545 4251
avrunin@math.umass.edu

James C. Corbett
University of Hawai‘i
Department of Information
and Computer Science
Honolulu, HI 96822

+1 808 956 6107
corbett@hawaii.edu

cess support for formal methods.

We believe that the recent availability of tool support
for finite-state verification provides an opportunity to
overcome some of these barriers. Finite-state verifica-
tion refers to a set of techniques for proving properties
of finite-state models of computer systems. Properties
are typically specified with temporal logics or regular
expressions, while systems are specified as finite-state
transition systems of some kind. Tool support is avail-
able for a variety of verification techniques including,
for example, techniques based on model checking [19],
bisimulation [4], language containment [14], flow anal-
ysis [10], and inequality necessary conditions [1]. In
contrast to mechanical theorem proving, which often
requires guidance by an expert, most finite-state verifi-
cation techniques can be fully automated, relieving the
user of the need to understand the inner workings of the
verification process. Finite-state verification techniques
are especially critical in the development of concurrent

e eorvds /e M “vl-\nstt\ - N An‘-nrm:rr:a‘-:n }\nl\ntr;t\i‘ mobna “'AG"‘

Back to the roots

Patterns in Property Specifications
for Finite-State Verification*

Matthew B. Dwyer B Or
Kansas State Universi
Department of 4
and Informatic
Manhattan, KS 6
+1 785 532
dwyerQ@cis.ksu

ABSTRACT
Model checkers and other
allow developers to deté

tomatically. Neverthele : Temp 0

nology from research to pg (L

there are a number of pot
adopt such formal methods)
cause is that practitionérs
cation processes, notations
paper, we proposed a pattel
presentation, codification 2
cations for finite-state verifi®
carried out a survey of availah
ing over 500 examples of pr . V
found that most are instances C proposed patterns.
Furthermore, we have updated our pattern system to
accommodate new patterns and variations of existing
patterns encountered in this survey. This paper reports
the results of the survey and the current status of our
pattern system.

werns |
e ral LOOIC

es C. Corbett
siversity of Hawai‘i
ment of Information

Computer Science
olulu, HI 96822
808 956 6107

n L'\nea" tt@hawaii.edu

ds.

lability of tool support
vides an opportunity to
Finite-state verifica-
) or proving properties
er systems. Properties
bral logics or regular
becified as finite-state
ool support is avail-
chniques including,
SCO model checking [19],
hguage containment [14], flow a.nal-
[10 and mequahty necessary conditions [1].
contrast to mechanical theorem proving, which often
requires guidance by an expert, most finite-state verifi-
cation techniques can be fully automated, relieving the
user of the need to understand the inner workings of the
verification process. Finite-state verification techniques
are especially critical in the development of concurrent

e ormds e 29 “7‘\"\"’\ - N An‘-nm:rr:a‘-:n 1’\(\"\0‘?;1\" mﬂl’t\b "‘ﬂﬂ“‘ N

LTL: a logic for infinite traces

Each state indicates which

propositions hold

Logic interpreted over infinite traces O—}O—PO—}O—PO—PO—V

pur=A|-p|pi N2 | Op | prilps

A Atomic propositions
= | (1 A Vo Boolean connectives
(O At next step ¢ holds
gplz/{ b, At some point ¢2 holds, and ¢+1 holds until ¢ does
O =trueldyp ¢ eventually holds
p = QY ¢ always holds
1 Wpa = p1U s V Ly ¢1 holds forever or until ¢z does

LTL: a logic for infinite traces

Each state indicates which

propositions hold

Logic interpreted over infinite traces O—PO—}O—PO—VO—PO—}

pur=A|-p|pi N2 | Op | prilps

A Atomic propositions
% | ©1 N\ P2 Boolean connectives Can be
seamlessly
(O At next step ¢ holds extended
gﬁlz/{ . At some point ¢2 holds, and ¢+ holds until > does W'::h past-
ense
O = trueldp ¢ eventually holds operators

p = QY ¢ always holds
01 Wy = p1U s V L1 ¢1 holds forever or until ¢2 does

LTL: a logic for infinite traces

Each state indicates which

propositions hold

Logic interpreted over infinite traces (Q=»()= (> (>

D 1=
A

| 1 A 2 : Can be
r . seamlessly
QS& extended
p1U P2 o1 holds until d» does wi’:h past-

ense
O =trueldyp operators

D = _I<>_ISO
SOIWSOZ — 9012/{902 \% olds forever or until OF; does

Template formulae

Template LTL sexpression

Existence constraints

ATLEASTONE(x)] (start — O x)
ATMOSTONE(x) (x > —-O0x)
INIT () (start — x)

END(x)

(end — x)

Relation constraints

RESPONDEDEXISTENCE(z,) Oz — Oy V Svy)
RESPONSE(z, y) J(z — Q)
ALTERNATERESPONSE(z, y) J(x — O(—z U v))
CHAINRESPONSE(z, v) J(z — Quy)
PRECEDENCE(z,) 1 (y — & x)
ALTERNATEPRECEDENCE(z, 1) J(y > S(—y S x))
CHAINPRECEDENCE(x, v) 1 (y — ©x)

Negative relation constraints

NOTRESPONDEDEXISTENCE(x, ¥)

NOTRESPONSE(z, y) (x — O y)
NOTCHAINRESPONSE(z, y) J(z — - Qvy)
NOTPRECEDENCE(x, y) 1(y — 83 —-x)

NOTCHAINPRECEDENCE(y,)

L
<
!
]
0
s

Semantics of Declare via LTL

Each state contains

a single activity

Atomic propositions are activities O—PO—PO—PO—PO—PO—V

Each constraint is an LTL formula (built from template formulae)

delete a
order pPay
pick close
i1tem order

Semantics of Declare via LTL

Each state contains
a single activity

Atomic propositions are activities O-VO—PO—PO—PO—PO—V

Each constraint is an LTL formula (built from template formulae)

Semantics of Declare via LTL

Each state contains

a single activity

Atomic propositions are activities O-VO—PO—VO—PO—PO—V

A Declare specification is the conjunction of its constraint formulae

delete
order

[](close — {pay)
A[J(close - Oitem)

A [](cancel — —[]pay)

An unconventional use of logics!

From ...

Temporal logics for specifying (un)desired properties of
a dynamic system

.. 10 ...
Temporal logics for specifying the dynamic system itself

.

2 e AA i

N

Wait a moment...

LTLf: LTL over finite traces

9033:14_'90“01/\902\@90“01”902

LTL interpreted over finite traces W
- -
In LTL, there is always a next moment... in LTLf, the contrary!

e ¢ always holds from current to the last instant

QSO The next step exists and at next step ¢ holds

‘90 = Q 1@ (weak next) If the next step exists, then at next step ¢ holds

Last = — () true last instant in the trace

Look the same, but they are not the same

Many researchers: misled by moving from infinite to finite traces

In , we studied why!
* People typically focus on “patterns”, not on the entire logic

 Many of such patterns in BPM, reasoning about actions, planning, etc. are
“Insensitive to infinity”

Quiz: does this specification accept traces?

Mo B
> 1]

Quiz: does this specification accept traces?

Quiz: does this specification accept traces?

Quiz: does this specification accept traces?

Quiz: does this specification accept traces?

PRECEDENCE(d, a)

Quiz: does this specification accept traces?

