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About me

• RTD/a
• Currently in the Database research group, studying temporal aspects 

of databases and time series
• Background in theoretical computer science, parallel algorithms in 

particular
• Lots of experiments…
• …and lots of errors!

• Most of what you will see is rooted in experimental algorithmics, but 
is applicable in the more general case



Assessment

• Homework
• You should each read a paper about an empirical/experimental evaluation
• Prepare a very short presentation (10 mins) where you illustrate the article, 

focusing on the experimental evaluation

• Critical presentation of the assigned article, showing that you have 
considered and evaluated all the dimensions illustrated in the lectures



How to structure your presentation

• State the problem addressed by the paper
• Don’t describe their method with too much detail, just give enough context to 

understand the experimental results

• Discuss the findings of the experimental section, focusing on pitfalls 
and improvements

• 10 minutes total
• If you use slides, no more than 10 slides!



Suggested papers

• Ding et al.: Querying and mining of time series data: experimental comparison of representations and distance measures, 
VLDB 2008 

• Zhang et al.: Crowdsourced top-k algorithms: an experimental evaluation, VLDB 2016

• Lu et al.: Large-scale distributed graph computing systems: an experimental evaluation, VLDB 2016 

• Papenbrock et al.: Functional dependency discovery: an experimental evaluation of seven algorithms, VLDB 2016 

• Wu et al.: Shortest path and distance queries on road networks: an experimental evaluation, VLDB 2012 

• Li et al.: An experimental study on hub labeling based shortest path algorithms, VLDB 2018.

• Jiang et al.: String similarity joins: an experimental evaluation, VLDB 2014

• Chen et al.: Spatial keyword query processing: an experimental evaluation, VLDB 2013

• Han et al.: An experimental comparison of Pregel-like graph processing systems, VLDB 2014

• Lu et al.: Large-scale distributed graph computing systems, VLDB 2014 



Suggested papers/2

• Weber et al.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces, VLDB 
1998 

• Huang et al.: Experimental evaluation of real-time optimistic concurrency control schemes, VLDB 1991 

• Zhang et al.: An experimental evaluation of simrank-based similarity search algorithms, PVLDB 2017. 

• Memarzia et al.: A Six-dimensional Analysis of In-memory Aggregation, EDBT 2019 

• Mann et al.: An Empirical Evaluation of Set Similarity Join Techniques, PVLDB 2016 

• Blumenthal et al.: Comparing heuristics for graph edit distance computation, VLDB Journal 2019. 

• Khayati et al.: Mind the Gap: An Experimental Evaluation of Imputation of Missing Values Techniques in Time Series, PVLDB 
2020. 

• Aumüller et al.: ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. Inf. Syst. 2020

• Graf and Lemire: Xor Filters: Faster and Smaller Than Bloom and Cuckoo Filters JEA 2020

• Kriegel et al: The (black) art of runtime evaluation: Are we comparing algorithms or implementations? Knowl. Inf. Syst. 2017

• McSherry et al.  Scalability, but at what COST? HotOs 15



Starting points when reading an experimental evaluation

• Is the experimental setup well described?
• Are the goals of the experiments well stated?
• Is the choice of parameters sensible?
• Are there appropriate baselines?
• Is the data analysis sound?
• Is the code available?
• Are the datasets available?



Course structure

• Overview of research methods

• The experimental process in Computer Science

• Planning an experiment

• Reproducibility

• Running experiments



Research methods, techniques and methodology

• Research method: refers to the manner in which a particular research project is 
undertaken

• Research technique: refers to a specific means, approach, or tool-and-its-use, 
whereby data is gathered and analysed, and inferences are drawn

• Research methodology: refers to the study of research methods



Different research methods exist

Exploratory research Constructive research Empirical research

• Improve the basic 
knowledge on a concept 
and walk into the 
unknown realms of the 
subject

• Conducted on a project
that has not been clearly
defined

• It shouldn’t draw 
definitive conclusions

• May conclude that a 
problem does not 
actually exist

• Find a new solution to a 
specific persisting 
problem

• Very common in
computer science

• Construct: new theory, 
algorithm, software, 
model, framework

• Demands a form of
validation: theoretical 
analysis or benchmark 
tests

• Based on the observation 
of some phenomenon

• Empirical evidence can 
be analysed 
quantitatively or 
qualitatively

• Develop theories and 
models that are then 
validated or rejected by 
the observation



Why do experiments?



