
09/09/2022 - KES 2022, Verona, Italy

Marco Montali
Free University of Bozen-Bolzano, Italy

AI4BPM 2022, Münster, Germany

Constraints
for process framing
in Augmented BPM
Marco Montali
Free University of Bozen-Bolzano

What do we do

We develop foundational and applied techniques
grounded in artificial intelligence, logics, and
formal methods,

to create intelligent agents and information
systems that combine

processes and data.

How to attack these challenges?

Artificial
Intelligence

Knowledge representation
Automated reasoning
Computational logics

Information
Systems

Business process
management

Data management
Decision management

Formal
Methods

Infinite-state systems
Verification
Petri nets

Data
Science

Process mining
Data access

and integration

Warm up:
what is augmented BPM

Augmented BPM

Augmented BPM
An increased availability of business process execution data, combined
with advances in AI, have laid the ground for the emergence of
information systems where the execution flows are not pre-
determined, adaptations do not require explicit changes to software
applications, and improvement opportunities are autonomously
discovered, validated, and enabled on-the-fly.

Augmented BPM System

AI-empowered, trustworthy, and process-aware
information system that  
reasons and acts upon data within a set of
constraints and assumptions 
with the aim to  
continuously adapt and improve a set of business
processes with respect to one or more performance
indicators

Augmented BPM System

AI-empowered, trustworthy, and process-aware
information system that  
reasons and acts upon data within a set of
constraints and assumptions 
with the aim to  
continuously adapt and improve a set of business
processes with respect to one or more performance
indicators

Strongly related to

BPM and integrative AI

Thu 09:00-10:00

Keynote by  

Chiara Ghidini

Data, Conceptual Knowledge,

and AI: What can they do

together?

ABPM lifecycle
Revisiting the BPM lifecycle: from “design” to “framing”

frame

process-aware execution

ABPM lifecycle
Revisiting the BPM lifecycle: continuous evolution

frame

process-aware execution

ABPM lifecycle
Revisiting the BPM lifecycle: continuous evolution

frame

enact perceive

reason

process-aware execution

ABPM lifecycle
Extending with “pure” AI capabilities

frame

enact perceive

reason
adapt

improve

explain

ABPMS

process-aware execution

ABPM lifecycle
Continuous interaction with principals

frame

enact perceive

reason
adapt

improve

explain

agent

intelligent
interaction

Features of an ABPMS
Framed autonomy

ABPMS acts autonomously

• Lifecycle steps performed proactively and continuously

ABPMS acts “within its frame”

• Maximally permissive, goal-driven strategy

Features of an ABPMS
Framed autonomy

ABPMS acts autonomously

• Lifecycle steps performed proactively and continuously

ABPMS acts “within its frame”

• Maximally permissive, goal-driven strategy

What does this mean?

Hard vs soft constraints,
reframing, meta-framing, …

Features of an ABPMS
Conversationally actionable

Autonomy does not mean isolation

• Need of continuous conversation with human principal(s)

Conversational
• Language-based communication with humans (proactive

and reactive)

Actionable
• Interaction leads to actual decision making

Features of an ABPMS
Conversationally actionable

Autonomy does not mean isolation

• Need of continuous conversation with human principal(s)

Conversational
• Language-based communication with humans (proactive

and reactive)

Actionable
• Interaction leads to actual decision making

Which focus?

Actions, goals, intensions, but
also models!

Features of an ABPMS
Adaptive

Motto: react to changes and self-improve
• Prediction

• Instance- and model-level adaptations

Features of an ABPMS
Adaptive

Motto: react to changes and self-improve
• Prediction

• Instance- and model-level adaptations

Features of an ABPMS
Adaptive

Motto: react to changes and self-improve
• Prediction

• Instance- and model-level adaptations

• Multi-objective optimisation
• Evaluation of trade-offs

Features of an ABPMS
Adaptive

Motto: react to changes and self-improve
• Prediction

• Instance- and model-level adaptations

• Multi-objective optimisation
• Evaluation of trade-offs

What if there are multiple
principals?

Quiz: which feature is missing?

Features of an ABPMS
Explainable

An ABPMS should be trustworthy
• “trust is the willingness of a party to be vulnerable to the actions of another

party based on the expectation that the other will perform a particular action
important to the trustor, irrespective of the ability to monitor or control that
other party” [MayerEtAl,TAMR95]

How to be trustworthy?

• Fair
• Explainable
• Auditable
• Safe

Need of specific focus on
“process-aware” systems

How to frame?

What is a process?
A possibly infinite set of finite traces

Σ*

What is a process?
A possibly infinite set of finite traces

Σ*

Flexibility and control as contrasting forces

Σ*

control

flexibility

The issue of flexibility is widely known

Different ways to address
flexibility in processes

We are interested here in
flexibility by design

Σ*

Is this enough?
“A process is (not) a point mass in a vacuum” (cit.)

Σ*

Is this enough?
“A process is (not) a point mass in a vacuum” (cit.)

time

cases

traditional view
one process instance

one case

Σ*

Is this enough?
“A process is (not) a point mass in a vacuum” (cit.)

traditional view
one process instance

one case

time

cases

Σ*

Is this enough?
“A process is (not) a point mass in a vacuum” (cit.)

multi-case/object-centric view
one process instance

many case

time

cases/objects

Σ*

Is this enough?
“A process is (not) a point mass in a vacuum” (cit.)

multi-process view
many process instances

one case

time

cases/objects

More in general…

Wed 10:30-12:30

Tutorial by  

Dirk Fahland

Multi-dimensional

process analysis

Outline

Outline

How to frame?

Outline

the declarative

approach

How to frame?

Outline

the declarative

approach

How to deal with deviations?

Outline

the declarative

approach

monitoring and

operational support

How to deal with deviations?

Outline

the declarative

approach

monitoring and

operational support

How to deal with multiple processes and cases?

Outline

the declarative

approach

monitoring and

operational support

dealing with

uncertainty

dealing with

multiple processes dealing with multiple

objects

How to deal with multiple processes and cases?

[____,CAiSE22]

Outline

the declarative

approach

monitoring and

operational support

dealing with

uncertainty

dealing with

multiple processes dealing with multiple

objects

How to deal with multiple processes and cases?

[____,CAiSE22]
Interested in uncertainty for

procedural processes?

See our papers

at the main track

(presentations Tue and

Wed afternoon)

The declarative approach

Which Italian food do you like best?

complexity ->

predictability <-

repetitiveness <-

Control

degree to which a
central
orchestrator
decides how to
execute the
process

Flexibility

degree to which
process
stakeholders
locally decide how
to execute the
process

Lasagna
processes Spaghetti

processes

A process…

Σ*

… and an imperative model of it

Σ*

pick
item

close
order pay

quit

order paid

Generalisation

Σ*

Generalisation

Σ*

pick
item

close
order pay

pick
item

pay

!
Simplicity
cannot be

obtained by
sweeping

complexity
under the

carpet

Our goal

Compact
specification

Reality

represents

Our goal

Compact
specification

Reality

represents

The class of “regular”
spaghetti processes

(not all)

Framing via declarative specifications

Process Imperative
model

Declarative
specification

Framing via declarative specifications

Process Imperative
model

Declarative
specification

Constraint-based specifications of behaviour

• Multiagent systems: declarative agent programs [Fisher,JSC1996]
and interaction protocols [Singh,AAMAS2003]

• Data management: cascaded transactional updates
[DavulcuEtAl,PODS1998]

• BPM (1st wave): loosely-coupled subprocesses [SadiqEtAl,ER2001]

• BPM (2nd wave): process constraints

• DECLARE [PesicEtAl,EDOC2007]

• Dynamic Condition-Response (DCR) Graphs

[HildebrandtEtAl,PLACES2010]

Origin of Declare…
Language, formalisation, reasoning, enactment

Which constraints are useful?

Constraint templates

Constraint types defined on activity placeholders, each with a specific
meaning

• … then instantiated on actual activities (by grounding)

Dimensions
• Activities: how many are involved

• Time: temporal orientation (past, future, either) and strength (when)

• Expectation: negative vs positive

Much richer than the precedence flow relation of imperative languages

Declare specification

A set of constraints (templates grounded on the
activities of interest)

• Constraints have to be all satisfied globally over
each, complete trace

• Compositional approach by conjunction

Flexible shopper in Declare
“Whenever you close an order, you have to pay later at least once”

1. <> (empty trace)

2. <i,i,i>

3. <i,i,i,c,p>

4. <i,i,i,c,p,p>

5. <i,i,i,p,c>

6. <i,c,p,i,i,c,p>

Pick
item

Close
order Pay

Accepts all {i, c, p}*

Flexible shopper in Declare
“Whenever you close an order, you have to pay later at least once”

1. <> (empty trace)

2. <i,i,i>

3. <i,i,i,c,p>

4. <i,i,i,c,p,p>

5. <i,i,i,p,c>

6. <i,c,p,i,i,c,p>

Pick
item

Close
order Pay

response

Interaction among constraints
Aka hidden dependencies [____,TWEB2010]

Cancel
order

Close
order

Pay

If you cancel the order,
you cannot pay for it

If you close the order,
you must pay for it

Pick
item

To close an order, you
must first pick an item

Interaction among constraints
Aka hidden dependencies [____,TWEB2010]

Cancel
order

Close
order

Pay

If you cancel the order,
you cannot pay for it

If you close the order,
you must pay for it

Pick
item

To close an order, you
must first pick an item

Implied: cannot
cancel and

confirm!

Interaction among constraints
Aka hidden dependencies [____,TWEB2010]

Cancel
order

Close
order

Pay

If you cancel the order,
you cannot pay for it

If you close the order,
you must pay for it

Pick
item

To close an order, you
must first pick an item

Implied: cannot
cancel and

confirm!

Key questions

1. How to
characterise the
language of a
Declare
specification?

2. How to
understand
whether a
specification is
correct?

Back to the roots

Back to the roots

Patterns in Linear

Temporal Logic

(LTL)

LTL: a logic for infinite traces

Logic interpreted over infinite traces

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

Atomic propositions

Boolean connectives

At next step φ holds

At some point φ2 holds, and φ1 holds until φ2 does

φ eventually holds

φ always holds

φ1 holds forever or until φ2 does

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

⌃' ⌘ trueU'
⇤' ⌘ ¬⌃¬'

'1W'2 = '1U'2 _⇤'1⇤' ⌘ ¬⌃¬'

…

Each state indicates which
propositions hold

LTL: a logic for infinite traces

Logic interpreted over infinite traces

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

Atomic propositions

Boolean connectives

At next step φ holds

At some point φ2 holds, and φ1 holds until φ2 does

φ eventually holds

φ always holds

φ1 holds forever or until φ2 does

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

⌃' ⌘ trueU'
⇤' ⌘ ¬⌃¬'

'1W'2 = '1U'2 _⇤'1⇤' ⌘ ¬⌃¬'

…

Each state indicates which
propositions hold

Can be
seamlessly
extended
with past-

tense
operators

LTL: a logic for infinite traces

Logic interpreted over infinite traces

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

Atomic propositions

Boolean connectives

At next step φ holds

At some point φ2 holds, and φ1 holds until φ2 does

φ eventually holds

φ always holds

φ1 holds forever or until φ2 does

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

⌃' ⌘ trueU'
⇤' ⌘ ¬⌃¬'

'1W'2 = '1U'2 _⇤'1⇤' ⌘ ¬⌃¬'

…

Each state indicates which
propositions hold

Can be
seamlessly
extended
with past-

tense
operators

Trace t satisfies a

formula is now

formally defined:

φ

t ⊧ φ

Template formulae

Semantics of Declare via LTL

Atomic propositions are activities

Each constraint is an LTL formula (built from template formulae)

…

Each state contains
a single activity

delete
order

close
order

pay

pick
item

delete
order

pick
item

Semantics of Declare via LTL

Atomic propositions are activities

Each constraint is an LTL formula (built from template formulae)

…

Each state contains
a single activity

close
order

pay

□ (𝚌𝚕𝚘𝚜𝚎 → ◊𝚙𝚊𝚢)

Semantics of Declare via LTL

Atomic propositions are activities

A Declare specification is the conjunction of its constraint formulae

…

Each state contains
a single activity

delete
order

pick
item

close
order

pay

□ (𝚌𝚕𝚘𝚜𝚎 → ◊𝚙𝚊𝚢)
∧ □ (𝚌𝚕𝚘𝚜𝚎 → ◊𝚒𝚝𝚎𝚖)
∧ □ (𝚌𝚊𝚗𝚌𝚎𝚕 → ¬ □ 𝚙𝚊𝚢)

An unconventional use of logics!

From …

Temporal logics for specifying (un)desired properties of
a dynamic system

… to …

Temporal logics for specifying the dynamic system itself

Wait a moment…

Close
order Pay

□ (𝚌𝚕𝚘𝚜𝚎 → ◊𝚙𝚊𝚢)

Wait a moment…

Close
order Pay

□ (𝚌𝚕𝚘𝚜𝚎 → ◊𝚙𝚊𝚢)

Just what we needed!
But recall: each process

instance should complete
in a finite number of steps!

LTLf: LTL over finite traces
[DeGiacomoVardi,IJCAI2013]

LTL interpreted over finite traces

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

No successor!

Same syntax of LTL

In LTL, there is always a next moment… in LTLf, the contrary!

φ always holds from current to the last instant

The next step exists and at next step φ holds

(weak next) If the next step exists, then at next step φ holds

last instant in the trace

' ::= A | ¬' | '1 ^ '2 | �' | '1U'2

⇤'

Last ⌘ ¬� true

�' ⌘ ¬� ¬'

Look the same, but they are not the same

Many researchers: misled by moving from infinite to finite traces

In [____,AAAI14], we studied why!

• People typically focus on “patterns”, not on the entire logic

• Many of such patterns in BPM, reasoning about actions, planning, etc. are

“insensitive to infinity”

Quiz: does this specification accept traces?

b c

0..11..*

a d

Quiz: does this specification accept traces?

b c

0..11..*

a d

Quiz: does this specification accept traces?

b c

0..11..*

a d

Quiz: does this specification accept traces?

b c

0..11..*

a d

Quiz: does this specification accept traces?

b c

0..11..*

a d

Quiz: does this specification accept traces?

b c

0..11..*

a d

Quiz: does this specification accept traces?

a b

Quiz: does this specification accept traces?

a b

Only the empty trace <>,
due to finite-trace

semantics

How to do this, systematically?

Declare specification: encoded in LTLf

LTLf: the star-free fragment of regular expressions

Regular expressions: intimately connected to finite-state
automata

• No exotic automata models over infinite structures!

• Just the good-old deterministic finite-state automata
(DFAs) you know from a typical course in programming
languages and compilers

From Declare to automata

LTLf NFA 
nondeterministic

DFA 
deterministic

LTLf2aut determin.

'

ltlf /ldl and automata

Key point
ltlf /ldlf formulas can be translated into equivalent nfa:

t |= Ï i� t œ L(AÏ)
Costs:

• ltlf /ldlf to nfa (exponential)
• nfa to dfa (exponential)

Observe: often nfa/dfa corresponding to ltlf /ldlf are in fact small!

We can compile reasoning into automata based procedures!

Giuseppe De Giacomo (Sapienza) Reasoning and Planning for ltlf /ldlf goals CILC 2018 – Sept. 21, 2018 18 / 59

Process engine![DeGiacomoVardi,IJCAI2013]
[____,TOSEM2022]

Vision realised!

LTLf NFA 
nondeterministic

DFA 
deterministic

LTLf2aut determin.

'

ltlf /ldl and automata

Key point
ltlf /ldlf formulas can be translated into equivalent nfa:

t |= Ï i� t œ L(AÏ)
Costs:

• ltlf /ldlf to nfa (exponential)
• nfa to dfa (exponential)

Observe: often nfa/dfa corresponding to ltlf /ldlf are in fact small!

We can compile reasoning into automata based procedures!