ATMOSTONE(d)

Quiz: does this specification accept traces?

Quiz: does this specification accept traces?

-

Only the empty trace <>,

due to finite-trace
semantics

How to do this, systematically?

Declare specification: encoded in LTLf
LTLf: the star-free fragment of regular expressions

Regular expressions: intimately connected to finite-state
automarta

* No exotic automata models over infinite structures!

e Just the good-old deterministic finite-state automata
(DFAs) you know from a typical course in programming
languages and compilers

From Declare to automata

NFA | DFA

nondeterministic deterministic

LTLfaut detemin.
00
- O |

Process engine!

Vision realised!

NFA | DFA

nondeterministic deterministic

N1 LTLf2aut determm

c@iQ@a c@

[DeGlaComoVardl IJCAI2013]
[,TOSEM2022]

Process engine!

A full Declare model

[

,PMHandbook2022]

0..1
INIT
) (
Create
candidate account +——p-@
(c)
J g

Register for
selection round

(r)

*—>r0

Enter
evaluation phase N

(v)

"

S

Pre-enrol
in the program

Enrol
in the program

(e)

;

Upload
admission test score

(t)

N 4

Receive Receive

rejection notification «—H—‘ admission notification
(n) ()

J .

P §

subscription fee

()

Upload
certificates

(u)

- A wen g
w'.: ., ey
/ P — — e B Wi .
s " — — \
.-, -~ il " N
¢ & . ’
! ..-.-’ N g “a, Brves e b
4 o~ -__--°‘°- S Colorvatnsmcnd Y
g o~ R S hl-l‘w S
J o ——— A e e e 4
’ LE ——— Jidie s e —— | LA ———_ it .q \
A 5 D S RN o
,.' .-_/ ’ .':rw,‘vv -_sH _ ———— e :' s ‘gl
ey o A BT e) e e e s sy
v s 1‘"'—""’-" ——— e 7 N L T Semdewre vem -.}/ N\)
ol ¥ | & .. Shoaduns / - X . \ \
P l.’f—_ - f" el e ——— T - - - - - ~ ol .._ " s
-] - Y e — . EE— - .
- ':.,.(&y b o - -.‘\ - - & ‘ b o ." " . A ke .":'-' - \"- E5 [
.."' - - "{-\..\ - K-‘;ll".“.‘h-(l.u .'q.\ e ‘F _.-" ~ '.\ '.
~ - amul el -
N "— S 2l - oy \
\ Senr - ot 4 . \ '
— o ok e - f“'N Twshn ondd ’T‘" "i’ e \b'""" \ !
&"'L.‘“— e == P, g ".n . |
o - ra M e s mutl .. . - » Shrodmn } . ".- — @ bvw rvge \" !
F e v Ll e e — - F\ Q- - _Sad-.n.lnwh unl_-.\ . T — 's.. :
i o S i S e L LU \ o
/ -._--’ e / - P S—— — — N ﬂ\l'.’lﬁw i Mrbs ic pps 5 - b |
7 .,-" "\\ y g e e ,.:’c . \\ ’_.-" -"0.__ 2 ™ - 5\ ’.‘.‘/[ﬂ“
rg ra e A ,'/ o ,}‘\ il \ '\ *‘""' fvaniw wud
s /.- . ---'f".)_,) / VR e paer o \ e - o & 5(”, e *“ \ ..‘Q»‘",
/ 7 oo .,_.\ T ' g ,, --__‘\.---- \'*-.\ ARl awm - ..A..i’)‘.
';- /:’ s -~ :).. u.’oro‘- g - o 44 Zx " Py “...5\::“ atas 1"‘!——-.“: 3 4
7 _ ” ._,--— e / o - ' —— | - T w
.. o il e dpans -_/:’ o — — .,’_ oV ‘p, ._A - S o md — l-mﬂu 5 i Tt jawm < - '-..0\ 1 N a;'lu:u-. awd 4‘ - i 7 B-.'- ..l:r.mmovJ NSl
4 - =.eY - - e - | - —— s oad o o — - A -
." " ."’ Bl -"w.- — | 1 . TN Ll & W) - - ~ e - \ > - et e v e |'l"‘.‘ " — Jl ‘
| s - £ S il P ——— - of R el o "r : — e, J— - or o > n o
/ s S P - o ! - —fc .;““rp ! o o N..v'.“‘ ._.-.-0 - " - Va 7 ’
/ ” Kwv maws .pfln'/ g N e ’ e T - T W s o - ’ ’
F L — a4 . L / e O | e ~ 8 "l rkateaean) - . el
' b7 - e Fnan b/ N ™ s e T e _Jeary e - . I - - / b /'/ V
' P Y !'q- — — 2 DR R) g e e ™ b e - —R o ~ o '
P e L)) /v' N —_ e 7 o A ! . } - o - v 4
[/ e '] /‘ /:\’ .t" opee Fo——— s e ¢ \‘\ v Ty o~ o ~ g
f per® ' : o h -—— | — :— - - . » ~ \ } e - - =" of 4
0. a" o ot .' 'f 0. / / \ ’». Tk n 'y/ p—— —— : /’ — .'*‘J:'m" a~ ".':t'. Y -"f - R "'--- g "J‘. "'
’ -~ /' [/ \ .I.‘ﬂbt‘ L .‘.'/"- . C‘E-—: e 2 fpaP— et vy e - /
/ . ! s’ ,l/ - - P4 -'0._ [% foads ; a. ."-‘.- - -\ﬁlr [S)I ™ v " .-'J y
' Sbw by . i /.‘ o™ P - i — LEN N ¢' / - N Ll L I E — - — e, o V.
-1 © " 2 g P ~ Bl A B g O ‘b..‘*“ T . ' — e S e dbad o -
~ ™ - / /ﬁﬁvw‘.rs‘.-.ﬂ" - Dy - sédw B ™ 5 2 oo ! T e e = e
o - N 7 t._.r‘ ——— ALl ,J o : o
R v rd - - . M.. L w x e &‘ b vl -~ -\) o~
L - Yk e P ‘--_\ - B fenipawe — hvn i - Segpen pepe -
R,) / - - —— —— -'i"\ > " ‘*‘—4 ., o ﬁM- " Cowl Aw e aw d »
. o ke oy s N/ -~ g — - Ay / - - < g
% -~ X { e v gan— ok -'a\' Abwire v v -
| ':Q\ B lAO\i’*‘/ rdl ¥ Bovim pur =" N _.-’M‘ Ny, e o - e ‘* Frrdi e g bk Al o -~
| . N~ Rabwpper T X L i e \ .."’--‘““.'""’ ‘" ‘k L T v, -
i -\- _— ; Px o paas ‘..r ."7 ¢ - "..'.“g.. - S - ‘,\ . .4-' \ Rt - —— -
! . " = -~ ;.I o .o — (Nl o Ereane ‘!ﬁ"'\ L bk Shivjuu Lo - . vu\._
g _ - o~ { -~ o . - —— \‘f . ;" - ‘ e Emges pram
J gt S 2 S - ot " = Qs e - - = P —— . S
J -L-..- _‘- & . I'.,-P’ ‘?: ,.J _A o e - \.-' -f.’ i .—.l'.lr?" .‘._ L ".-.__.\ ._;"\ : '\'. o .L - J,-’ \._\
L "-’;' o . " o Vg 'l"-..‘_ Ry o Y - . = ol o \‘\ Y /.u.u W"\ Cwl e iews ounv-."o'..- o g .
b AN 1 : -” " - -
N ' . R\ w o ,"- -2 e — Woimien vy ’ ¢\ - - oy ' -~
o . SR T T — f D e UL L \
. J ' s W — s m " ' T, e — - e
-" 3 e S) - o= e b ' o BT oo — ,.d" — ™ \
- ; : s e J Pl ew e " o —"‘ " S pae] s ‘ﬁ - . TS b
-~ ; ' N ~ — —— - Sda’s "h@ / ,/ o py — — — T e e \
o~ { i . \ he. F e ST PR el — " it > ""“l"f" — e, A
- 4 ' rd) Fawmgrne ’ . N - U .- SN . - viw gt |s '.. e, A WA e
-, . | / \ S— X - - ‘.‘ - R ’qu’" Vst - R - ~
- ! ' / N Fm -, Prern e il A o N, S e | e NN ol . ¥ P
/ | / -~ L - ==\ e \ | N A g e -y
o~ y, " / i T . - — - — . e \ - B \ :w JASN f'mumogl L Ly
v '4 N / / eee Yocn i A ., o T L e $1 " ""'°'" '°' ' Jo - \"-. “ " Py
o / ,“ — - . \. - - =2 "- Y -- s y
rf’ ,n" \'--- ,/ ,f' e e ,---\(" \'-. "% | ’.\‘ (‘ e\l \3 ﬁ ‘}
~ S K k4 N, Prvre pawy " \ -~ g N Fa' [T 4 v T IRl S—— LT LS L —?
e y - s ~ o o \ / - ’ \ e I
1 J —— / ™~ AN o on il gy . J ¢ el o
."./ il -."'l I Rl o A S T —— -"I P \\ ".‘\."\ PR \\ Arirs e S . = .'\. i w‘“..w‘,..l" -r
J s - - . . .) ——— .,- ——— ” ~) - g - - o M
seis 'l" . ‘*‘.’"“"“\.‘ it Wewres peas .,-(- ~)" "f" LN, gt par \"-‘ / o \"\ r o J_’ _ el — |~ M_""’.‘ Qo >y §
e G, Vabaad (ge -d e ‘-a-. T — e e e - ., —J.._ S N Py § -l RLIEE LU -, \\\ . o e o J
.r..‘. v aii— LA\ o {_ . / e _ / —— - vy s . " 0y f". J —— .- - - -.,. donofl* -~ .f
; R T P . A\ s Ry, SO | e, P rd e PN \ N P — | b4 S pepes e el L .-"' s
L '_\-. -— — - '- S w kb V4 e N8 Yeoveh vimaal Sl i / __\ e VA e / \""' o A __.:.\ {‘\’b y
= R AAY _——— ; ? oA Tl e i ey e P P P / ,;, N\ o Boaeop /
7 N ..\ e Sk e e Wb songogw_ . AN e O e AN - / “r"' . \ - rd
/ e \ e oba...’ln.l!:.‘t.“kt g "" s 'l o Y e R L .-vnvonka‘w‘ -\' \ e, o2l e Wie eda L - 4'— -ﬂ /-’
4 \ \ - e S Suhow daw sy = T prmt S e
s Wy \._\ o ; 9500\'1"....'.1 'ﬁ/ Yieeypga _;i \ Sk ek awanmewnd \ “'.*' 4 T . LY, /./
' ~ . -y i F — 8 - \ - | Y y
R T T _. . - J '.0. . H" . - e 3 -.~ < Slul . o, \ .’: .l' ‘Y s
0" e \.’--- - "'..- ._-" o gt \ me \ :] . \ /,
'.J “\\ . o '_~ "-.--.‘- -". .-’_-"A L —.-?.—‘. \\ | "f Jq'"|‘ | E
3 ol N, .._.- —— s ", \ —— \ o Sk vl s
" . et - AL S \ " e ' 9!’\: et)‘sw. ."qn..‘ /
4 - —— - ¥ e . \ A o 3
- Fae? SEEAPNN_ o e pqer- . oy, \ ", srdiefinbecr .o N —eed P - ‘
_f "y e - o . \‘. \ " ?VJ” Vlh‘."'l e ‘-".‘W' .a"
/ e o~ - — V.. e s " G F e ~—u’ 3 Mvv-nw
¥ { T R S " B o Bl CL I — :---,3"‘,_ M \ . W L N ' - 1, '~. s
I's *"(‘;J" wovad " Py 2 A P e e S e =, N .\’ " Caww dannl ‘-’—V P \ouum- s n\\ j_-.")
" - — - — . —— - . .. - — - - - —— -—" | -
.', ?.—’k\.‘. et v welialimsrninn L X k == —— ‘?.'q. | — - ..' S —— —r . - St rorRIren xa oWt - T s -‘
'\rlo-.-ovo?‘.’.o.l 'r-"" =z :"' * Conwn __.-~"' e ?.:u:q\w- =) ‘.' —— &= N TN] ' o - {, ,
'-“:: Sdimidanst e — s "(w ‘“' e o ’1-'*‘ i S : \, Mo g, | o J !
e T PR ety ,'-!! R et e Nmmeceower N \ " 7§
& i AN NN .tml" o— - -q '\ e S e e ™ 2 g e S "‘."'l:h/iodsa-'{-du-u-l‘,.- !
Lo N N — e - ™)
Y ~ o "-"\\ \ - - T -~ !
T T . - - B \ - -— A .l-.a . - ‘(
. . . B pn g - e NUAS -~ /
\\ . - _ e ey g __.-'-. /s
“ . P ~ . e S .' m— /
e Rupch goges . NalarfFelgered < R -
‘M nioro\'-.to‘ S S0k i - "~ /f‘
~ -
~ t’ S | - S g
‘} ’l' sheriaan ol # W - p \-.'-. ”’,
L T \ ,, - TNy -
I St g Vg -~
e VTR N PRCY e . o
e -.J'-.