Why do experiments?

• Go beyond simply reporting observations or proving theorems
• Fill the gaps between theory and practice
• Help integrating research and practice
• Characterize the performance of worst-case, average-case, etc.. 

instances
• Force yourself to be very precise
• Provide insights into the theory

• Can also suggest theoretical improvements for an algorithm



Experimental research improves the quality of research

Initial 
idea

Write  and 
explain

Prove 
theorems

Implement 
prototype 

Experimental 
evaluation

Each step reveals weaknesses and errors



The experimental process 

Fig 1.2: McGeoch A guide to experimental algorithmics



Experimental goals

Reproducibility and correctness

Generality and efficiency

Newsworthiness



Planning an experiment
Material based on the book
“A guide to experimental algorithmics”
by Catherine McGeoch



Experimental design basics

Performance 
metric

Performance 
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Parameter

Algorithm

Instance

Environment
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Level
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Trial

Fixed 
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Noise 
parameter



How do we plan an experiment?

We might have a precise question, or we might not.
We might have a set of parameters to try, or we might not
We might have some assumptions about the algorithm/datasets

Run a pilot study first
A small set of quick 

and dirty experiments 
that don’t cover too 
many design points

• Check correctness/basic assumptions

• Learn the quirks of the 
datasets/algorithms/test environments

• Identify the most promising ideas
and parameter configurations



How do we plan an experiment?

Workhorse experiments

With the knowledge acquired by means of the pilot study

• formulate precise questions

• select appropriate datasets to find answers

• select the design points to test

It’s very important to run experiments with 
purpose: you should motivate every choice (of 
parameters, algorithms, answers) you make. 
Otherwise you end up with a pile of results you 
can’t make a sense of



Datasets/inputs

Which types of datasets can you think of?

Stress test 
instances Worst case instances

Random inputs

Structured random 
inputs

Real instances

Hybrid instances



Choose input classes to support goals of correctness
and generality, and to target the question at hand



Choosing factors and design points

• Leverage the pilot study to find the factors that influence 
performance the most

• Similarly, choose the parameters and metrics that highlight
differences the most

• To quickly explore factor ranges, use doubling experiments



Doubling experiments

• Suppose you are testing an algorithm with a parameter k.

• To quickly assess the influence of k on the performance, you can run a
pilot study with 𝑘 ∈ {1, 2, 4, 8, 16…} or 𝑘 ∈ {1, 10, 100, 1000,… }

• The idea is to use a geometric progression to quickly cover the space 
of possible factor levels



Choosing factors and design points

• Leverage the pilot study to find the factors that influence 
performance the most

• Similarly, choose the parameters and metrics that highlight
differences the most

• To quickly explore factor ranges, use doubling experiments
• Leverage what you know: 

e.g. your algorithm has a phase transition at a particular value of a parameter

• Run a full factorial design



Full factorial designs

• For each factor, choose a finite set of levels

• Each combination defines a design point

• You run a trial for each design point

• Exponential in the number of factors! Can quickly go out of hand



Factor reduction techniques

• Merge similar factors

• Trace the behaviour of your experiments: enables trial overloading

• Convert some factors to noise parameters
Replace the explicit choice with a simple random distribution

• Fix some factors, thus limiting the scope of the experiment

• Remove factors that have little influence on the performance



Choosing performance metrics and indicators

• Running time:
• Wall clock time
• CPU time
• Operation counters
• …..

• Accuracy measures:
• Precision/recall
• 𝐹. score
• RMSE
• …..

• You can evaluate several metrics at once, to see if there are tradeoffs





Select appropriate baselines

• As we have seen, most CS research is constructive

• As a consequence, anyone can come up with a new solution: you 
need to show that yours is performing better according to some 
measure.

• However, it is crucial to consider appropriate baselines!