Giuseppe De Giacomo (Sapienza) Reasoning and Planning for ltlf /ldlf goals CILC 2018 – Sept. 21, 2018 18 / 59

Process engine![DeGiacomoVardi,IJCAI2013]
[____,TOSEM2022]

A full Declare model
[____,PMHandbook2022]

A full Declare model
[____,PMHandbook2022]

Few lines of code
[____,TOSEM2022] 0:8 G. De Giacomo et al.

�(tt ,⇧) = true

�(↵ ,⇧) = false

�(�,⇧) = �(h�itt ,⇧) (� prop.)
�('1 ^ '2,⇧) = �('1,⇧) ^ �('2,⇧)

�('1 _ '2,⇧) = �('1,⇧) _ �('2,⇧)

�(h�i',⇧) =
⇢
E (') if ⇧ |= � (� prop.)
false if ⇧ 6|= �

�(h ?i',⇧) = �(,⇧) ^ �(',⇧)
�(h⇢1 + ⇢2i',⇧) = �(h⇢1i',⇧) _ �(h⇢2i',⇧)

�(h⇢1; ⇢2i',⇧) = �(h⇢1ih⇢2i',⇧)
�(h⇢⇤i',⇧) = �(',⇧) _ �(h⇢iF h⇢⇤i', ⇧)

�([�]',⇧) =

⇢
E (') if ⇧ |= � (� prop.)
true if ⇧ 6|= �

�([?]',⇧) = �(nnf (¬),⇧) _ �(',⇧)
�([⇢1 + ⇢2]',⇧) = �([⇢1]',⇧) ^ �([⇢2]',⇧)

�([⇢1; ⇢2]',⇧) = �([⇢1][⇢2]',⇧)

�([⇢⇤]',⇧) = �(',⇧) ^ �([⇢]T [⇢⇤]', ⇧)

�(F ,⇧) = false

�(T ,⇧) = true

Fig. 1: Definition of �, where E (') recursively replaces in ' all occurrences of atoms of
the form T and F by .

1: algorithm LDLf2NFA
2: input LDLf formula '
3: output NFA A(') = (2P ,S, s0, %, Sf)
4: s0 {'} . set the initial state
5: Sf {;} . set final states
6: if (�(', ✏) = true) then . check if initial state is also final
7: Sf Sf [{s0}
8: S {s0, ;}, % ;
9: while (S or % change) do

10: for (s 2 S) do
11: if (s0 |=

V
(2s) �(,⇧) then . add new state and transition

12: S S [{s0}
13: % % [{(s,⇧, s0)}
14: if (

V
(2s0) �(, ✏) = true) then . check if new state is also final

15: Sf Sf [{s0}
Fig. 2: NFA construction.

the empty conjunction ; stands for true; ⇧ is a propositional interpretation and q0 is
a set of (quoted) sub-formulae of ' that denotes a minimal interpretation such that

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 0, Publication date: 0.

' NFA

Few lines of code
[____,TOSEM2022] 0:8 G. De Giacomo et al.

�(tt ,⇧) = true

�(↵ ,⇧) = false

�(�,⇧) = �(h�itt ,⇧) (� prop.)
�('1 ^ '2,⇧) = �('1,⇧) ^ �('2,⇧)

�('1 _ '2,⇧) = �('1,⇧) _ �('2,⇧)

�(h�i',⇧) =
⇢
E (') if ⇧ |= � (� prop.)
false if ⇧ 6|= �

�(h ?i',⇧) = �(,⇧) ^ �(',⇧)
�(h⇢1 + ⇢2i',⇧) = �(h⇢1i',⇧) _ �(h⇢2i',⇧)

�(h⇢1; ⇢2i',⇧) = �(h⇢1ih⇢2i',⇧)
�(h⇢⇤i',⇧) = �(',⇧) _ �(h⇢iF h⇢⇤i', ⇧)

�([�]',⇧) =

⇢
E (') if ⇧ |= � (� prop.)
true if ⇧ 6|= �

�([?]',⇧) = �(nnf (¬),⇧) _ �(',⇧)
�([⇢1 + ⇢2]',⇧) = �([⇢1]',⇧) ^ �([⇢2]',⇧)

�([⇢1; ⇢2]',⇧) = �([⇢1][⇢2]',⇧)

�([⇢⇤]',⇧) = �(',⇧) ^ �([⇢]T [⇢⇤]', ⇧)

�(F ,⇧) = false

�(T ,⇧) = true

Fig. 1: Definition of �, where E (') recursively replaces in ' all occurrences of atoms of
the form T and F by .

1: algorithm LDLf2NFA
2: input LDLf formula '
3: output NFA A(') = (2P ,S, s0, %, Sf)
4: s0 {'} . set the initial state
5: Sf {;} . set final states
6: if (�(', ✏) = true) then . check if initial state is also final
7: Sf Sf [{s0}
8: S {s0, ;}, % ;
9: while (S or % change) do

10: for (s 2 S) do
11: if (s0 |=

V
(2s) �(,⇧) then . add new state and transition

12: S S [{s0}
13: % % [{(s,⇧, s0)}
14: if (

V
(2s0) �(, ✏) = true) then . check if new state is also final

15: Sf Sf [{s0}
Fig. 2: NFA construction.

the empty conjunction ; stands for true; ⇧ is a propositional interpretation and q0 is
a set of (quoted) sub-formulae of ' that denotes a minimal interpretation such that

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 0, Publication date: 0.

' NFA

Automata manipulations

much easier to handle

than in the infinite case,

with huge performance

improvements

[ZhuEtAl,IJCAI17]

[Westergaard,BPM11]

Constraint automata

Template: pre-compiled into a DFA

Constraint: grounds the template DFA on specific activities

close
order

delete
order

paypick
item

close
order

pay

0 1

2

c

Σ

{i,c}Σ∖ Σ

i
11

{c}Σ∖

c

{p}Σ∖

p
0 1

2

p

Σ

{d}Σ∖

d

{p}Σ∖

Combining constraints

responded existence(a,b) response(a,c)

Combining constraints

responded existence(a,b) response(a,c)

Combining constraints

responded existence(a,b) response(a,c)AND

Combining constraints

responded existence(a,b) response(a,c)AND

X

Combining constraints

responded existence(a,b) response(a,c)AND

X

From local automata to global automaton

Entire specification: product automaton of all local
automata

• Corresponds to the automaton of the conjunction of

all formulae

• Many optimisations available
Declare specification consistent if and only if its
global automaton is non-empty

Constraints: hard or soft?

Logically: hard

Conceptually: not so clear

• Model level: mix of constraints of different nature

• Physical, best practices, policies, legal, … [AdamoEtAl,InfSys2021]

• Hard at the IS level <-> hard or soft in reality

• Manual task vs user-interaction task
• Ontological reversal [BaskervilleEtAl,MISQ2020]

Constraints: hard or soft?

Logically: hard

Conceptually: not so clear

• Model level: mix of constraints of different nature

• Physical, best practices, policies, legal, … [AdamoEtAl,InfSys2021]

• Hard at the IS level <-> hard or soft in reality

• Manual task vs user-interaction task
• Ontological reversal [BaskervilleEtAl,MISQ2020]

ABPMS needs to to account for deviations, at runtime

Monitoring and operational support

(Anticipatory) monitoring

t
Evolving trace

Declare specification

Monitor

Continuous feedback

Track a running process execution to check conformance to a reference process
model

• Goal: Detect and report fine-grained feedback and deviations as early as possible

One of the main operational support tasks

• Complementary to predictive monitoring!

(Anticipatory) monitoring

Track a running process execution to check conformance to a reference process
model

• Goal: Detect and report fine-grained feedback and deviations as early as possible

One of the main operational support tasks

• Complementary to predictive monitoring!

…

…

t

…

…

…

Declare specification

Monitor

Continuous feedback

Evolving trace

Fine-grained feedback
Refined analysis of the “truth value”
of a constraint, looking into (all)
possible futures

Consider a partial trace t, and a
constraint C...

…

…

…

t

C
satisfied?

…
…

C
satisfied?

RV-LTL truth values
[BauerEtAl,InfCom2010]

C is permanently satisfied if t
satisfies C and no matter how t is
extended, C will stay satisfied

C is currently satisfied if t satisfies C
but there is a continuation of t that
violates C

…

…

t

…

…

…

t

RV-LTL truth values

C is currently violated if t violates C
but there is a continuation that leads
to satisfy C

C is permanently violated if t violates
C and no matter how t is extended, C
will stay violated

t

…

…

…

…

…

[BauerEtAl,InfCom2010]

RV-LTL on finite traces
[____,BPM2011] [____,BPM2014] [____,TOSEM2022]

close
order

delete
order

paypick
item

close
order

pay

0 1

2

i

Σ

{i,c}Σ∖ Σ

c
11

{c}Σ∖

c

{p}Σ∖

p
0 1

2

p

Σ

{d}Σ∖

d

{p}Σ∖

Suffixes of the current trace: each with unbounded, finite length
• Again standard DFAs -> all formulae of LTLf are monitorable

Each state of the DFA: colored with an RV-LTL value via simple reachability checks

RV-LTL on finite traces
[____,BPM2011] [____,BPM2014] [____,TOSEM2022]
Suffixes of the current trace: each with unbounded, finite length
• Again standard DFAs -> all formulae of LTLf are monitorable

Each state of the DFA: colored with an RV-LTL value via simple reachability checks

Σ

Σ

Σ

0
[cs]

1
[ps]

2
[pv]

1
[cv]

0
[cs]

0
[cs]

1
[cs]

2
[pv]

c

{i,c}Σ∖

i

{c}Σ∖

c

{p}Σ∖

p p

{d}Σ∖

d

{p}Σ∖

close
order

delete
order

paypick
item

close
order

pay

Monitor in action

close
order

delete
order

pay

pick
item

close
order

pay

cs

cs

cs

Monitor in action

close
order

delete
order

pay

pick
item

close
order

pay

cs

pick
item

cs

ps

cs

Monitor in action

close
order

delete
order

pay

pick
item

close
order

pay

cs

pick
item

cs

ps

cs

delete
order

close
order

Monitor in action

close
order

delete
order

pay

pick
item

close
order

pay

cs

pick
item

cs

ps

cs

delete
order

cv

pay close
order

Monitor in action

close
order

delete
order

pay

pick
item

close
order

pay

cs

pick
item

cs

ps

cs

delete
order

cv cs

pv

pay close
order

Monitor in action

close
order

delete
order

pay

pick
item

close
order

pay

cs

pick
item

cs

ps

cs

delete
order

cv cs

pv

Quiz: is this the earliest istant for
detecting a violation?

pay close
order

Monitor in action

close
order

delete
order

pay

pick
item

close
order

pay

cs

pick
item

cs

ps

cs

delete
order

cv cs

pv

To satisfy: pay

To keep satisfied: don’t pay

pay close
order

Monitor in action

close
order

delete
order

pay

pick
item

close
order

pay

cs

pick
item

cs

ps

cs

delete
order

cv cs

pv

cs pvglobal monitor

002
[cs,cs,pv]

111
[ps,cv,cs]

112
[ps,cv,pv]

200
[pv,cs,cs]

102
[pv,cs,cs]

211
[pv,cv,cs]

202
[pv,cs,pv]

{i,c,d}Σ∖

{i,c,p}Σ∖

{i,c}Σ∖

{c,d}Σ∖

{c,p}Σ∖

{d,p}Σ∖

{p}Σ∖

100
[ps,cs,cs]

101
[ps,cs,cs]

000
[cs,cs,cs]

001
[cs,cs,cs]

{c}Σ∖

{c,d}Σ∖

d

c c

i

p

c

i d

110
[ps,cv,cs]

c

p p

d

p

210
[pv,cv,cs]

c

{p,d}Σ∖

p

d

{p}Σ∖ p

{c}Σ∖

i
c

p
{p}Σ∖

c

212
[pv,cv,pv] {p}Σ∖

p

c

[____,BPM2011]
Global monitor

Cross-product
with two proviso:

• recall RV-LTL

labels of local
constraints

• no
minimisation
(distinction of
violation states)

002
[cs,cs,pv]

111
[ps,cv,cs]

112
[ps,cv,pv]

200
[pv,cs,cs]

102
[pv,cs,cs]

211
[pv,cv,cs]

202
[pv,cs,pv]

{i,c,d}Σ∖

{i,c,p}Σ∖

{i,c}Σ∖

{c,d}Σ∖

{c,p}Σ∖

{d,p}Σ∖

{p}Σ∖

100
[ps,cs,cs]

101
[ps,cs,cs]

000
[cs,cs,cs]

001
[cs,cs,cs]

{c}Σ∖

{c,d}Σ∖

d

c c

i

p

c

i d

110
[ps,cv,cs]

c

p p

d

p

210
[pv,cv,cs]

c

{p,d}Σ∖

p

d

{p}Σ∖ p

{c}Σ∖

i
c

p
{p}Σ∖

c

212
[pv,cv,pv] {p}Σ∖

p

c

[____,BPM2011]
Global monitor Anticipatory

violation
detection

Cross-product
with two proviso:

• recall RV-LTL

labels of local
constraints

• no
minimisation
(distinction of
violation states)

002
[cs,cs,pv]

111
[ps,cv,cs]

112
[ps,cv,pv]

200
[pv,cs,cs]

102
[pv,cs,cs]

211
[pv,cv,cs]

202
[pv,cs,pv]

{i,c,d}Σ∖

{i,c,p}Σ∖

{i,c}Σ∖

{c,d}Σ∖

{c,p}Σ∖

{d,p}Σ∖

{p}Σ∖

100
[ps,cs,cs]

101
[ps,cs,cs]

000
[cs,cs,cs]

001
[cs,cs,cs]

{c}Σ∖

{c,d}Σ∖

d

c c

i

p

c

i d

110
[ps,cv,cs]

c

p p

d

p

210
[pv,cv,cs]

c

{p,d}Σ∖

p

d

{p}Σ∖ p

{c}Σ∖

i
c

p
{p}Σ∖

c

212
[pv,cv,pv] {p}Σ∖

p

c

[____,BPM2011]
Global monitor

Cross-product
with two proviso:

• recall RV-LTL

labels of local
constraints

• no
minimisation
(distinction of
violation states)

Anticipatory
violation
detection

[____,CAiSE2022]
constraint weights and

recommendations

Can we do more?

LTLf
FOL
over

finite traces

Star-free
regular

expressions

Finite-state
automata

MSOL over
finite traces

Regular
expressions

Can we do more?

LTLf
FOL
over

finite traces

Star-free
regular

expressions

Finite-state
automata

LDLf
linear dynamic logic

over finite traces
[DeGiacomoVardi,ĲCAI2013]

MSOL over
finite traces

Regular
expressions

Can we do more?

LTLf
FOL
over

finite traces

Star-free
regular

expressions

Finite-state
automata

LDLf
linear dynamic logic

over finite traces
[DeGiacomoVardi,ĲCAI2013]

MSOL over
finite traces

Regular
expressions

Can we do more?
[____,BPM2014] [____,TOSEM2022]

LTLf
FOL
over

finite traces

Star-free
regular

expressions

Finite-state
automata

LDLf
linear dynamic logic

over finite traces
[DeGiacomoVardi,ĲCAI2013]

MSOL over
finite traces

Regular
expressions

Can we do more?
[____,BPM2014] [____,TOSEM2022]

LTLf
FOL
over

finite traces

Star-free
regular

expressions

Finite-state
automata

LDLf
linear dynamic logic

over finite traces
[DeGiacomoVardi,ĲCAI2013]

MSOL over
finite traces

Regular
expressions

Can we do more?
[____,BPM2014] [____,TOSEM2022]

LTLf
FOL
over

finite traces

Star-free
regular

expressions

Finite-state
automata

From constraints to metaconstraints
[____,BPM2014] [____,TOSEM2022]

LDLf expresses RV-LTL monitoring states of LDLf constraints
• Support for metaconstraints predicating over the monitoring status of

other constraints

Example: a form of “contrary-to-duty” process constraint
• If constraint C1 gets permanently violated, eventually satisfy a

compensation constraint C2

Interesting open problem: relationship with normative frameworks and
defeasible reasoning
• [Governatori,EDOC2015] -> LTL cannot express normative notions

• [AlechinaEtAl,FLAP2018]-> not true!