Few lines of code

)
o(ff, II) =
o(¢,11) = 6((¢)¢t, 1) (¢ prop.)

0(p1 A 2, 1) = 6(p1, 1) A d(¢p2, II)
1) =

d(p1 V @2, (1, 1T) V 0(¢p2, II)
{ @) if I = ¢ (¢ prop.)
false if I }= ¢

S((¥7)p, 1) = 6(¢,) A 6(p, 1)
6((p1 + p2)p,II) = 5(<pl>% IT) V 6({p2)p, 1)
0({p1; p2)w, IT) = d({p1){p2)¢, 1)
o((p"), 1) = (o, 1) V6 ((p) F (o), 11)
s(ialpm) = UL E (@ prop)
5([¢?]907 H) 5(nnf(ﬁ¢)) (907 H)
o([p1 + p2le, 1) = d([p1]ep, I1) A 6([p2]p, 1T)
d([p1; p2le, IT) = 6([p1][pa]p, IT)
o([p"]ep, 1) = 0(ep, 1) A O ([p] T)5 11)
)
)

Fig. 1: Definition of §, where E(y) recursively replaces in ¢ all occurrences of atoms of
the form T, and F, by 9.

algorithm LDL;2NFA

input LDL; formula ¢

output NFA A(p) = (27,8, s0, 0, Sf)

so < {p} > set the initial state

Sy« {0} > set final states

if (§(p, €) = true) then > check if initial state is also final
Sf — Sf U {80}

S+ {So,Q)}, 0 <— 0

while (S or o change) do

10: for(se S)do

11: if (s" = A\ (ypes) 0(¥,11) then > add new state and transition

12: S+ Su{s'}

13: 0« oU{(s,I1,5")}

14: if (A (ycs) 0(¥,€) = true) then > check if new state is also final

15: Sf%SfU{S/}

©

Fig. 2: NFA construction.