Select appropriate baselines/2

Armstrong et al.: Improvements That Don’t Add Up: Ad-Hoc Retrieval
Results Since 1998, CIKM 2009 
• «Most researchers only report results from their own experiments, a practice that

allows lack of overall improvement to go unnoticed.» 

• «Our longitudinal analysis of published IR results in SIGIR and CIKM proceedings
from 1998-2008 has uncovered the fact that ad-hoc retrieval is not measurably
improving. »

• «A central repository of effectiveness results presents a solution to this problem: 
best known results could be quickly found by authors, and readers and reviewers
could more effectively assess claims made in papers.»



Select appropriate baselines/3

Jens Dittrich: The Case for Small Data Management 
https://youtu.be/O7Qgo6RSzmE?t=19m 

https://youtu.be/O7Qgo6RSzmE?t=19m


Select appropriate baselines/3



Benchmarks

• A benchmark is a standard test or set of tests used to compare 
alternatives. It consists of the following components: 

• Motivating comparison
• Task sample
• Performance measures

• Becomes a standard through acceptance by a community

• What are the advantages of standardized benchmarks?



Benchmarks: the advantages

• Stronger consensus on the community’s research goals

• Greater collaboration between laboratories

• More rigorous validation of research results

• Rapid dissemination of promising approaches

• Faster technical progress

• Benefits derive from process, rather than end product



ANN-benchmarks

• http://ann-benchmarks.com/
• Benchmarks for the k-nearest neighbours problem
• Tests approximation algorithms in terms of speed of execution, recall,

index build time, etc…

http://ann-benchmarks.com/


Other benchmark suites

• TREC Ad Hoc Task (information retrieval)
• TPC-ATM (database)
• UCR Time Series Classification Archive 
• SPEC CPU2017 (CPU performance)
• Calgary Corpus and Canterbury Corpus (text compression)
• Penn treebank (NLP)

http://www.tpc.org/
http://www.cs.ucr.edu/%20%CC%83eamonn/time%20series%20data/
http://www.spec.org/cpu2017/
https://www.seas.upenn.edu/~pdtb/


Reproducibility
Finding a treasure is useless, if you 
can’t trace back your steps



What is reproducibility for you?



When is reproducibility important?

• Someone questions your conclusions
• One year later, you want to re-run the analysis with new data
• One year later, you want to slightly modify the analysis
• You are collaborating with someone else

A L W A Y S



Cockburn et al. CACM 2020

Baker and Penny, Nature 2016

Hutson, Science 2018



Scenario 1

• You install some libraries
• You develop a program using

those libraries
• You send the program to 

someone else
• The program breaks in 

mysterious and subtle ways



Scenario 2

• You install some libraries
• You develop a program using

those libraries
• You start a new project, for 

which you need an updated
version of the libraries

• After a while, you go back to 
your first project, and it's broken
in mysterious and sublte ways!



Scenario 3

• You download some data
• Preprocess it
• Use it in your experiments
• After one year, you want to write 

the journal version of the paper, 
but you can’t recreate the same 
dataset



The three flavours of reproducibility

Repeatability

Replicability

Reproducibility



Repeatability

Same team, same experimental setup

The measurement can be obtained with stated precision by the same 
team using the same measurement procedure, the same measuring 
system, under the same operating conditions, in the same location on 
multiple trials. 

For computational experiments, this means that a researcher can reliably repeat 
her own computation.

Definitions of the ACM (Association of Computing Machinery)
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778115/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778115/


Replicability

Different team, same experimental setup

The measurement can be obtained with stated precision by a different 
team using the same measurement procedure, the same measuring 
system, under the same operating conditions, in the same or a different 
location on multiple trials.

For computational experiments, this means that an independent group can obtain 
the same result using the author's own artifacts.

Definitions of the ACM (Association of Computing Machinery)
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778115/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778115/


Reproducibility

Different team, different experimental setup

The measurement can be obtained with stated precision by a different
team, a different measuring system, in a different location on multiple 
trials. 

For computational experiments, this means that an independent group can obtain
the same result using artifacts which they develop completely independently.