Tooling
0:28 G. De Giacomo et al.

Fig. 10: Screenshot of one of the LDL MONITOR clients.

adopted by the IEEE task force on process mining. The response produced by the LDL
MONITOR provider is composed of two parts. The first part contains the temporal infor-
mation related to the evolution of each monitored business constraint from the begin-
ning of the trace up to now. At each time point, a constraint can be in one state, which
models whether it is currently: (permanently) satisfied, i.e., the current execution trace
complies with the constraint; possibly satisfied, i.e., the current execution trace is com-
pliant with the constraint, but it is possible to violate it in the future; (permanently)
violated, i.e., the process instance is not compliant with the constraint; possibly vi-
olated, i.e., the current execution trace is not compliant with the constraint, but it is
possible to satisfy it by generating some sequence of events. This state-based evolution
is encapsulated in a fluent model which obeys to the schema sketched in Figure 9. A
fluent model aggregates fluents groups, containing sets of correlated fluents. Each flu-
ent models a multi-state property that changes over time. In our setting, fluent names
refer to the constraints of the reference model. The fact that the constraint was in a
certain state along a (maximal) time interval is modeled by associating a closed MVI
(Maximal Validity Interval) to that state. MVIs are characterized by their starting and
ending timestamps. Current states are associate to open MVIs, which have an initial
fixed timestamp but an end that will be bounded to a currently unknown future value.

7.4. LDL Monitor Client

We have developed two LDL MONITOR clients, in order to deal with different settings:
(a) replay of a process instance starting from a complete event log, and (b) acquisition
of events from an information system. The first client is mainly used for testing and
experimentation. The second client requires a connection to some information system,
e.g., a workflow management system. The two clients differ on how the user is going

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 0, Publication date: 0.

Fully implemented as part
of the RuM toolkit

(rulemining.org)

http://rulemining.org

Adding event attributes and arithmetics
[____,AAAI2022]

Study of LTLf over numerical variables with arithmetic
conditions
• Undecidability around the corner

Identification of decidable fragments tuning condition
language and variable interaction
• Lifting of automata-based techniques
• SMT reasoners to deal with conditions

Challenging Declare
Frequencies and uncertainty

•Best practices: constraints that must hold in the majority, but not
necessarily all, cases.

90% of the orders are shipped via truck.
•Outlier behaviors: constraints that only apply to very few, but still

conforming, cases.

Only 1% of the orders are canceled after being paid.
•Constraints involving external parties: contain uncontrollable

activities for which only partial guarantees can be given.

In 8 cases out of 10, the customer accepts the order and also pays for it.

Dealing with uncertainty

Declare is crisp

Crisp semantics: an execution trace conforms to the
model if it satisfies every constraint in the model

close
order

1..1
accept

refuse

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

ProbDeclare
Crisp and uncertain constraints [____,BPM2020] [____,InfSys2022]

probability reference value: number in [0,1]

probability operator: { = , ≠ , ≤ , ≥ , < , > }

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

ProbDeclare
Crisp and uncertain constraints [____,BPM2020] [____,InfSys2022]

ProbDeclare constraint over :  
triple

Σ
⟨φ, ⋈ , p⟩

process condition: LTLf formula over Σ

Well-behaved fragment of full probabilistic LTLf [____,AAAI2020]

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

ProbDeclare
Crisp and uncertain constraints [____,BPM2020] [____,InfSys2022]

close
order

1..1
accept

refuse

Crisp!

Each trace in the log
contains exactly one
close order{0.8}

{0.3}

{0.9}

ProbDeclare
Crisp and uncertain constraints [____,BPM2020] [____,InfSys2022]

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

Uncertain!

90% traces are so that
an order is not accepted
and refused.

In 10% traces the seller
changes their mind

ProbDeclare
Crisp and uncertain constraints [____,BPM2020] [____,InfSys2022]

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

Uncertain!

90% traces are so that
an order is not accepted
and refused.

In 10% traces the seller
changes their mind

ProbDeclare
Crisp and uncertain constraints [____,BPM2020] [____,InfSys2022]

From traces to stochastic languages and logs

A stochastic language over is a function
 such that

• finite if finitely many traces get a non-zero probability

A log can be seen as a finite stochastic language
(probabilities from frequencies)

Σ
ρ : Σ* → [0,1] ∑

τ∈Σ*

ρ(τ) = 1

Semantics of ProbDeclare

Stochastic language satisfies ProbDeclare model if:

•for every crisp constraint and every trace with
non-zero probability, we have that

•for every probabilistic constraint , we have

ρ
φ τ ∈ Σ*

τ ⊧ φ
⟨φ, ⋈ , p⟩

∑
τ∈Σ*,τ⊧φ

ρ(τ) ⋈ p

Semantics of ProbDeclare

Stochastic language satisfies ProbDeclare model if:

•for every crisp constraint and every trace with
non-zero probability, we have that

•for every probabilistic constraint , we have

ρ
φ τ ∈ Σ*

τ ⊧ φ
⟨φ, ⋈ , p⟩

∑
τ∈Σ*,τ⊧φ

ρ(τ) ⋈ p

Key challenge: again, interplay of constraints

Dealing with “n” probabilistic constraints
Constraint scenario

Declares which probabilistic constraints must hold, and which
are violated

• Constraint violated <-> its negated version holds

Denotes a “process variant”

• All in all: up to  

scenarios, denoting  
different variants

2n

8 scenarios
(1) (2) (3)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2 3

Reasoning over scenarios is tricky
Interplay between logic and probabilities

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2 3

1

8 scenarios
(1) (2) (3)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

There cannot be traces that satisfy all
constraints at once

Reasoning over scenarios is tricky
Interplay between logic and probabilities

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2 3

1

8 scenarios
(1) (2) (3)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

There cannot be traces that satisfy all
constraints at once

inconsistent
-> no satisfying trace
-> 0 probability!

Logical reasoning within scenarios
LTLf and automata to the rescue

faction/violation of constraints as indicated by the scenario. Three questions

immediately arise: (i) how does one check to which scenario(s) a trace belongs?

(ii) Can a trace belong to multiple scenarios? (iii) Are all scenarios meaningful,

or should we discard some of them?

To answer such questions, we provide a logical characterization of scenarios.

First and foremost, we introduce a characteristic LTLf formula for a scenario:

a trace belongs to a scenario if and only if the trace satisfies the characteristic

formula of the scenario.

Definition 15. Let M = 〈Σ, C, 〈〈ϕ1, ⊲⊳1, p1〉, . . . , 〈ϕn, ⊲⊳n, pn〉〉〉 be ProbDe-

clare model. The characteristic formula induced by a scenario SM
b1···bn over

M , compactly called SM
b1···bn -formula, is the LTLf formula

Φ(SM
b1···bn) =

'

ψ∈C
ψ ∧

'

i∈{1,...,n}

(
)*

)+

ϕi if bi = 1

¬ϕi if bi = 0

(8)

⊳

Definition 16. A trace τ belongs to scenario SM
b1···bn if τ |= Φ(SM

b1···bn). Sce-

nario SM
b1···bn is consistent if there is at least one trace that belongs to it. ⊳

Consistency of scenarios correspond to the usual notion of satisfiability in LTLf .

An inconsistent scenario can be dropped, as no trace can belong to it.

Example 14. We continue Example 13 by focusing on the logical characteri-

zation, and consistency, of the 8 scenarios introduced there.

The characteristic formulae of the different scenarios are built by conjoin-

ing the LTLf formulae of the crisp constraints and those of the probabilistic

constraints, for the latter deciding, one by one, whether to keep the formula in

its positive or negated form. For example, considering scenario S101, we have

Ψ(S101) =

existence(close) ∧ precedence(close, accept) ∧ precedence(close, refuse)

∧ response(close, acc) ∧ ¬response(close, ref) ∧ not-coexistence(acc, ref)

which, in turn, is the LTLf formula

(✸close) ∧ ((¬acc)W close) ∧ ((¬ref)W close)

26

A scenario maps to an LTLf characteristic formula

• Conjunction of formulae, one per constraint…

• Does the constraint hold in the scenario?

• Y -> take its LTLf process condition
• N -> take its negation

Reasoning via automata, as for standard LTLf

In our example…
Which scenarios are consistent?

close
order

1..∗
accept
order

{0.8
}

1

refuse
order

{0.3}

2

{0.9}3

1 2 3 consistent?

S000 ✸(close ∧ ¬©✸acc) ✸(close ∧ ¬©✸ref) ✸acc ∧✸refuse no

S001 ✸(close ∧ ¬©✸acc) ✸(close ∧ ¬©✸ref) ¬(✸acc ∧✸refuse) yes

S010 ✸(close ∧ ¬©✸acc) ✷(close → ©✸ref) ✸acc ∧✸refuse no

S011 ✸(close ∧ ¬©✸acc) ✷(close → ©✸ref) ¬(✸acc ∧✸refuse) yes

S100 ✷(close → ©✸acc) ✸(close ∧ ¬©✸ref) ✸acc ∧✸refuse no

S101 ✷(close → ©✸acc) ✸(close ∧ ¬©✸ref) ¬(✸acc ∧✸refuse) yes

S110 ✷(close → ©✸acc) ✷(close → ©✸ref) ✸acc ∧✸refuse yes

S111 ✷(close → ©✸acc) ✷(close → ©✸ref) ¬(✸acc ∧✸refuse) no

Figure 1: A ProbDeclare model, with 8 constraint scenarios, out of which only 4 are consistent.

Recall that each scenario induces a formula that does not simply conjoin the positive/negated

variants of the probabilistic constraints, but includes also the conjunction of the formulae for

crisp constraints.

the scenario, while σ(i) = 0 indicates that ϕi is violated in the scenario (that

is, ¬ϕi is satisfied therein). As a compact, explicit notation, we denote σ as

SM
σ(1)···σ(n), or simply Sσ(1)···σ(n) when M is clear from the context. We also

employ notation SM
k or Sk, where k is a decimal number whose binary encoding

coincides with σ(1) · · ·σ(n). ⊳

Example 13. Figure 1 builds on the ProbDeclare model introduced in Exam-

ple 12, indicating its induced scenarios. The model contains 6 constraints, three

crisp and three probabilistic. Circled numbers represent the ordering of such

constraints. Since we have 3 probabilistic constraints, 23 = 8 possible con-

straint scenarios are induced, each enforcing the satisfaction of the three crisp

constraints, and deciding on the satisfaction or violation of the three constraints

response(close, acc), response(close, ref), and not-coexistence(acc, ref).

The resulting scenarios are reported in the same figure, using the naming

conventions introduced before, in agreement with the constraint ordering. For

example, scenario S101 is the scenario that satisfies response(close, acc) and

not-coexistence(acc, ref), but violates response(close, ref). ⊳

4.2. Logical Characterization and Consistency of Scenarios

As we already pointed out, each scenario provides a canonical representa-

tion for all the (possibly infinitely many) traces that all agree on the satis-

25

Reasoning over scenarios is tricky
Interplay between logic and probabilities

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2 3

1

0.8+0.3 > 1
-> there must be traces where a closed

order is accepted and refused.

8 scenarios
(1) (2) (3)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reasoning over scenarios is tricky
Interplay between logic and probabilities

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2 3

1

0.8+0.3 > 1
-> there must be traces where a closed

order is accepted and refused.

8 scenarios
(1) (2) (3)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

there must be
traces where

accept and refuse
coexist

Reasoning over scenarios is tricky
Interplay between logic and probabilities

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2 3

1

0.8+0.3 > 1
-> there must be traces where a closed

order is accepted and refused.

8 scenarios
(1) (2) (3)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

there must be
traces where

accept and refuse
coexist

Should have a
non-zero probability

(if constraint values agree)

The true meaning of a ProbDeclare model
From probabilistic constraints to scenario probability distributions

With n scenarios: with denotes the probability that a trace
belongs to scenario

ProbDeclare model: constrains the legal probability distributions over scenarios

xi i ∈ {0,…,2n−1}
i

to logical inconsistency, but comes from the interplay between the logical

characterization of scenarios (which selects four consistent scenarios out of the

total) and the probabilistic characterization of such scenarios as induced by the

probability conditions attached to the constraints that are satisfied therein. ⊳

To systematically characterize the possible probabilities masses associated

to scenarios, we reconstruct the approach of PLTL0
f [13, Theorem 17] in our

setting. In particular, to compute the possible distributions of probability

masses associated to consistent scenarios, we set up a system of inequalities

whose solutions constitute all the probability distributions that are compati-

ble with the logical and probabilistic characterization of the probabilistic con-

straints in the ProbDeclare model of interest. To do so, we associate each

scenario to a probability variable, keeping the same naming convention. For

example, the probability mass of scenario S001 is represented by variable x001.

For M = 〈Σ, C, 〈〈ϕ1, ⊲⊳1, p1〉, . . . , 〈ϕn, ⊲⊳n, pn〉〉〉, we construct the system LM of

inequalities using probability variables xi, with i ranging from 0 to 2n − 1 (in

binary format):

xi ≥ 0 0 ≤ i < 2n (9)

% 2n−1"

i=0

xi

&
= 1 (10)

% "

i∈{0,...,2n−1},
jth position of i is 1

xi

&
⊲⊳j pj 0 ≤ j < n (11)

xi = 0 0 ≤ i < 2n, scenario Si is inconsistent (12)

The first two lines guarantee that variables xi indeed form a probability distri-

bution, being all non-negative and collectively summing up to 1. The schema of

inequalities captured in Equation (11) verifies the probability associated to each

probabilistic constraint in M , lifting local probability conditions to global con-

ditions over scenarios. Specifically, one inequality per probabilistic constraint

〈ϕj , ⊲⊳j , pj〉 in M is generated. The (in)equality ensures that the collective

sum of probability masses attached to all scenarios where that constraint is

30

The true meaning of a ProbDeclare model
From probabilistic constraints to scenario probability distributions

With n scenarios: with denotes the probability that a trace
belongs to scenario

ProbDeclare model: constrains the legal probability distributions over scenarios

xi i ∈ {0,…,2n−1}
i

to logical inconsistency, but comes from the interplay between the logical

characterization of scenarios (which selects four consistent scenarios out of the

total) and the probabilistic characterization of such scenarios as induced by the

probability conditions attached to the constraints that are satisfied therein. ⊳

To systematically characterize the possible probabilities masses associated

to scenarios, we reconstruct the approach of PLTL0
f [13, Theorem 17] in our

setting. In particular, to compute the possible distributions of probability

masses associated to consistent scenarios, we set up a system of inequalities

whose solutions constitute all the probability distributions that are compati-

ble with the logical and probabilistic characterization of the probabilistic con-

straints in the ProbDeclare model of interest. To do so, we associate each

scenario to a probability variable, keeping the same naming convention. For

example, the probability mass of scenario S001 is represented by variable x001.