Few lines of code

> add new state and transition

s’}
0 <P (s,I1,¢")}
if (A (ycs) 0(¥,€) = true) then > check if new state is also final
Sf — Sf U {S/}
Fig. 2: NFA construction.

Constraint automata

Template: pre-compiled into a DFA

Constralnt grounds the template DFA on specific activities

> {c} Z\{p} ‘{d} 2\{p}

p:l.ck close close delete
:|.tem order order order

Combining constraints

Combining constraints

reS\a,b} gex 2R\
G S 45/\ TNE
2 5

Combining constraints

reS\a,b} gex 2R\
G S —»<<%/\ TNE
2 >

Combining constraints

re\ab) pey e\
—O— o —»&/\ v e 2\{c)
2 >

Combining constraints

responded existence(a,b) BRI response(a,c)
- Z\{a) T € X\{a, b}
—>O):D X E E\{C}

€ S\{b, c} ‘/‘g\(%)@; r e $\{a)
e

- x € Y\{c}

From local automata to global automaton

Entire specification: product automaton of all local
automata

* Corresponds to the automaton of the conjunction of
all formulae

* Many optimisations available

Declare specification consistent if and only if its

Constraints: hard or soft?

Logically: hard

Conceptually: not so clear
* Model level: mix of constraints of different nature
* Physical, best practices, policies, legal, ...
 Hard at the IS level <-> hard or soft in reality
. VS
* Ontological reversal

Constraints: hard or soft?

Logically: hard

Conceptually: not so clear
* Model level: mix of constraints of different nature
* Physical, best practices, policies, legal, ...
 Hard at the IS level <-> hard or soft in reality
. VS
* Ontological reversal

ABPMS needs to to account for deviations, at runtime

monitoring

Track a running process execution to check conformance to a reference process
model

 Goal: Detect and report fine-grained feedback and deviations

One of the main operational support tasks
 Complementary to predictive monitoring!

Continuous feedback

900 Monitor

i
Evolving trace

N\
m Declare specification

(Anticipatory) monitoring

Track a running process execution to check conformance to a reference process
model

 Goal: Detect and report fine-grained feedback and deviations as early as possible

One of the main operational support tasks
 Complementary to predictive monitoring!

Continuous feedback

Evolving trace

Fine-grained feedback

Refined analysis of the “truth value”
of a constraint, looking into (all)
possible futures

Consider a partial trace t, and a
constraint C...

C
satisfied?

satisfied?

RV-LTL truth values

.l
o* ‘v
a
n

[]
by v
.l y
‘;“v‘..l“

C is permanently satisfied if t e
satisfies C and no matter how tis O’Q’O%~
extended, C will stay satisfied t T e

) q .l y
\d .
) * A
ll’ [

Ly n

.

. oA
an®

Cis if t satisfies C
but there is a continuation of t that O*O*O»!‘
violates C :

RV-LTL truth values

C is currently violated if t violates C
but there is a continuation that leads O’O’@ et
to satisfy C :

C is permanently violated if t violates O’ O’ _______ p ; v i
C and no matter how t is extended, C .;"A \‘ !‘
will stay violated '!"

. otea o* .,
L 4 . . 'Y 3
r ‘ []
“ Q‘
’.ll‘ o
s

RV-LTL on finite traces

Suffixes of the current trace: each with
* Again standard DFAs -> all formulae of LTLf are monitorable

Each state of the DFA: colored with an RV-LTL value via simple reachability checks
>\ {i,c}

pick
item

)
close close a delete a
order order Pay order Pay

RV-LTL on finite traces

Suffixes of the current trace: each with
* Again standard DFAs -> all formulae of LTLf are monitorable

Each state of the DFA: colored with an RV-LTL value via simple reachability checks
>\ {i,c}

O &)
pick close close a delete . "I a
iltem order order pay order pay

Monitor Iin action

pick close o
item order S
close
order
delete
order

ﬂﬂﬂ

Monitor Iin action

pick
item

close
order

delete
order

pick
1tem

close cs S
order P

Monitor Iin action

pick delete
l1tem order

pick close

i1tem order

close

order

delete

_erder an CS

Monitor Iin action

pick delete close
i1tem order order

pick close

item order S PS
close

delete

_Brder P2y CS

Monitor Iin action

pick delete close pay
l1tem order order

pick close
i1tem order €S PS
III!HIII ‘IIIIIIIIIIIIIII%IIIIIIIIIIIIIIIIIIIIIIIIII[::::
ay

close

order

CcVv CS
-

delete
order

Monitor Iin action

pick delete close pay
l1tem order order

pick close

item order S PS
close
delete a

order Y

Quiz: is this the earliest istant for

detecting a violation?

Monitor Iin action

pick delete close pay
l1tem order order

item order To satisfy: pay . :
close \

Srder = ~ i
c_iele te S V
order i

To keep satisfied: don’t pay

Monitor Iin action

pick
item
close

order

delete
order

close
order

global monitor

pick delete close pay
l1tem order order

cS DS

CS

CS

CS

CS

PV

PV

S\ {c,d) ‘ 2\{d p}
1oo 110

Z\{1 c,p} d >\ {c,p} d

- 000 001 1 101 111

- 200 002 - 102 112
with two proviso: S\(1e) Z\{c}
* recall RV-LTL ¢ . P c

labels o_f local 0 ” . .
COnStralntS >\ {p,d} [pv,cv,cs] [pV,CV,CS] PV,CV,P
e @
= 0= - - Z\{p}
202

Global monitor

minimisation
(distinction of
violation states)

2\{c}

S\ {c,d) ‘ 2\{d,p}

: - Anticipator
Global monitor 00 o icipatory
m violation

\{i,c,p} Nd =\{c,p} detection

*\{i,c,d 000 001 - 101 111

- 200 002 1 102 112 <

with two proviso: S\{i,c}
Z\{c}
e recall RV-LTL . -

labels of local 212
- 210 211 [V.CV V] 2\{P}
COnStralntS Z:\ {p,d} pv CcV CS] [pV,CV,CS] PV,CV,P
@
= 0= - - Z\ {p}
202
[pv,cs,pV]

minimisation
(distinction of
violation states)

2\{c}

S\{c,d} ‘ 2\{d,p}
- Anticipatory
[ps,cs,cs] - [ps,cv,cs] violation

\{i,c,p} Nd =\{c,p} detection

*\{i,c,d 000 001 - 101 111

- 200 002 1 102 112 <

with two proviso:

Global monitor

Z\{i,c}
Z\{c}
e recall RV-LTL . c
labels of local
. 210 211 A . 2\ {p)
COnStralntS >\ {p,d} [pv cV CS] [pV,CV,CS] PV,CV,P

*ho [CAISE2022]

m,'n',m'sfat'm; constraint weights and 502
(distinction o recommendations [pvcs,pv]

violation states)

2\{c}

Can we do more?