Definitions of the ACM (Association of Computing Machinery)
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778115/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778115/


You want your results to be at least replicable

Attention: if you are not careful enough, you may
have something that is not even repeatable!

It is very important to aim at reproducibility from 
the very beginning, it cannot be an afterthought.



A study of Replicability http://repeatability.cs.arizona.edu/

Study 601 papers from ACM journals and conferences.
The task is just to try to build the code.

http://repeatability.cs.arizona.edu/


Reproducibility efforts

• Initiated by SIGMOD 2012 
The goal of establishing reproducibility is to ensure your SIGMOD re- search paper
stands as reliable work that can be referenced by future research. The premise is
that experimental papers will be most useful when their results have been tested
and generalized by objective third parties. 

• Joined by PVLDB in 2018 







Taking notes: the first step towards reproducibility

Always keep a logbook where you record:
• the experiments you run
• why you run them
• the results and your observations

Doing so you will be able to reconstruct, even after one year, even if the entire codebase changed, what you 
did and why, and where those choices led you.



Use version control

• Source code
• Latex sources of papers
• Your notes
• Everything!

• https://gitlab.inf.unibz.it/

• https://github.com/

https://gitlab.inf.unibz.it/
https://github.com/


Adopt a workflow that explicitly 
supports reproducibility

...more on this later



Running experiments
Material based on the SISAP 2020 paper and presentation
“Running experiments with confidence and sanity”



TEST your implementation!

Write unit tests Check output against 
a trivial implementation



What are the main challenges when
running experimental evaluations?





Challenges

(C1) Feedback loops by design

(C2) Economic execution

(C3) Versioning

(C4) Machine independence

(C5) Reproducibility by designAll of these challenges are related to
managing information



management of

datasets/workloads

versions

resultsconfigurations

infrastructure



Dataset management

• Automate dataset download and preprocessing as much as possible

• Make preprocessed datasets publicly available

• Annotate datasets with meta-data (preprocessing parameters, ground 

truth values, ets…)

• For debugging, set up generators of small random testbeds



Configuration 
management
• Description of experiment in a separate file 

(not from the command line)
The file in the example configures a full 
factorial design

• Tracked in version control with no pending 
changes

• Mechanism to allow skipping already-run 
configurations

• Run whole pipeline in Continuous Integration



Versioning

• Associate results to 
experiment/code versions

• Economic execution
• VCS IDs are insufficient

float_aligned
(v2)

i16_aligned
(v1)

Glove
(v2)

SIFT
(v1)

simple
(v2)

avx2
(v1)

avx512
(v4)

i16_aligned
(v2)



Infrastructure 
Management

Containerized environment

• Current trend, e.g., VS Code
• Little setup cost, little 

execution cost
Goal:

• Machine-independent 
pipeline

Bonus:

• Use CI to test all moving 
parts



Docker and containerized environments

A docker container is similar to a virtual machine:
• Has its own Unix operating system
• Has its own file system
• Has its own software applications
• Is much more lightweight than a virtual machine!

A good tutorial is: “An introduction to Docker
for reproducible research, with examples from 
the R environment” by Boettliger
[Arxiv 1410.0846]

The idea is that you describe, in a plain text 
file, the configuration of the entire software 
stack you depend on.

This configuration can be instantiated on 
your machine, on someone else’s, or in the 
cloud, guaranteeing that everywhere the 
exact same code is run!



Storing results

Custom file

JSON/CSV

Database

Evolving schemas Feedback 
loops

Efficient access Efficient
analysis

Query from 
experiment’s code

Economic
execution

Enforce use of
recent results

Confidence



Demo implementation

https://github.com/Cecca/running-experiments https://youtu.be/5Lgr2zp8LcM?t=582

https://github.com/Cecca/running-experiments
https://youtu.be/5Lgr2zp8LcM?t=582


How does this workflow address reproducibility?

Scenario 2: you use different 
versions of the same library in 
different projects

Scenario 1: you collaborate on a 
project but on different 
machines 

Scenario 3: you have to revisit 
your project, but no longer have 
the preprocessed dataset