For M = 〈Σ, C, 〈〈ϕ1, ⊲⊳1, p1〉, . . . , 〈ϕn, ⊲⊳n, pn〉〉〉, we construct the system LM of

inequalities using probability variables xi, with i ranging from 0 to 2n − 1 (in

binary format):

xi ≥ 0 0 ≤ i < 2n (9)

% 2n−1"

i=0

xi

&
= 1 (10)

% "

i∈{0,...,2n−1},
jth position of i is 1

xi

&
⊲⊳j pj 0 ≤ j < n (11)

xi = 0 0 ≤ i < 2n, scenario Si is inconsistent (12)

The first two lines guarantee that variables xi indeed form a probability distri-

bution, being all non-negative and collectively summing up to 1. The schema of

inequalities captured in Equation (11) verifies the probability associated to each

probabilistic constraint in M , lifting local probability conditions to global con-

ditions over scenarios. Specifically, one inequality per probabilistic constraint

〈ϕj , ⊲⊳j , pj〉 in M is generated. The (in)equality ensures that the collective

sum of probability masses attached to all scenarios where that constraint is

30

One solution
-> a fixed probability distribution

(Possibly infinitely) many solutions
-> family of probability distributions

No solution
-> inconsistent specification

Computing probability distributions
1. check for consistency

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2
3

scenario
consistent? probability

(1) (2) (3)

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Computing probability distributions
1. check for consistency

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2
3

scenario
consistent? probability

(1) (2) (3)

0 0 0 N
0 0 1 Y
0 1 0 N
0 1 1 Y
1 0 0 N
1 0 1 Y
1 1 0 Y
1 1 1 N

Computing probability distributions
1. check for consistency

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2
3

scenario
consistent? probability

(1) (2) (3)

0 0 0 N 0
0 0 1 Y
0 1 0 N 0
0 1 1 Y
1 0 0 N 0
1 0 1 Y
1 1 0 Y
1 1 1 N 0

Computing probability distributions
2. set up system of inequalities

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2
3

scenario
consistent? probability

(1) (2) (3)

0 0 0 N 0
0 0 1 Y
0 1 0 N 0
0 1 1 Y
1 0 0 N 0
1 0 1 Y
1 1 0 Y
1 1 1 N 0

sign
consent

close
order

1..∗
{0.8} 1

{0.1} 2

1 2 consistent?

S00 ¬sign U close ✸(close ∧ ¬©✸sign) yes

S01 ¬sign U close ✷(close → ©✸sign) yes

S10 ¬closeW sign ✸(close ∧ ¬©✸sign) yes

S11 ¬closeW sign ✷(close → ©✸sign) yes

Figure 2: A ProbDeclare model and its 4 constraint scenarios.

once the variables above are removed (being them all equal to 0):

x001 + x011 + x101 + x110 = 1

x101 + x110 = 0.8

x011 + x110 = 0.3

x001 + x011 + x101 = 0.9

It is easy to see that this system of equations admits only one solution: x001 = 0,

x011 = 0.2, x101 = 0.7, x110 = 0.1. This solution witnesses that scenario S001

has zero-probability, and that the most likely scenario, holding in 70% of cases,

is actually S101, namely the one where after the order is closed, it is eventually

accepted, and not refused. In addition, the solution tells us that there are other

two unlikely scenarios: the first, holding in 20% of cases, is the one where,

after the order is closed, it is eventually refused (and not accepted); the second,

holding in 10% of cases, is the one where a closed order is accepted and refused.⊳

We finish this section with an example of ProbDeclare model whose correspond-

ing system of inequalities admits infinitely many solutions.

Example 18. Consider the ProbDeclare model in Figure 2. It comes

with 4 constraint scenarios, obtained from the two process conditions

precedence(sign,close)=¬close W sign and response(close,sign)=✷(close →
©✸sign), as well as their respective negated formulae ¬signU close and ✸(close∧

¬©✸sign). All such scenarios are consistent, and hence the resulting system of

inequalities is:

x00 ≥ 0 x01 ≥ 0 x10 ≥ 0 x11 ≥ 0

34

Computing probability distributions
3. solve

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2
3

scenario
consistent? probability

(1) (2) (3)

0 0 0 N 0
0 0 1 Y 0
0 1 0 N 0
0 1 1 Y 0.2
1 0 0 N 0
1 0 1 Y 0.7
1 1 0 Y 0.1
1 1 1 N 0

sign
consent

close
order

1..∗
{0.8} 1

{0.1} 2

1 2 consistent?

S00 ¬sign U close ✸(close ∧ ¬©✸sign) yes

S01 ¬sign U close ✷(close → ©✸sign) yes

S10 ¬closeW sign ✸(close ∧ ¬©✸sign) yes

S11 ¬closeW sign ✷(close → ©✸sign) yes

Figure 2: A ProbDeclare model and its 4 constraint scenarios.

once the variables above are removed (being them all equal to 0):

x001 + x011 + x101 + x110 = 1

x101 + x110 = 0.8

x011 + x110 = 0.3

x001 + x011 + x101 = 0.9

It is easy to see that this system of equations admits only one solution: x001 = 0,

x011 = 0.2, x101 = 0.7, x110 = 0.1. This solution witnesses that scenario S001

has zero-probability, and that the most likely scenario, holding in 70% of cases,

is actually S101, namely the one where after the order is closed, it is eventually

accepted, and not refused. In addition, the solution tells us that there are other

two unlikely scenarios: the first, holding in 20% of cases, is the one where,

after the order is closed, it is eventually refused (and not accepted); the second,

holding in 10% of cases, is the one where a closed order is accepted and refused.⊳

We finish this section with an example of ProbDeclare model whose correspond-

ing system of inequalities admits infinitely many solutions.

Example 18. Consider the ProbDeclare model in Figure 2. It comes

with 4 constraint scenarios, obtained from the two process conditions

precedence(sign,close)=¬close W sign and response(close,sign)=✷(close →
©✸sign), as well as their respective negated formulae ¬signU close and ✸(close∧

¬©✸sign). All such scenarios are consistent, and hence the resulting system of

inequalities is:

x00 ≥ 0 x01 ≥ 0 x10 ≥ 0 x11 ≥ 0

34

Computing probability distributions
3. solve

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2
3

scenario
consistent? probability

(1) (2) (3)

0 0 0 N 0
0 0 1 Y 0
0 1 0 N 0
0 1 1 Y 0.2
1 0 0 N 0
1 0 1 Y 0.7
1 1 0 Y 0.1
1 1 1 N 0

sign
consent

close
order

1..∗
{0.8} 1

{0.1} 2

1 2 consistent?

S00 ¬sign U close ✸(close ∧ ¬©✸sign) yes

S01 ¬sign U close ✷(close → ©✸sign) yes

S10 ¬closeW sign ✸(close ∧ ¬©✸sign) yes

S11 ¬closeW sign ✷(close → ©✸sign) yes

Figure 2: A ProbDeclare model and its 4 constraint scenarios.

once the variables above are removed (being them all equal to 0):

x001 + x011 + x101 + x110 = 1

x101 + x110 = 0.8

x011 + x110 = 0.3

x001 + x011 + x101 = 0.9

It is easy to see that this system of equations admits only one solution: x001 = 0,

x011 = 0.2, x101 = 0.7, x110 = 0.1. This solution witnesses that scenario S001

has zero-probability, and that the most likely scenario, holding in 70% of cases,

is actually S101, namely the one where after the order is closed, it is eventually

accepted, and not refused. In addition, the solution tells us that there are other

two unlikely scenarios: the first, holding in 20% of cases, is the one where,

after the order is closed, it is eventually refused (and not accepted); the second,

holding in 10% of cases, is the one where a closed order is accepted and refused.⊳

We finish this section with an example of ProbDeclare model whose correspond-

ing system of inequalities admits infinitely many solutions.

Example 18. Consider the ProbDeclare model in Figure 2. It comes

with 4 constraint scenarios, obtained from the two process conditions

precedence(sign,close)=¬close W sign and response(close,sign)=✷(close →
©✸sign), as well as their respective negated formulae ¬signU close and ✸(close∧

¬©✸sign). All such scenarios are consistent, and hence the resulting system of

inequalities is:

x00 ≥ 0 x01 ≥ 0 x10 ≥ 0 x11 ≥ 0

34

Computing probability distributions
3. solve

close
order

1..1
accept

refuse

{0.8}

{0.3}

{0.9}

1

2
3

Scenario 011

Scenario 101

Scenario 110

Close and
refuse

Close and
accept

Close and get
a decision

change

Scenarios in action
Conformance checking

scenario
consistent? probability

(1) (2) (3)

0 0 0 N 0
0 0 1 Y 0
0 1 0 N 0
0 1 1 Y 0.2
1 0 0 N 0
1 0 1 Y 0.7
1 1 0 Y 0.1
1 1 1 N 0

011

101

110

Close
and

refuse

Close
and

accept

Close
and get a
decision
change

close
order accept

<close order>

close
order refuse

accept refuse

Scenarios in action
Conformance checking

scenario
consistent? probability

(1) (2) (3)

0 0 0 N 0
0 0 1 Y 0
0 1 0 N 0
0 1 1 Y 0.2
1 0 0 N 0
1 0 1 Y 0.7
1 1 0 Y 0.1
1 1 1 N 0

011

101

110

Close
and

refuse

Close
and

accept

Close
and get a
decision
change

close
order accept

<close order>

close
order refuse

accept refuse

0

0

1

NO

Scenarios in action
Conformance checking

scenario
consistent? probability

(1) (2) (3)

0 0 0 N 0
0 0 1 Y 0
0 1 0 N 0
0 1 1 Y 0.2
1 0 0 N 0
1 0 1 Y 0.7
1 1 0 Y 0.1
1 1 1 N 0

011

101

110

Close
and

refuse

Close
and

accept

Close
and get a
decision
change

close
order accept

<close order, accept, refuse>

close
order refuse

accept refuse

Scenarios in action
Conformance checking

scenario
consistent? probability

(1) (2) (3)

0 0 0 N 0
0 0 1 Y 0
0 1 0 N 0
0 1 1 Y 0.2
1 0 0 N 0
1 0 1 Y 0.7
1 1 0 Y 0.1
1 1 1 N 0

011

101

110

Close
and

refuse

Close
and

accept

Close
and get a
decision
change

close
order accept

<close order, accept, refuse>

close
order refuse

accept refuse

1

1

0

YES
(outlier)

Scenarios in action
Probabilistic monitoring

• One global monitor per scenario
• Monitors used in parallel: if multiple return the same verdict, aggregate their

probability
• Interesting a-priori vs posterior reading of probabilities

Scenarios in action
Probabilistic monitoring

• One global monitor per scenario
• Monitors used in parallel: if multiple return the same verdict, aggregate their

probability
• Interesting a-priori vs posterior reading of probabilities

Human interpretability is an
interesting open challenge

From traces to logs
Stochastic conformance (granularity: scenario)

LogProbDeclare
specification

From traces to logs
Stochastic conformance (granularity: scenario)

ProbDeclare
specification

Consistent scenarios

Log

From traces to logs
Stochastic conformance (granularity: scenario)

ProbDeclare
specification

Consistent scenarios

Specification
distribution

Log

From traces to logs
Stochastic conformance (granularity: scenario)

ProbDeclare
specification

Consistent scenarios

Specification
distribution

Log

Log
distribution

From traces to logs
Stochastic conformance (granularity: scenario)

ProbDeclare
specification

Consistent scenarios

Specification
distribution

Log

Log
distribution

(Earth mover’s) distance

Can be refined
through trace

alignments

All possible constraints grounded on
the activities in the log

The log

Declare discovery

All possible constraints grounded on
the activities in the log

The log

Which to keep?

Declare discovery

Template algorithm for ProbDeclare discovery
[____,PMHandbook2022]

1. Select templates of interest

2. Compute metrics for corresponding constraints (grounded on log activities)

3. Filter based on minimum thresholds

4. Redundant constraints?

• Keep the most liberal if metrics are better for it

• Keep the most restrictive in case of equal metrics

5. Incompatible constraints?

• Keep only the one with better metrics

6. Further processing to ensure consistency, minimality, …

trace support:
traces that "interestingly" satisfy the constraint

total # traces in the log

Consistency guaranteed only for
100% trace-based support

Template algorithm for ProbDeclare discovery
[____,InfSys2022]

1. Select templates of interest

2. Compute metrics for corresponding constraints (grounded on log activities)

3. Filter based on minimum/maximum thresholds

4. Redundant constraints?

• Keep the most liberal if metrics are better for it

• Keep the most restrictive in case of equal metrics

5. Incompatible constraints?

• Keep only the one with better metrics

6. Further processing to ensure consistency, minimality, …

5. Use support as a basis for constraint probability

• Consistency guaranteed by construction

trace support:
traces that "interestingly" satisfy the constraint

total # traces in the log

Idea: conversating on log skeletons

Log

Discovery
[Verbeek, STTT2021]

Log skeleton [Verbeek, STTT2021]  
Declare-like specification 
with frequencies

Idea: conversating on log skeletons

Log

Discovery
[Verbeek, STTT2021]

Reasoning on
constraints

and their frequencies

Log skeleton [Verbeek, STTT2021]  
Declare-like specification 
with frequencies

Processes are not flat

Order

Item

Package

1
includes

*

*
is carried in

1

o1 o2 o3

i1,1 i1,2 i2,1 i2,2 i2,3 i3,1

p1

p2 p3

Figure 1: Structure of order, item, and package data objects in an order-to-delivery sce-
nario whereuv items from di↵erent orders are carried in several packages

event log for orders
timestamp overall log order o1 order o2 order o3

2019-09-22 10:00:00 create order o1 create order
2019-09-22 10:01:00 add item i1,1 to order o1 add item
2019-09-23 09:20:00 create order o2 create order
2019-09-23 09:34:00 add item i2,1 to order o2 add item
2019-09-23 11:33:00 create order o3 create order
2019-09-23 11:40:00 add item i3,1 to order o3 add item
2019-09-23 12:27:00 pay order o3 pay order
2019-09-23 12:32:00 add item i1,2 to order o1 add item
2019-09-23 13:03:00 pay order o1 pay order
2019-09-23 14:34:00 load item i1,1 into package p1 load item
2019-09-23 14:45:00 add item i2,2 to order o2 add item
2019-09-23 14:51:00 load item i3,1 into package p1 load item
2019-09-23 15:12:00 add item i2,3 to order o2 add item
2019-09-23 15:41:00 pay order o2 pay order
2019-09-23 16:23:00 load item i2,1 into package p2 load item
2019-09-23 16:29:00 load item i1,2 into package p2 load item
2019-09-23 16:33:00 load item i2,2 into package p2 load item
2019-09-23 17:01:00 send package p1 send package send package
2019-09-24 06:38:00 send package p2 send package send package
2019-09-24 07:33:00 load item i2,3 into package p3 load item
2019-09-24 08:46:00 send package p3 send package
2019-09-24 16:21:00 deliver package p1 deliver package deliver package
2019-09-24 17:32:00 deliver package p2 deliver package deliver package
2019-09-24 18:52:00 deliver package p3 deliver package
2019-09-24 18:57:00 accept delivery p3 accept delivery
2019-09-25 08:30:00 deliver package p1 deliver package deliver package
2019-09-25 08:32:00 accept delivery p1 accept delivery accept delivery
2019-09-25 09:55:00 deliver package p2 deliver package deliver package
2019-09-25 17:11:00 deliver package p2 deliver package deliver package
2019-09-25 17:12:00 accept delivery p2 accept delivery accept delivery

Table 1: Overall log of of an order-to-delivery scenario whose structure is illustrated in
Figure 1, and its flattening using the viewpoint of orders.

o3) respectively including two items (i1,1 and i1,2), three items (i2,1, i2,2 and i2,3), and one
item (i3,1); such items are then shipped using three packages (p1, p2, and p3), two of which
carry items from di↵erent orders.

The left part of Table 1 shows a log of “data-aware” events operating over such objects
and relationships. Each entry of the table shows an atomic event occurring at a given
timestamp and operating over one or more objects at once. Implicitly, such events may
create a new object or manipulate a relationship between objects. For example, the create
order task generates a new, fresh object of type Order, whereas the load item task takes
an item and a package and declares that that item is carried in that package.

