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Data-Aware Dynamic System

A dynamic system that manipulate data over time.

Recall the VSL keynote by F. Baader.
Data-aware dynamic system

Data Layer

Process Layer external
world

UpdateRead

• Data layer: maintains data of interest.
I Relational database.
I (Description logic) ontology.

• Process layer: evolves the extensional part of the data layer.
I Control-flow component: determines when actions can be executed.
I Actions: atomic units of work that update the data.

F Interact with the external world to inject fresh data into the system.
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Data-Centric Dynamic Systems (DCDSs)
• Data layer: relational database with FO constraints.
• Process (control-flow): condition-action rules.
• Actions: specified by (parallel) effects that query the current state
and determine the next state.

I Service calls can be invoked to get new data.

Example
• Data layer: schema {R/2,Q/1,S/1}, no constraint.
• Process: ∃y.R(x, y) 7→ t(x).

• Action: t(p) :


R(x, y) ∧ x 6= p  R(x, y)
R(p, y)  R(p, f (y))
R(p, y)  Q(p)



R(a,b), R(a,c),
R(c,d),
Q(d),
S(b)
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Verification

Execution semantics: a relational
transition system, possibly with
infinitely many states.

... ...

... ...

. . .

. . .

Verification Problem
Check whether the dynamic system guarantees a desired property,
expressed in some variant of a first-order temporal logic.

Undecidable in general!
(Even for propositional temporal logics)
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State-boundedness

State-Bounded System
Has an overall bound on the number of
individuals stored in each single state of
the system.

Structurally State-Bounded
State-Bounded for any given initial database. ... ...

... ...

. . .

. . .

Decidability under state-boundedness
Shown in a plethora of recent works, for a variety of dynamic systems:

• Artifact-centric MASs, and FO-CTLK [BelardinelliEtAl-KR12].
• DCDSs and µLp.
• DL-based Dynamic Systems, and µLECQ

p [CalvaneseEtAl-RR13].
• Data-aware MASs with commitments, and µLECQ

p [MontaliEtAl-AAMAS14].
• Bounded situation calculus action theories, and µL [DeGiacomoEtAl-KR12].
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Checking State-Boundedness

State-boundedness is a semantic property
Typically, assumed to hold.

Theorem ([BagheriHaririEtAl-PODS13])
Checking whether a DCDS is state-bounded is undecidable.

 study of sufficient, syntactic conditions guaranteeing state-boundedness.

Central question
Do there exist significant classes of data-aware dynamic systems for

which checking state-boundedness is decidable?

A similar question has been extensively studied in a different setting . . .
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P/T nets

- The Good

• Introduced by Carl Adam Petri in his PhD thesis (1962).
• Extensively used for modelling concurrent systems:

I Distributed systems, workflows, business processes, . . .
• Study of several formal properties: reachability, deadlock
freedom, boundedness.

a b

c

d

e

f

g

Marco Montali (unibz) State-Boundedness KR 2014 7 / 26



P/T nets - The Good

• Introduced by Carl Adam Petri in his PhD thesis (1962).
• Extensively used for modelling concurrent systems:

I Distributed systems, workflows, business processes, . . .
• Study of several formal properties: reachability, deadlock
freedom, boundedness.

a b

c

d

e

f

g

Marco Montali (unibz) State-Boundedness KR 2014 7 / 26



P/T nets - The Good

• Introduced by Carl Adam Petri in his PhD thesis (1962).
• Extensively used for modelling concurrent systems:

I Distributed systems, workflows, business processes, . . .
• Study of several formal properties: reachability, deadlock
freedom, boundedness.

a b

c

d

e

f

g

Marco Montali (unibz) State-Boundedness KR 2014 7 / 26



P/T nets - The Good

• Introduced by Carl Adam Petri in his PhD thesis (1962).
• Extensively used for modelling concurrent systems:

I Distributed systems, workflows, business processes, . . .
• Study of several formal properties: reachability, deadlock
freedom, boundedness.