Finite-state
automata

Can we do more?

MSOL over Regular Finite-state
finite traces expressions automata

Can we do more?

LDLf MSOL over Regular Finite-state

inear dynamic logic @ finjte traces expressions automata
over finite traces

Can we do more?
| ,BPM2014] | , TOSEM2022]

LDLf MSOL over Regular Finite-state
inear dynamic logic @ fjnjte traces expressions automata

over finite traces

Can we do more?
| ,BPM2014] | , TOSEM2022]

LDLf MSOL over Reqular Finite-state
inear dynamic logic ® ,|njte traces expressiu,.” automata

over finite tr~- _o

Can we do more?
| ,BPM2014] | , TOSEM2022]

LDLf MSOL over Reqular Finite-state

inear dynamic logic = | njte traces expressiu,.” automata
over finite tr~~ _,

-

From constraints to metaconstraints

LDLf expresses RV-LTL monitoring states of LDLf constraints

e Support for metaconstraints predicating over the monitoring status of
other constraints

Example: a form of “contrary-to-duty” process constraint

* |f constraint C1 gets permanently violated, eventually a
compensation constraint C2

Interesting open problem: relationship with normative frameworks and
defeasible reasoning

. -> LTL cannot express normative notions
. -> not true!

Tooling

Fully implemented as part
of the RuM toolkit
(rulemining.org)

<>pay -> <>acc
1

temp.sat temp.viol

!(<>get \ <>cancel)
1

temp.sat

Contextual absence: get task forbidden while <>pay -> <>acc is possibly violated
1

temp.sat

Reactive compensation: permanent violation of !(<>get \ <>cancel) compensated by a consequent <>return
1

temp.sat temp.viol

Conflict: presence of a conflict for !{(<>get A <>cancel) and [J(pay -> O<>get)
1

temp.viol temp.sat

Preference: preference of !(<>get A <>cancel) over [|(pay -> O<>get) in case a conflict is ever encountered
1

e
e
e

temp.sat

666:65-65-00 0261/L0/L0 HE)S]
1¥1:80:¥L:¥L 6L0Z/€Z/80 uibaq
1¥1:6G:91:¥1 6L0Z/£2/80 Aed
L¥L:21:61-GL 6L0Z/E€Z/80 22e]
L¥1-9%-€G6:91 6L04/€Z/80 [22UBD
1¥1:81:¥G:9L 6L0Z/£2/80 12D
L¥1-8G:91-21 6L0Z/€Z/80 UImal
I¥L:G-ZZ 1) 6L0Z/E2/80 3|dwiod

http://rulemining.org

Adding event attributes and arithmetics

Study of LTLf over numerical variables with arithmetic
conditions

* Undecidability around the corner

ldentification of decidable fragments tuning condition
language and variable interaction

* Lifting of automata-based techniques
e SMT reasoners to deal with conditions

Challenging Declare

Frequencies and uncertainty

* Best practices: constraints that must hold in the majority, but not
necessarily all, cases.

90% of the orders are shipped via truck.

* Outlier behaviors: constraints that only apply to very few, but still
conforming, cases.

Only 1% of the orders are canceled after being paid.

. . contain uncontrollable
activities for which only partial guarantees can be given.

In 8 cases out of 10, the customer accepts the order and also pays for It.

4..-$..-d

-
- t-.
’ -’.-
-l - g
,.—v,.‘...o'Oo -

- -

- ?“"b\‘:’ro /‘: . -

Declare Is crisp

accept
1..1

close
order
refuse

Crisp semantics: an execution trace conforms to the
model If it satisfies every constraint in the model

ProbDeclare

Crisp and uncertain constraints

ProbDeclare
Crisp and uncertain constraints | ,BPM2020] [,INnfSys2022]

ProbDeclare constraint over 2.:

triple (¢, X, p)

{0.9}
process condition: LTLf formula over 2

probability operator: { =, #,<,>,<,> }

probability reference value: number in [0,1]

Well-behaved fragment of full probabillistic LTLf | ,AAAI2020]

ProbDeclare
Crisp and uncertain constraints | ,BPM2020] [,INnfSys2022]

ProbDeclare

Crisp and uncertain constraints

Crisp!

Each trace in the log
contains exactly one
close order

ProbDeclare
Crisp and uncertain constraints | ,BPM2020] [,INnfSys2022]

Uncertain!

90% traces are so that
an order Is not accepted
and refused.

ProbDeclare
Crisp and uncertain constraints | ,BPM2020] [,INnfSys2022]

Uncertain!

90% traces are so that
an order Is not accepted
and refused.

In 10% traces the seller
changes their mind

From traces to stochastic languages and logs

A stochastic language over 2 is a function
p . 2* — |0,1] such that Z p(r) =1
TEL™
* finite If finitely many traces get a non-zero probability

A log can be seen as a finite stochastic language
(probabilities from frequencies)

Semantics of ProbDeclare

Stochastic language p satisfies ProbDeclare model if:

«for every crisp constraint ¢ and every trace T € 2™ with
non-zero probability, we have that 7 F ¢

«for every probabilistic constraint (@, X, p), we have

Z p(r) X p

TEX™,TF @

Semantics of ProbDeclare

Stochastic language p satisfies ProbDeclare model if:

«for every crisp constraint ¢ and every trace T € 2™ with
non-zero probability, we have that 7 F ¢

«for every probabilistic constraint (@, X, p), we have

Z p(r) X p

TEX™,TF @

Key challenge: again, interplay of constraints

Dealing with “n” probabilistic constraints

Constraint scenario

Declares which probabilistic constraints must hold, and which
are violated

* Constraint violated <-> its negated version holds .

Denotes a “process variant”

e Allin all: up to 2"
scenarios, denoting
different variants

A a4 aao0oolo o
— O =20 =+ O = 0

Reasoning over scenarios is tricky

Interplay between logic and probabilities

8 scenarios

close 0 o)
order

refuse

There cannot be traces that satisfy all

- O =+~ O =+ O = 0

constraints at once

Interplay between logic and probabilities

{0.9}

refuse

There cannot be traces that satisfy all

close ‘\0 2
order

constraints at once

Reasoning over scenarios is tricky

8 scenarios

— =210 0 0O 0

— OO0 = =<0 0
O =L O =0 =0

iInconsistent
-> no satisfying trace
-> 0 probability!

Logical reasoning within scenarios

LTLf and automata to the rescue

A scenario maps to an LTLf characteristic formula
e Conjunction of formulae, one per constraint...

e Does the constraint hold in the scenario?

Y ->take its LTLf process condition
I\ -> take its negation

(I)(Sé\fbn) — /\ w /\ /\

Reasoning via automata, as for standard LTLf

In our example...

Which scenarios are consistent?

D

©

©

O(close A ~O<acc

O(close A =OCref)

Cace N Orefuse

O(close A 7O ref)

—(Cacc A Orefuse)

O(close A =O<acc

close — O ref)

Cace N Orefuse

)
O(close A =O<acc)
)
O (close A ~O<acc)

close — O ref)

—(<Cacc A Orefuse)

close — O<acc

O(close A =OCref)

Cace N Orefuse

close — O<acc

O(close A O ref)

—(<Cacc A Orefuse)

close — O ref)

Cace N Orefuse

(
(
(
(
(
(
(
(

)
)
close — O<acc)
)

close — O<acc

(
(
(
(
(
(
(
(

close — O ref)

—(Cacc A Orefuse)

CONSISTENT?
11O

yes

11O

yes

no

yes

yes

no

Reasoning over scenarios is tricky

Interplay between logic and probabilities

8 scenarios

close 0 o)
order

refuse

0.8+0.3 > 1
-> there must be traces where a closed

4 alooO0|=x a0 O
1 O 2 0204400

order Is accepted and refused.