3

Processes are not flat

Order

Item

Package

1
includes

*

*
is carried in

1

o1 o2 o3

i1,1 i1,2 i2,1 i2,2 i2,3 i3,1

p1

p2 p3

Figure 1: Structure of order, item, and package data objects in an order-to-delivery sce-
nario whereuv items from di↵erent orders are carried in several packages

event log for orders
timestamp overall log order o1 order o2 order o3

2019-09-22 10:00:00 create order o1 create order
2019-09-22 10:01:00 add item i1,1 to order o1 add item
2019-09-23 09:20:00 create order o2 create order
2019-09-23 09:34:00 add item i2,1 to order o2 add item
2019-09-23 11:33:00 create order o3 create order
2019-09-23 11:40:00 add item i3,1 to order o3 add item
2019-09-23 12:27:00 pay order o3 pay order
2019-09-23 12:32:00 add item i1,2 to order o1 add item
2019-09-23 13:03:00 pay order o1 pay order
2019-09-23 14:34:00 load item i1,1 into package p1 load item
2019-09-23 14:45:00 add item i2,2 to order o2 add item
2019-09-23 14:51:00 load item i3,1 into package p1 load item
2019-09-23 15:12:00 add item i2,3 to order o2 add item
2019-09-23 15:41:00 pay order o2 pay order
2019-09-23 16:23:00 load item i2,1 into package p2 load item
2019-09-23 16:29:00 load item i1,2 into package p2 load item
2019-09-23 16:33:00 load item i2,2 into package p2 load item
2019-09-23 17:01:00 send package p1 send package send package
2019-09-24 06:38:00 send package p2 send package send package
2019-09-24 07:33:00 load item i2,3 into package p3 load item
2019-09-24 08:46:00 send package p3 send package
2019-09-24 16:21:00 deliver package p1 deliver package deliver package
2019-09-24 17:32:00 deliver package p2 deliver package deliver package
2019-09-24 18:52:00 deliver package p3 deliver package
2019-09-24 18:57:00 accept delivery p3 accept delivery
2019-09-25 08:30:00 deliver package p1 deliver package deliver package
2019-09-25 08:32:00 accept delivery p1 accept delivery accept delivery
2019-09-25 09:55:00 deliver package p2 deliver package deliver package
2019-09-25 17:11:00 deliver package p2 deliver package deliver package
2019-09-25 17:12:00 accept delivery p2 accept delivery accept delivery

Table 1: Overall log of of an order-to-delivery scenario whose structure is illustrated in
Figure 1, and its flattening using the viewpoint of orders.

o3) respectively including two items (i1,1 and i1,2), three items (i2,1, i2,2 and i2,3), and one
item (i3,1); such items are then shipped using three packages (p1, p2, and p3), two of which
carry items from di↵erent orders.

The left part of Table 1 shows a log of “data-aware” events operating over such objects
and relationships. Each entry of the table shows an atomic event occurring at a given
timestamp and operating over one or more objects at once. Implicitly, such events may
create a new object or manipulate a relationship between objects. For example, the create
order task generates a new, fresh object of type Order, whereas the load item task takes
an item and a package and declares that that item is carried in that package.

3

Item

Package

contains

carried
in

1

*

*

1

i1,1 i1,2 i2,1 i2,2 i2,3 i3,1

p1 p2 p3

Order o1 o2 o3

Processes are not flat

Order

Item

Package

1
includes

*

*
is carried in

1

o1 o2 o3

i1,1 i1,2 i2,1 i2,2 i2,3 i3,1

p1

p2 p3

Figure 1: Structure of order, item, and package data objects in an order-to-delivery sce-
nario whereuv items from di↵erent orders are carried in several packages

event log for orders
timestamp overall log order o1 order o2 order o3

2019-09-22 10:00:00 create order o1 create order
2019-09-22 10:01:00 add item i1,1 to order o1 add item
2019-09-23 09:20:00 create order o2 create order
2019-09-23 09:34:00 add item i2,1 to order o2 add item
2019-09-23 11:33:00 create order o3 create order
2019-09-23 11:40:00 add item i3,1 to order o3 add item
2019-09-23 12:27:00 pay order o3 pay order
2019-09-23 12:32:00 add item i1,2 to order o1 add item
2019-09-23 13:03:00 pay order o1 pay order
2019-09-23 14:34:00 load item i1,1 into package p1 load item
2019-09-23 14:45:00 add item i2,2 to order o2 add item
2019-09-23 14:51:00 load item i3,1 into package p1 load item
2019-09-23 15:12:00 add item i2,3 to order o2 add item
2019-09-23 15:41:00 pay order o2 pay order
2019-09-23 16:23:00 load item i2,1 into package p2 load item
2019-09-23 16:29:00 load item i1,2 into package p2 load item
2019-09-23 16:33:00 load item i2,2 into package p2 load item
2019-09-23 17:01:00 send package p1 send package send package
2019-09-24 06:38:00 send package p2 send package send package
2019-09-24 07:33:00 load item i2,3 into package p3 load item
2019-09-24 08:46:00 send package p3 send package
2019-09-24 16:21:00 deliver package p1 deliver package deliver package
2019-09-24 17:32:00 deliver package p2 deliver package deliver package
2019-09-24 18:52:00 deliver package p3 deliver package
2019-09-24 18:57:00 accept delivery p3 accept delivery
2019-09-25 08:30:00 deliver package p1 deliver package deliver package
2019-09-25 08:32:00 accept delivery p1 accept delivery accept delivery
2019-09-25 09:55:00 deliver package p2 deliver package deliver package
2019-09-25 17:11:00 deliver package p2 deliver package deliver package
2019-09-25 17:12:00 accept delivery p2 accept delivery accept delivery

Table 1: Overall log of of an order-to-delivery scenario whose structure is illustrated in
Figure 1, and its flattening using the viewpoint of orders.

o3) respectively including two items (i1,1 and i1,2), three items (i2,1, i2,2 and i2,3), and one
item (i3,1); such items are then shipped using three packages (p1, p2, and p3), two of which
carry items from di↵erent orders.

The left part of Table 1 shows a log of “data-aware” events operating over such objects
and relationships. Each entry of the table shows an atomic event occurring at a given
timestamp and operating over one or more objects at once. Implicitly, such events may
create a new object or manipulate a relationship between objects. For example, the create
order task generates a new, fresh object of type Order, whereas the load item task takes
an item and a package and declares that that item is carried in that package.

3

Item

Package

contains

carried
in

1

*

*

1

i1,1 i1,2 i2,1 i2,2 i2,3 i3,1

p1 p2 p3

Order o1 o2 o3

Processes are not flat

Order

Item

Package

1
includes

*

*
is carried in

1

o1 o2 o3

i1,1 i1,2 i2,1 i2,2 i2,3 i3,1

p1

p2 p3

Figure 1: Structure of order, item, and package data objects in an order-to-delivery sce-
nario whereuv items from di↵erent orders are carried in several packages

event log for orders
timestamp overall log order o1 order o2 order o3

2019-09-22 10:00:00 create order o1 create order
2019-09-22 10:01:00 add item i1,1 to order o1 add item
2019-09-23 09:20:00 create order o2 create order
2019-09-23 09:34:00 add item i2,1 to order o2 add item
2019-09-23 11:33:00 create order o3 create order
2019-09-23 11:40:00 add item i3,1 to order o3 add item
2019-09-23 12:27:00 pay order o3 pay order
2019-09-23 12:32:00 add item i1,2 to order o1 add item
2019-09-23 13:03:00 pay order o1 pay order
2019-09-23 14:34:00 load item i1,1 into package p1 load item
2019-09-23 14:45:00 add item i2,2 to order o2 add item
2019-09-23 14:51:00 load item i3,1 into package p1 load item
2019-09-23 15:12:00 add item i2,3 to order o2 add item
2019-09-23 15:41:00 pay order o2 pay order
2019-09-23 16:23:00 load item i2,1 into package p2 load item
2019-09-23 16:29:00 load item i1,2 into package p2 load item
2019-09-23 16:33:00 load item i2,2 into package p2 load item
2019-09-23 17:01:00 send package p1 send package send package
2019-09-24 06:38:00 send package p2 send package send package
2019-09-24 07:33:00 load item i2,3 into package p3 load item
2019-09-24 08:46:00 send package p3 send package
2019-09-24 16:21:00 deliver package p1 deliver package deliver package
2019-09-24 17:32:00 deliver package p2 deliver package deliver package
2019-09-24 18:52:00 deliver package p3 deliver package
2019-09-24 18:57:00 accept delivery p3 accept delivery
2019-09-25 08:30:00 deliver package p1 deliver package deliver package
2019-09-25 08:32:00 accept delivery p1 accept delivery accept delivery
2019-09-25 09:55:00 deliver package p2 deliver package deliver package
2019-09-25 17:11:00 deliver package p2 deliver package deliver package
2019-09-25 17:12:00 accept delivery p2 accept delivery accept delivery

Table 1: Overall log of of an order-to-delivery scenario whose structure is illustrated in
Figure 1, and its flattening using the viewpoint of orders.

o3) respectively including two items (i1,1 and i1,2), three items (i2,1, i2,2 and i2,3), and one
item (i3,1); such items are then shipped using three packages (p1, p2, and p3), two of which
carry items from di↵erent orders.

The left part of Table 1 shows a log of “data-aware” events operating over such objects
and relationships. Each entry of the table shows an atomic event occurring at a given
timestamp and operating over one or more objects at once. Implicitly, such events may
create a new object or manipulate a relationship between objects. For example, the create
order task generates a new, fresh object of type Order, whereas the load item task takes
an item and a package and declares that that item is carried in that package.

3

Item

Package

contains

carried
in

1

*

*

1

i1,1 i1,2 i2,1 i2,2 i2,3 i3,1

p1 p2 p3

Order o1 o2 o3

create order
(3)

add item
(6)

pay order
(3)

load item
(6)

send package
(5)

accept delivery
(5)

deliver package
(11)

3

3

3

3

3

4 1

1

2

3

2
5

6

3

Dealing with multiple objects

Need of a 3D model

time

objects

activities

Object-centric behavioral
constraints

[____,DL2017] [____,BPM2019]

Object-centric behavioral constraints
Dimension 1: data model to classify and relate objects

• classes
• relationship types
• multiplicities (one-to-one, one-to-many, many-to-many)

10 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

is about
1

1

creates

1

promotes

1
creates

1

1

stops
1

closes

1

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

register
data submit

mark as
eligible

post
offer

cancel
hiring

determine
winner

Fig. 5: Activity-object relationships in the job hiring scenario of Section 2.1

As it is clear from the figure, the activity-object relationships connecting submit to
Application and post offer to Job Offer represent object generation tasks, whereas the
other relationships capture cases where the existence of objects in the classes pointed by
activities does not necessarily imply the execution of instances of such activities. So, a
person can exist in the domain even if no data have been registered for him/her, whereas
an application can exist in the domain only if it was created by an instance of the submit
task.

Notably, even though the OCBC model in Figure 5 does not contain any explicit
temporal constraint, the presence of activity-object relationships that generate objects,
and their interplay with the constraints present in the data model, already implies the
existence of implicit constraints over the allowed activity executions.

First and foremost, optional activities pointing to a class that is also pointed by a
generating activity-object relationship, can only be executed on an object if that very

same object was previously created. This means that an application can be marked as
eligible only if it was previously created through the execution of a submit activity
instance. Similarly, a job offer can be stopped by a cancel hiring activity instance, or
closed by a determine winner activity instance, only if it has been previously created by
executing a post offer activity instance.

This temporal dependencies could also propagate further, depending on how the
pointed classes are related to each other. We discuss in particular two examples from
Figure 5. When a job offer is created by posting it, it also requires to create a corre-
sponding job profile, or to relate it to an existing job profile; this is due to the cardinality
constraint indicating that each job offer refers to one and only one job profile. Even
more interesting is the creation of an application, which requires on the one hand to
create or select the candidate owning that application, but on the other hand also to
relate it to a job offer, simultaneously or previously created. All in all, the interplay
between the two generating activity-object relationships for Application and Job Offer,
mediated by the responds to relationship linking each application to one and only one
job offer, implicitly introduces a complex precedence constraint stating that: whenever
an Application is submitted responding to some Job Offer, that Job Offer must
have been posted before. /

Object-centric behavioral constraints
Dimension 2: activities

• activities
• activity-class  

relationship types
• multiplicities

4 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

Fig. 1: UML class diagram capturing the main object and relationship types of the job
hiring domain.

inspiration from [12] and discuss in more detail a fragment of a typical job hiring
process, pointing out the challenges it pose to case-centric notations.

2.1 A Job Hiring Process

We consider the fragment of a job hiring process enacted by an organisation whenever
there is the need of filling an internal position. For simplicity, we consider only two
types of actors involved in the process:

– The organisation itself, responsible for the publishing and management of job offers,
as well as for the selection of winning applications.

– Candidates interested in the offered positions, who participate to the selection
process by registering their personal data and by submitting their applications.

The complexity of the process resides in the fact that it relates many candidates to many
job offers, using the key notion of application as relator. In the following, we assume
that the main object and relationship types of the job hiring domain are those illustrated
in the UML class diagram of Figure 1.

Using this object and relationship types as a basis, we consider various constraints
to describe tasks in the process and their mutual temporal relationships. For the sake of
readability, we use:

– violet, normal sans-serif to indicate object and relationship types;
– blue, bold sans-serif to indicate tasks;
– blue, italics to highlight temporal aspects, such as the amount of times a task can be

repeated, or whether some task is expected to occur before or after another task;
– green, italic sans-serif to point out relationships between tasks and object types.
– blue, underlined italics to indicate co-reference relationships that indirectly indicate

which instances of tasks are related by the constraint depending on the objects they
manipulate.

In particular, the relevant constraints for our job hiring example are:

C.1 The register data task is about a Person.
C.2 A Job Offer is created by executing the post offer task.
C.3 A Job Offer is closed by determining the winner.
C.4 A Job Offer is stopped by canceling the hiring.

Enriching Data Models with Behavioral Constraints 5

C.5 An Application is created by executing the submit task.
C.6 An Application is promoted by marking it as eligible.
C.7 An Application can be submitted only if, beforehand, the data about the Candi-

date who made that Application have been registered.
C.8 A winner can be determined for a Job Offer only if at least one Application

responding to that Job Offer has been previously marked as eligible.
C.9 For each Application responding to a Job Offer, if the Application is marked

as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

C.10 When a winner is determined for a Job Offer, Applications responding to that

Job Offer cannot be marked as eligible anymore.
C.11 A Job Offer closed by a determine winner task cannot be stopped by executing

the cancel hiring task (and vice-versa).

2.2 Capturing the Job Hiring Example with Case-Centric Notations
The most fundamental issue when trying to capture the job hiring example of Section 2.1
using case-centric notation is to identify what is the case. This, in turn, determines
what is the orchestration point for the process, that is, which participant coordinates
process instances corresponding to different case objects. This problem is apparent when
looking at BPMN, which specifies that each process should correspond to a single locus
of control, i.e., confined within a single pool.4

In our example, we have two participants: candidates (in turn responsible for man-
aging Applications), and the job hiring organisation (in turn responsible for the
management of JobOffers). However, we cannot use neither of the two to act as unique
locus of control for the process: on the one hand, candidates may simultaneously create
and manage different applications for different job offers; on the other hand, the organi-
sation may simultaneously spawn and manage different job offers, each one resulting
in multiple applications being evaluated. A typical modelling mistake done by novices
is to select the job hiring organisation as unique locus of control, and squeeze all tasks
therein. This leads to very cumbersome courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only way to
handle in BPMN a many-to-many process such as the job hiring process considered
here, is to distribute the process across multiple, separate pools – in our case study, the
candidate and the hiring company. Each of such pools focuses on a different case class
– in our case study, the hiring company focuses on job offers, whereas the candidate
focuses on his/her own applications. However, such multiple pools cannot execute their
internal flows in separation, but must instead be properly interconnected using suitable
synchronisation mechanisms, so as to ensure that the evolution of certain process instance
within a pool is properly aligned with the evolution of process instances within another
pool. For example, in our case study a job offer can be canceled only if no candidate
has created an application for it, which also implicitly indicate that once a job hiring has
been canceled, none of its applications can be marked as eligible for it. This requires
to relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned in the
description of the process provided in Section 2.1.