a b

c

d

e

f

g

Marco Montali (unibz) State-Boundedness KR 2014 7 / 26



P/T nets - The Good

• Introduced by Carl Adam Petri in his PhD thesis (1962).
• Extensively used for modelling concurrent systems:

I Distributed systems, workflows, business processes, . . .
• Study of several formal properties: reachability, deadlock
freedom, boundedness.

a b

c

d

e

f

g

Marco Montali (unibz) State-Boundedness KR 2014 7 / 26



P/T nets - The Good

• Introduced by Carl Adam Petri in his PhD thesis (1962).
• Extensively used for modelling concurrent systems:

I Distributed systems, workflows, business processes, . . .
• Study of several formal properties: reachability, deadlock
freedom, boundedness.

a b

c

d

e

f

g

Marco Montali (unibz) State-Boundedness KR 2014 7 / 26



P/T nets - The Good

• Introduced by Carl Adam Petri in his PhD thesis (1962).
• Extensively used for modelling concurrent systems:

I Distributed systems, workflows, business processes, . . .
• Study of several formal properties: reachability, deadlock
freedom, boundedness.

a b

c

d

e

f

g

Marco Montali (unibz) State-Boundedness KR 2014 7 / 26



P/T nets - The Good

• Introduced by Carl Adam Petri in his PhD thesis (1962).
• Extensively used for modelling concurrent systems:

I Distributed systems, workflows, business processes, . . .
• Study of several formal properties: reachability, deadlock
freedom, boundedness.

a b

c

d

e

f

g

Marco Montali (unibz) State-Boundedness KR 2014 7 / 26



P/T Nets - The Bad

Not all marked Petri nets are bounded.

a

b c
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Forms of Boundedness
Boundedness
A marked Petri net is bounded
if all executions starting from the
given marking do not produce an
unbounded amount of tokens.

Bounded

a

b c

Structural boundedness
A Petri net is structurally
bounded if for all possible initial
markings the resulting marked
net is bounded.

Structurally unbounded

a

b c
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Reset Transfer Nets - The Ugly
P/T nets ⊂ RT nets ⊂ Reset Post G-nets [DufourEtAlICALP98]

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

Reset arc

P tP

When t fires, all tokens in P are removed.

Transfer pair

P t QP P

When t fires, all tokens in P are transferred to Q.
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Boundedness Spectrum

boundedness
structural

boundedness

RT nets

T nets
R nets

P/T nets

RT nets

T nets R nets

P/T nets
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Understanding State-Boundedness

Goal
Devise a connection between RT nets and DCDSs so as to understand the
state-boundedness spectrum in data-aware dynamic systems.

Main issue: set vs bag semantics.

RT nets

DCDSs
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From RT Nets to DCDSs

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

Idea
Tokens as distinct identifiers distributed over place relations.
Only cardinalities matter, not the data values.

Data layer.
• Unary relations for places: {Pi/1 | i ∈ {1, . . . , 4}}
• No constraints.

Process layer: each transition becomes an action + condition-action rule.
• Condition: gets tokens from input places; feeds the action with them.
• Action: moves tokens according to the firing semantics of the net.

I Service calls to generate identifiers for new tokens.
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From RT Nets to DCDSs - The P/T Case

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

P0(x1) 7→ a(x1)

a(x1) :



P0 P0(y) ∧ y 6= x1  P0(f (y))
P1

P1(y)  P1(h1(y))
true  P1(g1())

P2

P2(y)  P2(h2(y))
true  P2(g2())

P3

P3(y)  P3(h3(y))

P4

P4(y)  P4(h4(y))
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From RT Nets to DCDSs - The Reset Case

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

P1(x1) ∧ P3(x2) 7→ b(x1, x2)

b(x1, x2) :



P0 P0(y)  P0(h0(y))
P1

P1(y) ∧ y 6= x1  P1(h1(y))

P2

–

P3

P3(y) ∧ y 6= x2  P3(h3(y))

P4

P4(y)  P4(h4(y))
true  P4(g4())



A relation (P2) does not appear in the action!