Reasoning over scenarios is tricky

Interplay between logic and probabilities

8 scenarios

there must be

close 5\0 % traces where
order accept and refuse
coexist

0.8+0.3 > 1
-> there must be traces where a closed

A a0l 40l
A OO0 2al0

order Is accepted and refused.

Reasoning over scenarios is tricky

Interplay between logic and probabilities

8 scenarios

there must be

close 5\0 % traces where
order accept and refuse
coexist

0.8+0.3 > 1
-> there must be traces where a closed

— OO = =<0 0

— 1O | =<0 =20 |= 0

Should have a
non-zero probability

order Is accepted and refused.

(if constraint values agree)

The true meaning of a ProbDeclare model

From probabilistic constraints to scenario probability distributions

With n scenarios: x; with 1 € {0,.. .,2"~11 denotes the probability that a trace
belongs to scenario 1

ProbDeclare model: constrains the legal probabillity distributions over scenarios

2" —1
5
1=0

(Z in)ijj 0< 71 <n

i€{0,...,2" —1},
7th position of 7 is 1

0 0 < < 2", scenario S; is inconsistent

Lg

The true meaning of a ProbDeclare model

From probabilistic constraints to scenario probability distributions

With n scenarios: x; with 1 € {0,.. .,2"~11 denotes the probability that a trace
belongs to scenario 1

ProbDeclare model: constrains the legal probability distributions over scenarios

zi = U U< <2 One solution
on _q -> a fixed probability distribution
(; (Possibly infinitely) many solutions
-> family of probability distributions
(Z $Z> >, p; 0<j7<n
ie{0,..,2n—1}, No solution
Jth position of 7 1s 1 -> inconsistent specification

x; =0 0 < < 2", scenario S; is inconsistent

Computing probability distributions

1. check for consistency

close ‘\0 8“
order

accept

{0.9}

refuse

scenario

consistent? probability

— O = 0O =0 =0

Computing probability distributions

1. check for consistency

scenario

consistent? probability

N
Y
N
Y
N
Y
Y
N

accept
close ‘\0 8“ (0.9}
order '

— O = 0O =0 =0

Computing probability distributions

1. check for consistency

scenario

consistent? probability

O 0 O

O 01 Y

0 1 0 N 0

0 1 1 Y

1 0 0 N 0
110 Y

1.1 1 N 0

Computing probability distributions

2. set up system of inequalities

scenario
consistent? probability

O 0 O

O 01 Y

0 1 0 N 0

0 1 1 Y

1 0 O N 0
110 Y

1.1 1 N 0

ool T+ Toi1 T+ Ti01 T T110

o

101 + 2110 = 0.8

011 119 = 0.3

Toor + Toi1 + Tio1 = 09

Computing probability distributions

3. solve _
scenario
consistent? probability
O 0O
O 0 1 Y 0
0 1 0 N 0
O 1 1 Y 0.2
1 0 O N 0
11110 Y 0.1
1 1 1 N 0
Toor + Zo11 + X101 + X110 = 1
r101 + X110 = 0.8
L011 L110 = 0.3

Toor + Toi1 + Tio1 = 09

Computing probability distributions

3. solve

close
order

{0- 3‘3

accept

@ (3)=={0.9}

refuse

L001

L001

+ To11

L011

+ To11

+ T101

L101

+ T101

I
|

scenario

consistent? probability

0 0 O

0O 0 1 Y 0
0 1 0 N 0
0 1 1 Y 0.2
1 0 0 N 0
1 1 0 Y 0.1
1.1 1 N 0

L110
L7110

L110

Computing probability distributions

3. solve

refuse

Scenario 110

Close and Close and Close and get
refuse accept a decision

change

Scenarios in action

Conformance checking

<close order>

Close scenario
accept consistent? probability

O 0 O N 0
O 0 1 Y 0
refuse
order 0 1 1 Y 0.2
1 0 O N 0

011

110 Y 0.1 110

accept refuse 1.1 1 N 0 Close Close Close
and and and get a
refuse accept decision

change

Scenarios in action

Conformance checking

<close order>

close accept
order

scenario

consistent? probability
O 0 O N 0
T R . N0
refuse
order 0 1 1 Y 0.2
1 0 0 N 0

011

1 0 Y 0.1 110
accept refuse 1 N 0
Close Close Close
and and and get a
refuse accept decision

change

Scenarios in action

Conformance checking

<close order, accept, refuse>

Close scenario
accept consistent? probability

O 0 O N 0
O 0 1 Y 0
refuse
order 0 1 1 Y 0.2
1 0 O N 0

011

o

<
o
-

110

Z
O |

1 1

Close Close Close
and and and get a
refuse accept decision

change

Scenarios in action

Conformance checking

<close order, accept, refuse>

close accept
order

scenario

consistent? probability
O 0 O N 0
O 0 1 Y 0
refuse
order 0 1 1 Y 0.2
1 0 0 N 0

011

1 0 Y 0.1 110
accept refuse 1 N 0
Close Close Close
and and and get a
refuse accept decision

change

Scenarios in action

Probabilistic monitoring

start close acc ref complete

SCENARIOS

 Sou 0.2] _poss.viol
T
| | I

S I

S110[0.1] poss.viol
I I I
I I I
r sat 0 : 0 | 0 | 0 0.1
I I I
poss.sat 0 : 0 : 0.7 : 0.1 0
AGGREGATED VALUES < . ! ' |
poss.viol] :] : 0.1 : 0 0
I I I
\ viol 0 | 0 | 0.2 | 0.9 0.9

* One global monitor per scenario

 Monitors used in parallel: if multiple return the same verdict, aggregate their
probability

* |nteresting vs posterior reading of probabillities

Scenarios in action

Probabilistic monitoring

start close acc ref complete

| | |
| | I
. sat 0 : 0 E 0 i 0 0.1
poss.sat 0 - 0 l 0.7 : 0.1 0
AGGREGATED VALUES ¢ , | l '
poss.viol 1 :] : 0.1 : 0 0
| | I
\ 0.9 0.9

e One global monitor per Human interpretability is an

Interesting open challenge

 Monitors used in paraliel
probability

ardict, aggregate their

* |nteresting vs posterior reading of probabillities

From traces to logs

Stochastic conformance (granularity: scenario)

ProbDeclare

specification

From traces to logs

Stochastic conformance (granularity: scenario)

Consistent scenarios

ProbDeclare
specification

From traces to logs

Stochastic conformance (granularity: scenario)

Consistent scenarios

ProbDeclare

specification

Specification
distribution

From traces to logs

Stochastic conformance (granularity: scenario)

Consistent scenarios

ProbDeclare

specification _ .
1

Specification Log
distribution distribution

From traces to logs

Stochastic conformance (granularity: scenario) Can be refined

through trace
Consistent scenarios alignments

ProbDeclare

specification — -
N

Specification Log
distribution distribution

- i

(Earth mover’s) distance

Declare discovery
“The log

All possible constraints grounded on
the activities In the log

- Declare discovery

O € .