4 Recall that a BPMN pool represents a participant [13].

10 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

is about
1

1

creates

1

promotes

1
creates

1

1

stops
1

closes

1

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

register
data submit

mark as
eligible

post
offer

cancel
hiring

determine
winner

Fig. 5: Activity-object relationships in the job hiring scenario of Section 2.1

As it is clear from the figure, the activity-object relationships connecting submit to
Application and post offer to Job Offer represent object generation tasks, whereas the
other relationships capture cases where the existence of objects in the classes pointed by
activities does not necessarily imply the execution of instances of such activities. So, a
person can exist in the domain even if no data have been registered for him/her, whereas
an application can exist in the domain only if it was created by an instance of the submit
task.

Notably, even though the OCBC model in Figure 5 does not contain any explicit
temporal constraint, the presence of activity-object relationships that generate objects,
and their interplay with the constraints present in the data model, already implies the
existence of implicit constraints over the allowed activity executions.

First and foremost, optional activities pointing to a class that is also pointed by a
generating activity-object relationship, can only be executed on an object if that very

same object was previously created. This means that an application can be marked as
eligible only if it was previously created through the execution of a submit activity
instance. Similarly, a job offer can be stopped by a cancel hiring activity instance, or
closed by a determine winner activity instance, only if it has been previously created by
executing a post offer activity instance.

This temporal dependencies could also propagate further, depending on how the
pointed classes are related to each other. We discuss in particular two examples from
Figure 5. When a job offer is created by posting it, it also requires to create a corre-
sponding job profile, or to relate it to an existing job profile; this is due to the cardinality
constraint indicating that each job offer refers to one and only one job profile. Even
more interesting is the creation of an application, which requires on the one hand to
create or select the candidate owning that application, but on the other hand also to
relate it to a job offer, simultaneously or previously created. All in all, the interplay
between the two generating activity-object relationships for Application and Job Offer,
mediated by the responds to relationship linking each application to one and only one
job offer, implicitly introduces a complex precedence constraint stating that: whenever
an Application is submitted responding to some Job Offer, that Job Offer must
have been posted before. /

Object-centric behavioral constraints
Dimension 2: activities

• activities
• activity-class  

relationship types
• multiplicities10 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

is about
1

1

creates

1

promotes

1
creates

1

1

stops
1

closes

1

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

register
data submit

mark as
eligible

post
offer

cancel
hiring

determine
winner

Fig. 5: Activity-object relationships in the job hiring scenario of Section 2.1

As it is clear from the figure, the activity-object relationships connecting submit to
Application and post offer to Job Offer represent object generation tasks, whereas the
other relationships capture cases where the existence of objects in the classes pointed by
activities does not necessarily imply the execution of instances of such activities. So, a
person can exist in the domain even if no data have been registered for him/her, whereas
an application can exist in the domain only if it was created by an instance of the submit
task.

Notably, even though the OCBC model in Figure 5 does not contain any explicit
temporal constraint, the presence of activity-object relationships that generate objects,
and their interplay with the constraints present in the data model, already implies the
existence of implicit constraints over the allowed activity executions.

First and foremost, optional activities pointing to a class that is also pointed by a
generating activity-object relationship, can only be executed on an object if that very

same object was previously created. This means that an application can be marked as
eligible only if it was previously created through the execution of a submit activity
instance. Similarly, a job offer can be stopped by a cancel hiring activity instance, or
closed by a determine winner activity instance, only if it has been previously created by
executing a post offer activity instance.

This temporal dependencies could also propagate further, depending on how the
pointed classes are related to each other. We discuss in particular two examples from
Figure 5. When a job offer is created by posting it, it also requires to create a corre-
sponding job profile, or to relate it to an existing job profile; this is due to the cardinality
constraint indicating that each job offer refers to one and only one job profile. Even
more interesting is the creation of an application, which requires on the one hand to
create or select the candidate owning that application, but on the other hand also to
relate it to a job offer, simultaneously or previously created. All in all, the interplay
between the two generating activity-object relationships for Application and Job Offer,
mediated by the responds to relationship linking each application to one and only one
job offer, implicitly introduces a complex precedence constraint stating that: whenever
an Application is submitted responding to some Job Offer, that Job Offer must
have been posted before. /

4 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

Fig. 1: UML class diagram capturing the main object and relationship types of the job
hiring domain.

inspiration from [12] and discuss in more detail a fragment of a typical job hiring
process, pointing out the challenges it pose to case-centric notations.

2.1 A Job Hiring Process

We consider the fragment of a job hiring process enacted by an organisation whenever
there is the need of filling an internal position. For simplicity, we consider only two
types of actors involved in the process:

– The organisation itself, responsible for the publishing and management of job offers,
as well as for the selection of winning applications.

– Candidates interested in the offered positions, who participate to the selection
process by registering their personal data and by submitting their applications.

The complexity of the process resides in the fact that it relates many candidates to many
job offers, using the key notion of application as relator. In the following, we assume
that the main object and relationship types of the job hiring domain are those illustrated
in the UML class diagram of Figure 1.

Using this object and relationship types as a basis, we consider various constraints
to describe tasks in the process and their mutual temporal relationships. For the sake of
readability, we use:

– violet, normal sans-serif to indicate object and relationship types;
– blue, bold sans-serif to indicate tasks;
– blue, italics to highlight temporal aspects, such as the amount of times a task can be

repeated, or whether some task is expected to occur before or after another task;
– green, italic sans-serif to point out relationships between tasks and object types.
– blue, underlined italics to indicate co-reference relationships that indirectly indicate

which instances of tasks are related by the constraint depending on the objects they
manipulate.

In particular, the relevant constraints for our job hiring example are:

C.1 The register data task is about a Person.
C.2 A Job Offer is created by executing the post offer task.
C.3 A Job Offer is closed by determining the winner.
C.4 A Job Offer is stopped by canceling the hiring.

Enriching Data Models with Behavioral Constraints 5

C.5 An Application is created by executing the submit task.
C.6 An Application is promoted by marking it as eligible.
C.7 An Application can be submitted only if, beforehand, the data about the Candi-

date who made that Application have been registered.
C.8 A winner can be determined for a Job Offer only if at least one Application

responding to that Job Offer has been previously marked as eligible.
C.9 For each Application responding to a Job Offer, if the Application is marked

as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

C.10 When a winner is determined for a Job Offer, Applications responding to that

Job Offer cannot be marked as eligible anymore.
C.11 A Job Offer closed by a determine winner task cannot be stopped by executing

the cancel hiring task (and vice-versa).

2.2 Capturing the Job Hiring Example with Case-Centric Notations
The most fundamental issue when trying to capture the job hiring example of Section 2.1
using case-centric notation is to identify what is the case. This, in turn, determines
what is the orchestration point for the process, that is, which participant coordinates
process instances corresponding to different case objects. This problem is apparent when
looking at BPMN, which specifies that each process should correspond to a single locus
of control, i.e., confined within a single pool.4

In our example, we have two participants: candidates (in turn responsible for man-
aging Applications), and the job hiring organisation (in turn responsible for the
management of JobOffers). However, we cannot use neither of the two to act as unique
locus of control for the process: on the one hand, candidates may simultaneously create
and manage different applications for different job offers; on the other hand, the organi-
sation may simultaneously spawn and manage different job offers, each one resulting
in multiple applications being evaluated. A typical modelling mistake done by novices
is to select the job hiring organisation as unique locus of control, and squeeze all tasks
therein. This leads to very cumbersome courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only way to
handle in BPMN a many-to-many process such as the job hiring process considered
here, is to distribute the process across multiple, separate pools – in our case study, the
candidate and the hiring company. Each of such pools focuses on a different case class
– in our case study, the hiring company focuses on job offers, whereas the candidate
focuses on his/her own applications. However, such multiple pools cannot execute their
internal flows in separation, but must instead be properly interconnected using suitable
synchronisation mechanisms, so as to ensure that the evolution of certain process instance
within a pool is properly aligned with the evolution of process instances within another
pool. For example, in our case study a job offer can be canceled only if no candidate
has created an application for it, which also implicitly indicate that once a job hiring has
been canceled, none of its applications can be marked as eligible for it. This requires
to relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned in the
description of the process provided in Section 2.1.

4 Recall that a BPMN pool represents a participant [13].

Object-centric behavioral constraints
Emergent object lifecycles

10 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

is about
1

1

creates

1

promotes

1
creates

1

1

stops
1

closes

1

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

register
data submit

mark as
eligible

post
offer

cancel
hiring

determine
winner

Fig. 5: Activity-object relationships in the job hiring scenario of Section 2.1

As it is clear from the figure, the activity-object relationships connecting submit to
Application and post offer to Job Offer represent object generation tasks, whereas the
other relationships capture cases where the existence of objects in the classes pointed by
activities does not necessarily imply the execution of instances of such activities. So, a
person can exist in the domain even if no data have been registered for him/her, whereas
an application can exist in the domain only if it was created by an instance of the submit
task.

Notably, even though the OCBC model in Figure 5 does not contain any explicit
temporal constraint, the presence of activity-object relationships that generate objects,
and their interplay with the constraints present in the data model, already implies the
existence of implicit constraints over the allowed activity executions.

First and foremost, optional activities pointing to a class that is also pointed by a
generating activity-object relationship, can only be executed on an object if that very

same object was previously created. This means that an application can be marked as
eligible only if it was previously created through the execution of a submit activity
instance. Similarly, a job offer can be stopped by a cancel hiring activity instance, or
closed by a determine winner activity instance, only if it has been previously created by
executing a post offer activity instance.

This temporal dependencies could also propagate further, depending on how the
pointed classes are related to each other. We discuss in particular two examples from
Figure 5. When a job offer is created by posting it, it also requires to create a corre-
sponding job profile, or to relate it to an existing job profile; this is due to the cardinality
constraint indicating that each job offer refers to one and only one job profile. Even
more interesting is the creation of an application, which requires on the one hand to
create or select the candidate owning that application, but on the other hand also to
relate it to a job offer, simultaneously or previously created. All in all, the interplay
between the two generating activity-object relationships for Application and Job Offer,
mediated by the responds to relationship linking each application to one and only one
job offer, implicitly introduces a complex precedence constraint stating that: whenever
an Application is submitted responding to some Job Offer, that Job Offer must
have been posted before. /

Application Job

Offer

many one

Object-centric behavioral constraints
Dimension 3: the process

• constraints…

10 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

is about
1

1

creates

1

promotes

1
creates

1

1

stops
1

closes

1

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

register
data submit

mark as
eligible

post
offer

cancel
hiring

determine
winner

Fig. 5: Activity-object relationships in the job hiring scenario of Section 2.1

As it is clear from the figure, the activity-object relationships connecting submit to
Application and post offer to Job Offer represent object generation tasks, whereas the
other relationships capture cases where the existence of objects in the classes pointed by
activities does not necessarily imply the execution of instances of such activities. So, a
person can exist in the domain even if no data have been registered for him/her, whereas
an application can exist in the domain only if it was created by an instance of the submit
task.

Notably, even though the OCBC model in Figure 5 does not contain any explicit
temporal constraint, the presence of activity-object relationships that generate objects,
and their interplay with the constraints present in the data model, already implies the
existence of implicit constraints over the allowed activity executions.

First and foremost, optional activities pointing to a class that is also pointed by a
generating activity-object relationship, can only be executed on an object if that very

same object was previously created. This means that an application can be marked as
eligible only if it was previously created through the execution of a submit activity
instance. Similarly, a job offer can be stopped by a cancel hiring activity instance, or
closed by a determine winner activity instance, only if it has been previously created by
executing a post offer activity instance.

This temporal dependencies could also propagate further, depending on how the
pointed classes are related to each other. We discuss in particular two examples from
Figure 5. When a job offer is created by posting it, it also requires to create a corre-
sponding job profile, or to relate it to an existing job profile; this is due to the cardinality
constraint indicating that each job offer refers to one and only one job profile. Even
more interesting is the creation of an application, which requires on the one hand to
create or select the candidate owning that application, but on the other hand also to
relate it to a job offer, simultaneously or previously created. All in all, the interplay
between the two generating activity-object relationships for Application and Job Offer,
mediated by the responds to relationship linking each application to one and only one
job offer, implicitly introduces a complex precedence constraint stating that: whenever
an Application is submitted responding to some Job Offer, that Job Offer must
have been posted before. /

Enriching Data Models with Behavioral Constraints 5

C.5 An Application is created by executing the submit task.
C.6 An Application is promoted by marking it as eligible.
C.7 An Application can be submitted only if, beforehand, the data about the Candi-

date who made that Application have been registered.
C.8 A winner can be determined for a Job Offer only if at least one Application

responding to that Job Offer has been previously marked as eligible.
C.9 For each Application responding to a Job Offer, if the Application is marked

as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

C.10 When a winner is determined for a Job Offer, Applications responding to that

Job Offer cannot be marked as eligible anymore.
C.11 A Job Offer closed by a determine winner task cannot be stopped by executing

the cancel hiring task (and vice-versa).

2.2 Capturing the Job Hiring Example with Case-Centric Notations
The most fundamental issue when trying to capture the job hiring example of Section 2.1
using case-centric notation is to identify what is the case. This, in turn, determines
what is the orchestration point for the process, that is, which participant coordinates
process instances corresponding to different case objects. This problem is apparent when
looking at BPMN, which specifies that each process should correspond to a single locus
of control, i.e., confined within a single pool.4

In our example, we have two participants: candidates (in turn responsible for man-
aging Applications), and the job hiring organisation (in turn responsible for the
management of JobOffers). However, we cannot use neither of the two to act as unique
locus of control for the process: on the one hand, candidates may simultaneously create
and manage different applications for different job offers; on the other hand, the organi-
sation may simultaneously spawn and manage different job offers, each one resulting
in multiple applications being evaluated. A typical modelling mistake done by novices
is to select the job hiring organisation as unique locus of control, and squeeze all tasks
therein. This leads to very cumbersome courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only way to
handle in BPMN a many-to-many process such as the job hiring process considered
here, is to distribute the process across multiple, separate pools – in our case study, the
candidate and the hiring company. Each of such pools focuses on a different case class
– in our case study, the hiring company focuses on job offers, whereas the candidate
focuses on his/her own applications. However, such multiple pools cannot execute their
internal flows in separation, but must instead be properly interconnected using suitable
synchronisation mechanisms, so as to ensure that the evolution of certain process instance
within a pool is properly aligned with the evolution of process instances within another
pool. For example, in our case study a job offer can be canceled only if no candidate
has created an application for it, which also implicitly indicate that once a job hiring has
been canceled, none of its applications can be marked as eligible for it. This requires
to relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned in the
description of the process provided in Section 2.1.

4 Recall that a BPMN pool represents a participant [13].

Enriching Data Models with Behavioral Constraints 5

C.5 An Application is created by executing the submit task.
C.6 An Application is promoted by marking it as eligible.
C.7 An Application can be submitted only if, beforehand, the data about the Candi-

date who made that Application have been registered.
C.8 A winner can be determined for a Job Offer only if at least one Application

responding to that Job Offer has been previously marked as eligible.
C.9 For each Application responding to a Job Offer, if the Application is marked

as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

C.10 When a winner is determined for a Job Offer, Applications responding to that

Job Offer cannot be marked as eligible anymore.
C.11 A Job Offer closed by a determine winner task cannot be stopped by executing

the cancel hiring task (and vice-versa).