Marco Montali (unibz) State-Boundedness KR 2014 15 / 26



From RT Nets to DCDSs - The Reset Case

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

P1(x1) ∧ P3(x2) 7→ b(x1, x2)

b(x1, x2) :



P0 P0(y)  P0(h0(y))
P1

P1(y) ∧ y 6= x1  P1(h1(y))

P2

–

P3

P3(y) ∧ y 6= x2  P3(h3(y))

P4

P4(y)  P4(h4(y))
true  P4(g4())



A relation (P2) does not appear in the action!

Marco Montali (unibz) State-Boundedness KR 2014 15 / 26



From RT Nets to DCDSs - The Reset Case

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

P1(x1) ∧ P3(x2) 7→ b(x1, x2)

b(x1, x2) :



P0 P0(y)  P0(h0(y))
P1 P1(y) ∧ y 6= x1  P1(h1(y))
P2

–

P3 P3(y) ∧ y 6= x2  P3(h3(y))
P4

P4(y)  P4(h4(y))
true  P4(g4())



A relation (P2) does not appear in the action!

Marco Montali (unibz) State-Boundedness KR 2014 15 / 26



From RT Nets to DCDSs - The Reset Case

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

P1(x1) ∧ P3(x2) 7→ b(x1, x2)

b(x1, x2) :



P0 P0(y)  P0(h0(y))
P1 P1(y) ∧ y 6= x1  P1(h1(y))
P2 –
P3 P3(y) ∧ y 6= x2  P3(h3(y))
P4

P4(y)  P4(h4(y))
true  P4(g4())



A relation (P2) does not appear in the action!

Marco Montali (unibz) State-Boundedness KR 2014 15 / 26



From RT Nets to DCDSs - The Reset Case

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

P1(x1) ∧ P3(x2) 7→ b(x1, x2)

b(x1, x2) :



P0 P0(y)  P0(h0(y))
P1 P1(y) ∧ y 6= x1  P1(h1(y))
P2 –
P3 P3(y) ∧ y 6= x2  P3(h3(y))
P4 P4(y)  P4(h4(y))

true  P4(g4())



A relation (P2) does not appear in the action!

Marco Montali (unibz) State-Boundedness KR 2014 15 / 26



From RT Nets to DCDSs - The Reset Case

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

P1(x1) ∧ P3(x2) 7→ b(x1, x2)

b(x1, x2) :



P0 P0(y)  P0(h0(y))
P1 P1(y) ∧ y 6= x1  P1(h1(y))
P2 –
P3 P3(y) ∧ y 6= x2  P3(h3(y))
P4 P4(y)  P4(h4(y))

true  P4(g4())


A relation (P2) does not appear in the action!

Marco Montali (unibz) State-Boundedness KR 2014 15 / 26



From RT Nets to DCDSs - The Transfer Case

P0 a

P1

P2

b P3

c

P4

P2

P2

P2

P1(x1) 7→ c(x1)

c(x1) :



P0 P0(y)  P0(h0(y))
P1

P1(y) ∧ y 6= x1  P1(h1(y))

P2

P2(y)  P4(h2(y))

P3

P3(y)  P3(h3(y))

P4

P4(y)  P4(h4(y))



There is an effect involving two different relations (P2 and P4)!
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Is the Translation Correct?
NO! The resulting DCDS has a lossy behavior.

Petri net

P0 . . . t . . . t=⇒ P0 . . . t . . .

DCDS
t(. . .) : {. . . ,P0(y) P0(h0(y)), . . .}

P0 . . . t . . .a
b c t(...)=⇒

h0(a) = a, h0(b) = b, h0(c) = c
P0 . . . t . . .a

b c

h0(a) = a, h0(b) = a, h0(c) = a
P0 . . . t . . .a

h0(a) = a, h0(b) = a, h0(c) = c
P0 . . . t . . .a c

. . .
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Is the Translation Correct?