All possible constraints grounded on
the activities In the log

Template algorithm for Declare discovery
[,PMHandbook2022]

traces that "interestingly" satisfy the constraint

trace support: _
1. Select templates of interest total # traces in the log

Compute metrics for corresponding constraints (grounded on log activities)

Filter based on minimum thresholds

L D

Redundant constraints?
 Keep the most liberal if metrics are better for it
 Keep the most restrictive in case of equal metrics

Consistency guaranteed only for

5. Incompatible constraints? o
- Keep only the one with better metrics 100% trace-based support

6. Further processing to ensure consistency, minimality, ...

Template algorithm for ProbDeclare discovery
| ,INfSys2022]

traces that "interestingly" satisfy the constraint

trace support: _
1. Select templates of interest total # traces in the log

Compute metrics for corresponding constraints (grounded on log activities)

Filter based on minimum/maximum thresholds

L D

Redundant constraints?
 Keep the most liberal if metrics are better for it
 Keep the most restrictive in case of equal metrics

b, lnesmeatslecopstraints’ 5. Use support as a basis for constraint probability
» Keep-only-theone with-bettermetries « Consistency guaranteed by construction

6. Further processing to ensure consistency, minimality, ...

Discovery
[Verbeek, STTT2021]

Log skeleton
Declare-like specification
with frequencies

all00

ldea: conversating on log skeletons

ldea: conversating on log skeletons

Log skeleton E e)

Declare-like specification / e|70[0-1)
P mﬂ b .

with frequencies

Discovery
[Verbeek, STTT2021]

B S

100

100 lj

(&

&

Reasoning on
constraints
and their frequencies

Processes are not flat

timestamp overall log

2019-09-22 10:00:00 | create order oq

2019-09-22 10:01:00 | add item to order oq

2019-09-23 09:20:00 create order o9

2019-09-23 09:34:00 | add item 75 1 to order o2

2019-09-23 11:33:00 | create order o3

2019-09-23 11:40:00 | add item 23,1 to order o3

2019-09-23 12:27:00 | pay order o3

2019-09-23 12:32:00 | add item to order o1

2019-09-23 13:03:00 | pay order o;

2019-09-23 14:34:00 | load item into package

2019-09-23 14:45:00 | add item 72 > to order o2

2019-09-23 14:51:00 | load item i3 1 into package

2019-09-23 15:12:00 | add item 72 3 to order o2

2019-09-23 15:41:00 | pay order oo

2019-09-23 16:23:00 | load item 75 ; into package

2019-09-23 16:29:00 | load item into package

2019-09-23 16:33:00 | load item 5 o into package

2019-09-23 17:01:00 | send package

2019-09-24 06:38:00 | send package

2019-09-24 07:33:00 | load item 79 3 into package p3

2019-09-24 08:46:00 | send package p3

2019-09-24 16:21:00 | deliver package

2019-09-24 17:32:00 | deliver package

2019-09-24 18:52:00 | deliver package ps3

2019-09-24 18:57:00 | accept delivery p3

2019-09-25 08:30:00 | deliver package

2019-09-25 08:32:00 | accept delivery

2019-09-25 09:55:00 | deliver package

2019-09-25 17:11:00 | deliver package

2019-09-25 17:12:00 | accept delivery

Processes are not flat

contains

carried
in

Package

timestamp

overall log

2019-09-22 10:00:00

create order o;

2019-09-22 10:01:00

add item to order oq

2019-09-23 09:20:00

create order o9

2019-09-23 09:34:00

add item 75 ;1 to order o9

2019-09-23 11:33:00

create order o3

2019-09-23 11:40:00

add item 23,1 to order o3

2019-09-23 12:27:00

pay order o3

2019-09-23 12:32:00

add item 7; 5 to order o

2019-09-23 13:03:00

pay order o7

2019-09-23 14:34:00

load item into package

2019-09-23 14:45:00

add item 12 > to order o2

2019-09-23 14:51:00

load item 731 into package

2019-09-23 15:12:00

add item 72 3 to order o2

2019-09-23 15:41:00

pay order oo

2019-09-23 16:23:00

load item 75 1 into package

2019-09-23 16:29:00

load item 71 > into package

2019-09-23 16:33:00

load item 5 o Into package

2019-09-23 17:01:00

send package

2019-09-24 06:38:00

send package

2019-09-24 07:33:00

load item 79 3 into package p3

2019-09-24 08:46:00

send package p3

2019-09-24 16:21:00

deliver package

2019-09-24 17:32:00

deliver package

2019-09-24 18:52:00

deliver package p3

2019-09-24 18:57:00

accept delivery ps

2019-09-25 08:30:00

deliver package

2019-09-25 08:32:00

accept delivery

2019-09-25 09:55:00

deliver package

2019-09-25 17:11:00

deliver package

2019-09-25 17:12:00

accept delivery

Processes are not flat

event log for orders

z overall log order o order oo order o3
= 09-22 10:00:00 | create order o; create order
2019-09-22 10:01:00 | add item to order o7 add item
2019-09-23 09:20:00 create order o9 create order
2019-09-23 09:34:00 | add item to order o9 add item
‘ 2019-09-23 11:33:00 | create order o3 create order
2019-09-23 11:40:00 | add item 23,1 to order o3 add item
2019-09-23 12:27:00 | pay order o3 pay order
2019-09-23 12:32:00 | add item to order o7 add item
2019-09-23 13:03:00 | pay order o pay order
2019-09-23 14:34:00 | load item into package load item
2019-09-23 14:45:00 | add item 25 2 to order o2 add item
2019-09-23 14:51:00 | load item i3 1 into package load item
2019-09-23 15:12:00 | add item 72 3 to order o2 add item
2019-09-23 15:41:00 | pay order o2 pay order
2019-09-23 16:23:00 | load item into package load item
2019-09-23 16:29:00 | load item into package load item
2019-09-23 16:33:00 | load item 2 o into package load item
2019-09-23 17:01:00 | send package send package send package
2019-09-24 06:38:00 | send package send package send package
plO-09-24 07:33:00 | load item 72 3 into package p3 load item
0-24 08:46:00 | send package p3 send package
L 16:21:00 | deliver package deliver package deliver package
B32:00 | deliver package deliver package deliver package
00 | deliver package ps deliver package
accept delivery ps accept delivery
Aliver package deliver package deliver package
delivery accept delivery accept delivery
ackage deliver package deliver package
& deliver package deliver package
accept delivery accept delivery

Processes are not flat

» overall log order o

9-09-22 10:00:00 | create order create order
2019-09-22 10:01:00 | add item to order add item
2019-09-23 09:20:00 | create order oo
2019-09-23 09:34:00 | add item to order oo
2019-09-23 11:33:00 | create order o3
2019-09-23 11:40:00 | add item 23,1 to order o3
2019-09-23 12:27:00 | pay order o3
2019-09-23 12:32:00 | add item to order add item
2019-09-23 13:03:00 | pay order pay order
2019-09-23 14:34:00 | load item into package load item
2019-09-23 14:45:00 | add item to order oo
2019-09-23 14:51:00 | load item 23 1 into package
2019-09-23 15:12:00 | add item 22 3 to order o2
2019-09-23 15:41:00 | pay order o2
2019-09-23 16:23:00 | load item into package
2019-09-23 16:29:00 | load item into package load item
2019-09-23 16:33:00 | load item into package