2.2 Capturing the Job Hiring Example with Case-Centric Notations
The most fundamental issue when trying to capture the job hiring example of Section 2.1
using case-centric notation is to identify what is the case. This, in turn, determines
what is the orchestration point for the process, that is, which participant coordinates
process instances corresponding to different case objects. This problem is apparent when
looking at BPMN, which specifies that each process should correspond to a single locus
of control, i.e., confined within a single pool.4

In our example, we have two participants: candidates (in turn responsible for man-
aging Applications), and the job hiring organisation (in turn responsible for the
management of JobOffers). However, we cannot use neither of the two to act as unique
locus of control for the process: on the one hand, candidates may simultaneously create
and manage different applications for different job offers; on the other hand, the organi-
sation may simultaneously spawn and manage different job offers, each one resulting
in multiple applications being evaluated. A typical modelling mistake done by novices
is to select the job hiring organisation as unique locus of control, and squeeze all tasks
therein. This leads to very cumbersome courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only way to
handle in BPMN a many-to-many process such as the job hiring process considered
here, is to distribute the process across multiple, separate pools – in our case study, the
candidate and the hiring company. Each of such pools focuses on a different case class
– in our case study, the hiring company focuses on job offers, whereas the candidate
focuses on his/her own applications. However, such multiple pools cannot execute their
internal flows in separation, but must instead be properly interconnected using suitable
synchronisation mechanisms, so as to ensure that the evolution of certain process instance
within a pool is properly aligned with the evolution of process instances within another
pool. For example, in our case study a job offer can be canceled only if no candidate
has created an application for it, which also implicitly indicate that once a job hiring has
been canceled, none of its applications can be marked as eligible for it. This requires
to relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned in the
description of the process provided in Section 2.1.

4 Recall that a BPMN pool represents a participant [13].

Object-centric behavioral constraints
Dimension 3: the process

• constraints…
• …with data co-

referencing
10 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

is about
1

1

creates

1

promotes

1
creates

1

1

stops
1

closes

1

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

register
data submit

mark as
eligible

post
offer

cancel
hiring

determine
winner

Fig. 5: Activity-object relationships in the job hiring scenario of Section 2.1

As it is clear from the figure, the activity-object relationships connecting submit to
Application and post offer to Job Offer represent object generation tasks, whereas the
other relationships capture cases where the existence of objects in the classes pointed by
activities does not necessarily imply the execution of instances of such activities. So, a
person can exist in the domain even if no data have been registered for him/her, whereas
an application can exist in the domain only if it was created by an instance of the submit
task.

Notably, even though the OCBC model in Figure 5 does not contain any explicit
temporal constraint, the presence of activity-object relationships that generate objects,
and their interplay with the constraints present in the data model, already implies the
existence of implicit constraints over the allowed activity executions.

First and foremost, optional activities pointing to a class that is also pointed by a
generating activity-object relationship, can only be executed on an object if that very

same object was previously created. This means that an application can be marked as
eligible only if it was previously created through the execution of a submit activity
instance. Similarly, a job offer can be stopped by a cancel hiring activity instance, or
closed by a determine winner activity instance, only if it has been previously created by
executing a post offer activity instance.

This temporal dependencies could also propagate further, depending on how the
pointed classes are related to each other. We discuss in particular two examples from
Figure 5. When a job offer is created by posting it, it also requires to create a corre-
sponding job profile, or to relate it to an existing job profile; this is due to the cardinality
constraint indicating that each job offer refers to one and only one job profile. Even
more interesting is the creation of an application, which requires on the one hand to
create or select the candidate owning that application, but on the other hand also to
relate it to a job offer, simultaneously or previously created. All in all, the interplay
between the two generating activity-object relationships for Application and Job Offer,
mediated by the responds to relationship linking each application to one and only one
job offer, implicitly introduces a complex precedence constraint stating that: whenever
an Application is submitted responding to some Job Offer, that Job Offer must
have been posted before. /

Enriching Data Models with Behavioral Constraints 5

C.5 An Application is created by executing the submit task.
C.6 An Application is promoted by marking it as eligible.
C.7 An Application can be submitted only if, beforehand, the data about the Candi-

date who made that Application have been registered.
C.8 A winner can be determined for a Job Offer only if at least one Application

responding to that Job Offer has been previously marked as eligible.
C.9 For each Application responding to a Job Offer, if the Application is marked

as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

C.10 When a winner is determined for a Job Offer, Applications responding to that

Job Offer cannot be marked as eligible anymore.
C.11 A Job Offer closed by a determine winner task cannot be stopped by executing

the cancel hiring task (and vice-versa).

2.2 Capturing the Job Hiring Example with Case-Centric Notations
The most fundamental issue when trying to capture the job hiring example of Section 2.1
using case-centric notation is to identify what is the case. This, in turn, determines
what is the orchestration point for the process, that is, which participant coordinates
process instances corresponding to different case objects. This problem is apparent when
looking at BPMN, which specifies that each process should correspond to a single locus
of control, i.e., confined within a single pool.4

In our example, we have two participants: candidates (in turn responsible for man-
aging Applications), and the job hiring organisation (in turn responsible for the
management of JobOffers). However, we cannot use neither of the two to act as unique
locus of control for the process: on the one hand, candidates may simultaneously create
and manage different applications for different job offers; on the other hand, the organi-
sation may simultaneously spawn and manage different job offers, each one resulting
in multiple applications being evaluated. A typical modelling mistake done by novices
is to select the job hiring organisation as unique locus of control, and squeeze all tasks
therein. This leads to very cumbersome courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only way to
handle in BPMN a many-to-many process such as the job hiring process considered
here, is to distribute the process across multiple, separate pools – in our case study, the
candidate and the hiring company. Each of such pools focuses on a different case class
– in our case study, the hiring company focuses on job offers, whereas the candidate
focuses on his/her own applications. However, such multiple pools cannot execute their
internal flows in separation, but must instead be properly interconnected using suitable
synchronisation mechanisms, so as to ensure that the evolution of certain process instance
within a pool is properly aligned with the evolution of process instances within another
pool. For example, in our case study a job offer can be canceled only if no candidate
has created an application for it, which also implicitly indicate that once a job hiring has
been canceled, none of its applications can be marked as eligible for it. This requires
to relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned in the
description of the process provided in Section 2.1.

4 Recall that a BPMN pool represents a participant [13].

Enriching Data Models with Behavioral Constraints 5

C.5 An Application is created by executing the submit task.
C.6 An Application is promoted by marking it as eligible.
C.7 An Application can be submitted only if, beforehand, the data about the Candi-

date who made that Application have been registered.
C.8 A winner can be determined for a Job Offer only if at least one Application

responding to that Job Offer has been previously marked as eligible.
C.9 For each Application responding to a Job Offer, if the Application is marked

as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

C.10 When a winner is determined for a Job Offer, Applications responding to that

Job Offer cannot be marked as eligible anymore.
C.11 A Job Offer closed by a determine winner task cannot be stopped by executing

the cancel hiring task (and vice-versa).

2.2 Capturing the Job Hiring Example with Case-Centric Notations
The most fundamental issue when trying to capture the job hiring example of Section 2.1
using case-centric notation is to identify what is the case. This, in turn, determines
what is the orchestration point for the process, that is, which participant coordinates
process instances corresponding to different case objects. This problem is apparent when
looking at BPMN, which specifies that each process should correspond to a single locus
of control, i.e., confined within a single pool.4

In our example, we have two participants: candidates (in turn responsible for man-
aging Applications), and the job hiring organisation (in turn responsible for the
management of JobOffers). However, we cannot use neither of the two to act as unique
locus of control for the process: on the one hand, candidates may simultaneously create
and manage different applications for different job offers; on the other hand, the organi-
sation may simultaneously spawn and manage different job offers, each one resulting
in multiple applications being evaluated. A typical modelling mistake done by novices
is to select the job hiring organisation as unique locus of control, and squeeze all tasks
therein. This leads to very cumbersome courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only way to
handle in BPMN a many-to-many process such as the job hiring process considered
here, is to distribute the process across multiple, separate pools – in our case study, the
candidate and the hiring company. Each of such pools focuses on a different case class
– in our case study, the hiring company focuses on job offers, whereas the candidate
focuses on his/her own applications. However, such multiple pools cannot execute their
internal flows in separation, but must instead be properly interconnected using suitable
synchronisation mechanisms, so as to ensure that the evolution of certain process instance
within a pool is properly aligned with the evolution of process instances within another
pool. For example, in our case study a job offer can be canceled only if no candidate
has created an application for it, which also implicitly indicate that once a job hiring has
been canceled, none of its applications can be marked as eligible for it. This requires
to relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned in the
description of the process provided in Section 2.1.

4 Recall that a BPMN pool represents a participant [13].

object co-referencing

relation co-referencing

If

Object co-referencing on response

12 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

A1 A2

O

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o)),
then an instance a2 of A2 must be executed afterwards

on the same object o (i.e., with R2(a2, o))

(a) Co-reference of response over an object class

A1 A2

O1 O2

R

R1 R2

Every time an instance a1 of A1 is executed
on some object o1 of type O1 (i.e., with R1(a1, o1)),
then an instance a2 of A2 must be executed afterwards

on some object o2 of type O2 (i.e., with R2(a2, o2))
that relates to o1 via R

(i.e., having R(o1, o2) at the moment of execution of a2).

(b) Co-reference of response over a relationship

A1 A2

O

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o)),
then no instance a2 of A2 that relates to the same object o
(i.e., with R2(a2, o)) can be executed afterwards

(c) Co-reference of non-response over an object class

A1 A2

O1 O2

R

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o)),
then no instance a2 of A2 that relates to o1 via R

�

(i.e., so that there exists o2 with R2(a2, o2) and R(o1, o2))
can be executed afterwards

(d) Co-reference of non-response over a relationship

Fig. 6: Co-reference response constraints over (a) object classes and (b) relationships,
with their negated versions (c-d)

relating submit to register data enables the possibility of submitting an application,
only if the candidate

cref(precedence
�
submit, register data), is about, sends

�
= made by.

Obviously, although not directly linked to Candidate, the is about activity-object
relationship is inherited by that class given the ISA linking it to Person. It is interesting
to notice that this constraint does by no means affect when and how many times the

8 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

A B
response

A B
unary-response

A B
non-response

A B
precedence

A B
unary-precedence

A B
non-precedence

A B

responded-existence

A B
non-coexistence

Fig. 3: Types of temporal constraints between activities

response(A,B) If A is executed, then B must be executed afterwards.
unary- response(A,B) If A is executed, then B must be executed exactly once after-

wards.
precedence(A,B) If A is executed, then B must have been executed before.
unary- precedence(A,B) If A is executed, then B must have been executed exactly once

before.
responded- existence(A,B) If A is execute, then B must also be executed (either before or

afterwards).
non-response(A,B) If A is executed, then B will not be executed afterwards.
non-precedence(A,B) If A is executed, then B was never executed before.
non-coexistence(A,B) A and B cannot be both executed.

Fig. 4: Intuitive meaning of temporal constraints

3.2 Temporal Constraints over Activities

Taking inspiration from the DECLARE patterns [3], we present here the temporal
constraints between (pairs of) activities that can be expressed in OCBC. Fig. 3 graphically
renders such constraints, while their textual representation is defined next.

Definition 2 (Temporal constraints). Let

– UA be the universe of activities, denoted with capital letters A1, A2, . . .;

– UTC be the universe of temporal constraints, i.e., UTC = {response,

unary-response, precedence, unary-precedence, responded-existence,

non- response, non-precedence, non-coexistence}, as shown in Fig. 3, where

each tc 2 UTC is a binary relation over activities, i.e., tc ✓ UA ⇥ UA.

The set of temporal constraints in a given OCBC model is denoted as ⌃TC and is

conceived as a set of elements of the form tc(A1, A2), where tc 2 UTC and A1, A2 2 UA.

In the literature, such constraints are typically formalised using linear temporal logic
over finite traces [21,22]. We report their intuitive meaning in Fig. 4.

12 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

A1 A2

O

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o)),
then an instance a2 of A2 must be executed afterwards

on the same object o (i.e., with R2(a2, o))

(a) Co-reference of response over an object class

A1 A2

O1 O2

R

R1 R2

Every time an instance a1 of A1 is executed
on some object o1 of type O1 (i.e., with R1(a1, o1)),
then an instance a2 of A2 must be executed afterwards

on some object o2 of type O2 (i.e., with R2(a2, o2))
that relates to o1 via R

(i.e., having R(o1, o2) at the moment of execution of a2).

(b) Co-reference of response over a relationship

A1 A2

O

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o)),
then no instance a2 of A2 that relates to the same object o
(i.e., with R2(a2, o)) can be executed afterwards

(c) Co-reference of non-response over an object class

A1 A2

O1 O2

R

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o)),
then no instance a2 of A2 that relates to o1 via R

�

(i.e., so that there exists o2 with R2(a2, o2) and R(o1, o2))
can be executed afterwards

(d) Co-reference of non-response over a relationship

Fig. 6: Co-reference response constraints over (a) object classes and (b) relationships,
with their negated versions (c-d)

relating submit to register data enables the possibility of submitting an application,
only if the candidate

cref(precedence
�
submit, register data), is about, sends

�
= made by.

Obviously, although not directly linked to Candidate, the is about activity-object
relationship is inherited by that class given the ISA linking it to Person. It is interesting
to notice that this constraint does by no means affect when and how many times the

o:O

a:A

R1
then
later

b:B

R2

time

objects

Relation co-referencing on response

time

o1:O1

a:A

R1If

b:B

R2

12 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

A1 A2

O

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o)),
then an instance a2 of A2 must be executed afterwards

on the same object o (i.e., with R2(a2, o))

(a) Co-reference of response over an object class

A1 A2

O1 O2

R

R1 R2

Every time an instance a1 of A1 is executed
on some object o1 of type O1 (i.e., with R1(a1, o1)),
then an instance a2 of A2 must be executed afterwards

on some object o2 of type O2 (i.e., with R2(a2, o2))
that relates to o1 via R

(i.e., having R(o1, o2) at the moment of execution of a2).

(b) Co-reference of response over a relationship

A1 A2

O

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o)),
then no instance a2 of A2 that relates to the same object o
(i.e., with R2(a2, o)) can be executed afterwards

(c) Co-reference of non-response over an object class

A1 A2

O1 O2

R

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o)),
then no instance a2 of A2 that relates to o1 via R

�

(i.e., so that there exists o2 with R2(a2, o2) and R(o1, o2))
can be executed afterwards

(d) Co-reference of non-response over a relationship

Fig. 6: Co-reference response constraints over (a) object classes and (b) relationships,
with their negated versions (c-d)

relating submit to register data enables the possibility of submitting an application,
only if the candidate

cref(precedence
�
submit, register data), is about, sends

�
= made by.

Obviously, although not directly linked to Candidate, the is about activity-object
relationship is inherited by that class given the ISA linking it to Person. It is interesting
to notice that this constraint does by no means affect when and how many times the

8 A. Artale, D. Calvanese, M. Montali, and W. van der Aalst

A B
response

A B
unary-response

A B
non-response

A B
precedence

A B
unary-precedence

A B
non-precedence

A B

responded-existence

A B
non-coexistence

Fig. 3: Types of temporal constraints between activities

response(A,B) If A is executed, then B must be executed afterwards.
unary- response(A,B) If A is executed, then B must be executed exactly once after-

wards.
precedence(A,B) If A is executed, then B must have been executed before.
unary- precedence(A,B) If A is executed, then B must have been executed exactly once

before.
responded- existence(A,B) If A is execute, then B must also be executed (either before or

afterwards).
non-response(A,B) If A is executed, then B will not be executed afterwards.
non-precedence(A,B) If A is executed, then B was never executed before.
non-coexistence(A,B) A and B cannot be both executed.

Fig. 4: Intuitive meaning of temporal constraints

3.2 Temporal Constraints over Activities

Taking inspiration from the DECLARE patterns [3], we present here the temporal
constraints between (pairs of) activities that can be expressed in OCBC. Fig. 3 graphically
renders such constraints, while their textual representation is defined next.

Definition 2 (Temporal constraints). Let

– UA be the universe of activities, denoted with capital letters A1, A2, . . .;

– UTC be the universe of temporal constraints, i.e., UTC = {response,

unary-response, precedence, unary-precedence, responded-existence,

non- response, non-precedence, non-coexistence}, as shown in Fig. 3, where

each tc 2 UTC is a binary relation over activities, i.e., tc ✓ UA ⇥ UA.