However. . .

The resulting DCDS reproduces all behaviors of the net (and more).

Theorem
An RT net is (structurally) bounded if and only if the corresponding
DCDS is (structurally) state-bounded.
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LRT DCDS

Data Layer
Schema R with unary relations only, and no constraint.

Process
Only one rule per action, of the form Q(~x) 7→ α(~x), where

Q(x1, . . . , xn) =
∧

i∈{1,...,n}, Pi 6=Pj for i 6=j
Pi(xi)

Shape of action α(~x)
For each Pi ∈ rels(Q), α must contain:

• Pi(y) ∧ y 6= xi  Pi(fi(y))
and may contain:

• true Pi(gi())

For each Pl ∈ R \ rels(Q), α may contain:
• Pl(y) Pl(hl(y))
• either true Pj(gj()),

or P ′
j (y) Pj(hj(y))

for some P ′
j ∈ R \ (rels(Q) ∪ Pj).
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From LRT DCDSs to RT Nets
Consider schema R = {P0,P1,P2,P3,P4}, and action t with:

• process condition-action rule P0(x0) ∧ P1(x1) 7→ t(x0, x1)

• action t(x0, x1) :



P0(y) ∧ y 6= x0  P0(f0(y))
P1(y) ∧ y 6= x1  P1(f1(y))
true  P1(g1())
true  P2(g2())
P3(y)  P4(h3(y))
P4(y)  P4(h4(y))



P0

P1

t

P2

P3

P4

Theorem
An LRT DCDS is (structurally)
state-bounded if and only if the
corresponding RT net is
(structurally) bounded.
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State-Boundedness Spectrum
state

boundedness
structural state
boundedness

LRT DCDSs

LT DCDSs
LR DCDSs

LP DCDSs

LRT DCDSs

LT DCDSs LR DCDSs

LP DCDSs

Undec.

Dec.

ExpSpace

PTime
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Take Home Message
LRT DCDSs are weak:

• Only unary relations.
• Only conjunctions without joins in conditions.
• Only atomic queries inside effects (possibly with a value inequality).
• Very limited use of negation (inequalities).
• No direct transfer of values from one state to the other.

Still, to ensure that (structural) state-boundedness is decidable . . .

Boundedness
All relations must appear on the left-hand side of action effects, i.e.,
contribute to form the new state.

Structural Boundedness
Each action must be such that only a fixed amount of tuples is added
to/removed from each relation in the schema.
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Back to our Question

Central question
Do there exist significant classes of data-aware dynamic systems for

which checking state-boundedness is decidable?

Answer
NO

Hence, it becomes important to provide significant sufficient, checkable
syntactic conditions that guarantee structural state-boundedness.

We follow this line, focusing on DCDSs and starting from
[BagheriHaririEtAl-PODS13].
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GR-Acyclicity [BagheriHaririEtAl-PODS13]
Example
Consider a DCDS with process {true 7→ α()}, and

α() :


P(x)  P(x)
P(x)  Q(f (x))
Q(x)  Q(x)



We approximate the DCDS data-flow through a dependency graph.

P,1 Q,1*

The system is not state-bounded, due to:
• a generate cycle that continuously feeds a path issuing service calls;
• a recall cycle that accumulates the obtained results.
• (+ the fact that both cycles are simultaneously active)

GR-acycliclity detects exactly these undesired situations.
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Our Contribution

GR

GR+

in CoNP in Σp
2
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Conclusion
1.
No significant decidable classes of data-aware dynamic systems for which
state-boundedness is decidable.

2.
It becomes crucial to provide checkable, sufficient conditions.

• We have built on results on chase termination for tuple-generating
dependencies, providing a family of conditions for DCDSs.

Ongoing and future work
• Refine the syntactic conditions to handle if-then-else effects.
• Follow a different approach: provide modelling guidelines towards
systems that are structurally state bounded by design.

I Preliminary results in [SolomakhinEtAl-ICSOC13].
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