2019-09-23 17:01:00

send package

send package

2019-09-24 06:38:00

send package

send package

A 9-09-24 07:33:00

load item 79 3 into package

N0-24 08:46:00

send package

L 16:21:00

deliver package

deliver package

K.32:00

deliver package

deliver package

0\

deliver package

accept delivery

aliver package

deliver package

delivery

accept delivery

ackage

deliver package

R C

deliver package

accept delivery

event log for orders

order oo

create order

order o3

add item
create order
add item
pay order
add item
load item
add item
pay order
load item
load item

send package

send package

load item

send package

deliver package

deliver package

deliver package

accept delivery

deliver package

accept delivery

deliver package

deliver package

accept delivery

3

create order

(3)

3

add item w
(6)

3

pay order

(3)

3

load item

(6) ‘
4)
send package

(5)

3

deliver package

(11)

5
2

accept delivery

()

3

Need of a 3D model

objects

time

Object-centric behavioral

constraints

activities

Object-centric behavioral constraints
Dimension 1: data model to classify and relate objects

e relationship types
 multiplicities (one-to-one, one-to-many, many-to-many)

Person

Candidate | - _ | Applicaton | Job Offer |, 1] Job Profile
- - responds to - refers to -

Object-centric behavioral constraints

Dimension 2: activities

The register data task /s about a Person.

 activities A Job Offer is created by executing the post offer task.
o activity-class A Job Offer %s closed by determi|_1ing the \fvi_nner.
relationship types A Job O.ffer.1s gtopped by cancelmg the h|r|ng._
e e An Application is created by executing the submit task.
* multiplicities An Application is promoted by marking it as eligible.

Person

Candidate | - . | Application Job Offer |, 1] Job Profile
- - responds to - refers to -

Object-centric behavioral constraints

Dimension 2: activities

The register data task /s about a Person.

* activities A Job Offer is created by executing the post offer task.
o activity-class A Job Offer %s closed by determi|_1ing the \fvi_nner.
C e e An Application is created by executing the submit task.

* multiplicities An Application is promoted by marking it as eligible.

data eligible winner

is about | _ 1 closes
: X ; post i cancel
L crea zje:s‘\ i /'éz‘ops
? 1\‘ ':1 1\\1: //1
Candidate | o

responds to

Object-centric behavioral constraints

Emergent object lifecycles

Application Job

register determine
data winner
IS abouti : c/osesi
I : cancel
| hiring
1, 11 1
Candidate 1 Job Offer 1 Job Profile

 Job Offer _ Job Profile
responds to " efers to -

Object-centric behavioral constraints

Dimension 3: the process

A Job Offer closed by a determine winner task cannot be stopped by executing

* constraints... the cancel hiring task (and vice-versa).

An Application can be submitted only if, beforehand, the data about the Candi-
date who made rthat Application have been registered.

register mark as determine
data eligible winner
| 1

is abouti 1 1y : c/osesi
post || [cance
erson : n
creates \ | promotes offer : hiring
\ /)
' ! 1 \R : R
Voo createss, ! ,/'stops
1 v 1 1 . 11 Ra

Candidate :

. 1 Job Profile

responds to

Object-centric behavioral constraints

Dimension 3: the process object co-referencing

A Job Offer closed by a determine winner task cannot be stopped by executing

* constraints... the cancel hiring task (and vice-versa).

e ...With data co-

referencing An Application can be submitted only if, beforehand, the data about the Candi-
date who made that Application have been registered.

relation co-referencing
register mark as
data eligible | winner |

is about 1) 1 closes i

\]
\] 1
post : cancel
creates \ | promotes offer : hiring
1 I 1 \ : ',
Voo createss, ! ,/'stops
1 v 1 1, 11 Ra
Candldate 1 1 | Job Offer | 1| Job Profile

responds to

Object co-referencing on response

Relation co-referencing on response

objects

Object-centric behavioral constraints

Dimension 3: the process

A Job Offer closed by a determine winner task cannot be stopped by executing

* constraints... the cancel hiring task (and vice-versa).

e ...With data co-

referencing An Application can be submitted only if, beforehand, the data about the Candi-
date who made rthat Application have been registered.
data

mark as
eligible

1, 1

\

|
is about : 0 \ 1 ' closes : .
: 1 ; \‘ ’l ! 1 Ke
i L) 5
. \ ! : 1 N s R
A 5 (O ; creates’s, ' i,/ stops
v " !
0
:

Candidate |

responds to

Object-centric behavioral constraints

Dimension 3: the process

A winner can be determined for a Job Offer only if ar least one Application

_ responding to that Job Offer has been previously marked as eligible.
* ...with data co- Foreach Application responding to a Job Offer, if the Application is marked

referencing as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

register mark as
data : eligible

e constraints...

determine
winner .
0,"
‘l
Y 4

) I : \ I
is about 1 ; ! LY ! closes :
|
' : \] post
Person : ! ! offer
: creates i promotes
| 1
- ! v 1
|
I

P createss, ' i ,/'stops
1 | 10,

\

Job Offer

responds to -

A

Candidate 1

Semantics and formalization

Process execution: temporal knowledge graph
Data model: description logics

Object-centric constraints: temporal description logics

di, : Deliver ltems

di; : Deliver ltems
po : Pay Order © '
wiz : Wrap ltem (o)
pis : Pick Item (o)
wir : Wrap Item

wip : Wrap ltem (o)

pir - Pick Item (o)
pi; : Pick ltem

closes
prepares

e)€

ills
oly : Order Line
ol, : Order Line

i
: é : re;ersto
| fills
O A4 \ 9
ains E
| ; i | contains é resultsih
: : : R 4 :
results 17
dp : Dellvery : : : : : : : ; O

ol5 : Order Line .
d, : Delivery — .
1o 4] 5] 13 I4 5 6 17 18 I9

O<

Achieved and ongoing results

Reasoning
* Direct approach -> undecidable

e Careful “object-centric” reformulation
-> decidable in EXPTIME (same as reasoning on UML diagrams)

Monitoring (ongoing)
 Hybrid reasoning (closed on the past, open on the future)

Discovery (ongoing)

e Construction of

e Standard discovery on views
* Object-centric

Conclusions

. a framework for the intelligent management
of processes at the intersection of Al and BPV

Central task: framing

Declarative approach: solid basis to framing with uncertainty,
data, objects and their interactions

* Reasoning via well-established formalisms and techniques

Foundations well understood, effort needed towards
engineering

Thanks to Wil van der Aalst, Anti Alman, Alessandro Artale, Federico Chesani, Giuseppe De
Giacomo, Riccardo De Masellis, Claudio Di Ciccio, Marlon Dumas, Dirk Fahland, Paolo Felli,
Alessandro Gianola, Alisa Kovtunova, Fabrizio Maggi, Andrea Marrella, Paola Mello, Jan
Mendling, Fabio Patrizi, Rafael Penaloza, Maja Pesic, Andrey Rivkin, Michael Westergaard

oo - g =
"R CLaS 2Y - o o N
N PRy ST
E 2 A p.!l. - T
v A TR e

NN -

e
:
¥

B

o8
e

i
3

v

¢

«

-
O
>
X
-
O
. o
-

AT
rv‘f)<w¢;. e CEoE, >

AR