The set of temporal constraints in a given OCBC model is denoted as ⌃TC and is

conceived as a set of elements of the form tc(A1, A2), where tc 2 UTC and A1, A2 2 UA.

In the literature, such constraints are typically formalised using linear temporal logic
over finite traces [21,22]. We report their intuitive meaning in Fig. 4.

o2:O2

R

then
later

objects

Object-centric behavioral constraints
Dimension 3: the process

• constraints…
• …with data co-

referencing

Enriching Data Models with Behavioral Constraints 5

C.5 An Application is created by executing the submit task.
C.6 An Application is promoted by marking it as eligible.
C.7 An Application can be submitted only if, beforehand, the data about the Candi-

date who made that Application have been registered.
C.8 A winner can be determined for a Job Offer only if at least one Application

responding to that Job Offer has been previously marked as eligible.
C.9 For each Application responding to a Job Offer, if the Application is marked

as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

C.10 When a winner is determined for a Job Offer, Applications responding to that

Job Offer cannot be marked as eligible anymore.
C.11 A Job Offer closed by a determine winner task cannot be stopped by executing

the cancel hiring task (and vice-versa).

2.2 Capturing the Job Hiring Example with Case-Centric Notations
The most fundamental issue when trying to capture the job hiring example of Section 2.1
using case-centric notation is to identify what is the case. This, in turn, determines
what is the orchestration point for the process, that is, which participant coordinates
process instances corresponding to different case objects. This problem is apparent when
looking at BPMN, which specifies that each process should correspond to a single locus
of control, i.e., confined within a single pool.4

In our example, we have two participants: candidates (in turn responsible for man-
aging Applications), and the job hiring organisation (in turn responsible for the
management of JobOffers). However, we cannot use neither of the two to act as unique
locus of control for the process: on the one hand, candidates may simultaneously create
and manage different applications for different job offers; on the other hand, the organi-
sation may simultaneously spawn and manage different job offers, each one resulting
in multiple applications being evaluated. A typical modelling mistake done by novices
is to select the job hiring organisation as unique locus of control, and squeeze all tasks
therein. This leads to very cumbersome courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only way to
handle in BPMN a many-to-many process such as the job hiring process considered
here, is to distribute the process across multiple, separate pools – in our case study, the
candidate and the hiring company. Each of such pools focuses on a different case class
– in our case study, the hiring company focuses on job offers, whereas the candidate
focuses on his/her own applications. However, such multiple pools cannot execute their
internal flows in separation, but must instead be properly interconnected using suitable
synchronisation mechanisms, so as to ensure that the evolution of certain process instance
within a pool is properly aligned with the evolution of process instances within another
pool. For example, in our case study a job offer can be canceled only if no candidate
has created an application for it, which also implicitly indicate that once a job hiring has
been canceled, none of its applications can be marked as eligible for it. This requires
to relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned in the
description of the process provided in Section 2.1.

4 Recall that a BPMN pool represents a participant [13].

Enriching Data Models with Behavioral Constraints 5

C.5 An Application is created by executing the submit task.
C.6 An Application is promoted by marking it as eligible.
C.7 An Application can be submitted only if, beforehand, the data about the Candi-

date who made that Application have been registered.
C.8 A winner can be determined for a Job Offer only if at least one Application

responding to that Job Offer has been previously marked as eligible.
C.9 For each Application responding to a Job Offer, if the Application is marked

as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

C.10 When a winner is determined for a Job Offer, Applications responding to that

Job Offer cannot be marked as eligible anymore.
C.11 A Job Offer closed by a determine winner task cannot be stopped by executing

the cancel hiring task (and vice-versa).

2.2 Capturing the Job Hiring Example with Case-Centric Notations
The most fundamental issue when trying to capture the job hiring example of Section 2.1
using case-centric notation is to identify what is the case. This, in turn, determines
what is the orchestration point for the process, that is, which participant coordinates
process instances corresponding to different case objects. This problem is apparent when
looking at BPMN, which specifies that each process should correspond to a single locus
of control, i.e., confined within a single pool.4

In our example, we have two participants: candidates (in turn responsible for man-
aging Applications), and the job hiring organisation (in turn responsible for the
management of JobOffers). However, we cannot use neither of the two to act as unique
locus of control for the process: on the one hand, candidates may simultaneously create
and manage different applications for different job offers; on the other hand, the organi-
sation may simultaneously spawn and manage different job offers, each one resulting
in multiple applications being evaluated. A typical modelling mistake done by novices
is to select the job hiring organisation as unique locus of control, and squeeze all tasks
therein. This leads to very cumbersome courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only way to
handle in BPMN a many-to-many process such as the job hiring process considered
here, is to distribute the process across multiple, separate pools – in our case study, the
candidate and the hiring company. Each of such pools focuses on a different case class
– in our case study, the hiring company focuses on job offers, whereas the candidate
focuses on his/her own applications. However, such multiple pools cannot execute their
internal flows in separation, but must instead be properly interconnected using suitable
synchronisation mechanisms, so as to ensure that the evolution of certain process instance
within a pool is properly aligned with the evolution of process instances within another
pool. For example, in our case study a job offer can be canceled only if no candidate
has created an application for it, which also implicitly indicate that once a job hiring has
been canceled, none of its applications can be marked as eligible for it. This requires
to relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned in the
description of the process provided in Section 2.1.

4 Recall that a BPMN pool represents a participant [13].

Enriching Data Models with Behavioral Constraints 13

is about
1

1

creates

1

promotes

1
creates

1

1

stops
1

closes

1

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

register
data submit

mark as
eligible

post
offer

cancel
hiring

determine
winner

Fig. 7: OCBC model for the job hiring scenario of Section 2.1, where each one of
C.1–C.11 therein corresponds to either an activity-object relationship or a co-reference
temporal constraint in the OCBC model. The lightweight constraint is redundant: it is
implied by the other constraints in the diagram.

register data task can be executed for a given Person. This implicitly captures the
fact that the same Person may updated his/her personal data multiple times.

Of particular interest is the unary-response constraint relating mark as eligible
to determine winner (which captures C.9 from Section 2.1), in particular when
multiple applications submitted to the same job offer (say, job offer o) are marked as
eligible. In this case, the constraint requires that every instance of the mark as eligible
task promoting an Application that responds to o, is eventually followed by a single

instance of the determine winner task that closes offer o. Such a single instance of
determine winner for offer o will be actually the same for all such eligible applications.
In fact, having two distinct instances of determine winner for offer o would violate
the fact that the constraint is a unary response. This has a twofold implication:

– The (unique) instance of determine winner for o must occur after all the occur-
rences of mark as eligible for applications that respond to o.

– Once the (unique) instance of determine winner for o is executed, it is not possible
anymore to mark as eligible any application responding to o. It this would happen,
they would require a later occurrence of determine winner for o, which would
clash with the uniqueness requirement. This shows that the non-response constraint
relating determine winner to mark as eligible via the responds to relationship
is actually redundant: it is implied by the unary-response constraint relating mark
as eligible to determine winner via the same responds to relationship. Notice
that further applications may be still submitted for a closed job offer, but they will
not be marked as eligible. /

4 Conclusion and Discussion

We have presented the OCBC model, which enriches structural conceptual models with
behavioural constraints. By means of a small, but relevant case study, we have shown

Object-centric behavioral constraints
Dimension 3: the process

• constraints…
• …with data co-

referencing Enriching Data Models with Behavioral Constraints 13

is about
1

1

creates

1

promotes

1
creates

1

1

stops
1

closes

1

Person

Candidate Application Job Offer Job Profile
1

/ made by

1..⇤ ⇤
responds to

1 ⇤
refers to

1

register
data submit

mark as
eligible

post
offer

cancel
hiring

determine
winner

Fig. 7: OCBC model for the job hiring scenario of Section 2.1, where each one of
C.1–C.11 therein corresponds to either an activity-object relationship or a co-reference
temporal constraint in the OCBC model. The lightweight constraint is redundant: it is
implied by the other constraints in the diagram.

register data task can be executed for a given Person. This implicitly captures the
fact that the same Person may updated his/her personal data multiple times.

Of particular interest is the unary-response constraint relating mark as eligible
to determine winner (which captures C.9 from Section 2.1), in particular when
multiple applications submitted to the same job offer (say, job offer o) are marked as
eligible. In this case, the constraint requires that every instance of the mark as eligible
task promoting an Application that responds to o, is eventually followed by a single

instance of the determine winner task that closes offer o. Such a single instance of
determine winner for offer o will be actually the same for all such eligible applications.
In fact, having two distinct instances of determine winner for offer o would violate
the fact that the constraint is a unary response. This has a twofold implication:

– The (unique) instance of determine winner for o must occur after all the occur-
rences of mark as eligible for applications that respond to o.

– Once the (unique) instance of determine winner for o is executed, it is not possible
anymore to mark as eligible any application responding to o. It this would happen,
they would require a later occurrence of determine winner for o, which would
clash with the uniqueness requirement. This shows that the non-response constraint
relating determine winner to mark as eligible via the responds to relationship
is actually redundant: it is implied by the unary-response constraint relating mark
as eligible to determine winner via the same responds to relationship. Notice
that further applications may be still submitted for a closed job offer, but they will
not be marked as eligible. /

4 Conclusion and Discussion

We have presented the OCBC model, which enriches structural conceptual models with
behavioural constraints. By means of a small, but relevant case study, we have shown

Enriching Data Models with Behavioral Constraints 5

C.5 An Application is created by executing the submit task.
C.6 An Application is promoted by marking it as eligible.
C.7 An Application can be submitted only if, beforehand, the data about the Candi-

date who made that Application have been registered.
C.8 A winner can be determined for a Job Offer only if at least one Application

responding to that Job Offer has been previously marked as eligible.
C.9 For each Application responding to a Job Offer, if the Application is marked

as eligible then a winner must be finally determined for that Job Offer, and
this is done only once for that Job Offer.

C.10 When a winner is determined for a Job Offer, Applications responding to that

Job Offer cannot be marked as eligible anymore.
C.11 A Job Offer closed by a determine winner task cannot be stopped by executing

the cancel hiring task (and vice-versa).

2.2 Capturing the Job Hiring Example with Case-Centric Notations
The most fundamental issue when trying to capture the job hiring example of Section 2.1
using case-centric notation is to identify what is the case. This, in turn, determines
what is the orchestration point for the process, that is, which participant coordinates
process instances corresponding to different case objects. This problem is apparent when
looking at BPMN, which specifies that each process should correspond to a single locus
of control, i.e., confined within a single pool.4

In our example, we have two participants: candidates (in turn responsible for man-
aging Applications), and the job hiring organisation (in turn responsible for the
management of JobOffers). However, we cannot use neither of the two to act as unique
locus of control for the process: on the one hand, candidates may simultaneously create
and manage different applications for different job offers; on the other hand, the organi-
sation may simultaneously spawn and manage different job offers, each one resulting
in multiple applications being evaluated. A typical modelling mistake done by novices
is to select the job hiring organisation as unique locus of control, and squeeze all tasks
therein. This leads to very cumbersome courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only way to
handle in BPMN a many-to-many process such as the job hiring process considered
here, is to distribute the process across multiple, separate pools – in our case study, the
candidate and the hiring company. Each of such pools focuses on a different case class
– in our case study, the hiring company focuses on job offers, whereas the candidate
focuses on his/her own applications. However, such multiple pools cannot execute their
internal flows in separation, but must instead be properly interconnected using suitable
synchronisation mechanisms, so as to ensure that the evolution of certain process instance
within a pool is properly aligned with the evolution of process instances within another
pool. For example, in our case study a job offer can be canceled only if no candidate
has created an application for it, which also implicitly indicate that once a job hiring has
been canceled, none of its applications can be marked as eligible for it. This requires
to relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned in the
description of the process provided in Section 2.1.

4 Recall that a BPMN pool represents a participant [13].

Semantics and formalization

Process execution: temporal knowledge graph
Data model: description logics
Object-centric constraints: temporal description logics

o1 : Order

ol1 : Order Line

ol2 : Order Line

ol3 : Order Line

d1 : Delivery

d2 : Delivery

. . .

. . .

. . .

. . .

. . .

. . .

co1 : Create Order

pi1 : Pick Item

pi2 : Pick Item

wi1 : Wrap Item

wi2 : Wrap Item

pi3 : Pick Item

wi3 : Wrap Item

po1 : Pay Order

di1 : Deliver Items

di2 : Deliver Items

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

creates
fills

contains

fills

contains

prepares
prepares

fills

contains

prepares
closes

refers to

results in

results in

refers to

results in

Fig. 3: Trace fragment for the OCBC model in Fig. 2

The top part describes the temporal ordering of activities and the bottom part how ob-
jects relevant for the process execution are structured (read the lower part as a standard
UML class diagram). The middle layer (dotted lines) relates activities and data. We
now informally describe the constructs highlighted in Fig. 2. 1 There is a one-to-
one correspondence between a CreateOrder activity and an Order, i.e., the execu-
tion of a CreateOrder activity creates a unique Order and, vice-versa, due to the 1
on the CreateOrder side, each Order has been generated by a single execution of a
CreateOrder activity. 2 Every execution of the PickItem activity refers to a unique
OrderLine and each OrderLine has been generated by an execution of a PickItem

activity (and not by a WrapItem activity). 3 Each CreateOrder activity is followed
by exactly one (single arrow) PayOrder activity related to the same order. 4 Each
PayOrder activity is preceded by possibly many (double arrow) PickItem activities.
5 Whenever we execute PayOrder we will never execute PickItem on the same paid

order. 6 The dash-dotted line denotes a co-reference constraint over an object class,
imposes that when the CreateOrder creates an order instance, that order instance will
eventually be paid by executing a PayOrder activity. 7 The dash-dotted line is, in this
case, a co-reference constraint now over a relationship which imposes that when we
fill an order line it must have been contained in exactly one order created by executing
a CreateOrder activity. Since an order line instance could not exist at the same time
we create an order instance and relationships are instantiated by co-existing objects, the
UML model correctly specifies that, at each point in time, each order participates zero
or more times in the contains relation. On the other hand, the co-reference constraint
together with the mandatory cardinalities constraints and the temporal constraints be-
tween CreateOrder, PayOrder and PickItem imply the eventual existence of at least

one order line contained in any given order. 8 The dash-dotted line starting with a ⇥
denotes a negative co-reference constraint that forbids filling with further order lines an
order that has been closed by a PayOrder activity.

A possible execution of an OCBC process, called in the following trace fragment,
records at once events, with their execution time, and the objects they operate on. In

Achieved and ongoing results

Reasoning [____,BPM2019]
• Direct approach -> undecidable

• Careful “object-centric” reformulation  

-> decidable in EXPTIME (same as reasoning on UML diagrams)

Monitoring (ongoing)
• Hybrid reasoning (closed on the past, open on the future)

Discovery (ongoing)
• Construction of trace views

• Standard discovery on views

• Object-centric reconciliation

Conclusions

Augmented BPM: a framework for the intelligent management
of processes at the intersection of AI and BPM
Central task: framing

Declarative approach: solid basis to framing with uncertainty,
data, objects and their interactions
•Reasoning via well-established formalisms and techniques
Foundations well understood, effort needed towards
engineering

Thanks to Wil van der Aalst, Anti Alman, Alessandro Artale, Federico Chesani, Giuseppe De
Giacomo, Riccardo De Masellis, Claudio Di Ciccio, Marlon Dumas, Dirk Fahland, Paolo Felli,
Alessandro Gianola, Alisa Kovtunova, Fabrizio Maggi, Andrea Marrella, Paola Mello, Jan
Mendling, Fabio Patrizi, Rafael Penaloza, Maja Pesic, Andrey Rivkin, Michael Westergaard

Thank you!
montali@inf.unibz.it

