unibz
State-Boundedness in Data-Aware Dynamic Systems —

Marco Montali

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano

Joint work with: B. Bagheri Hariri, D. Calvanese, A. Deutsch

KR 2014

Marco Montali (unibz) State-Boundedness

Data-Aware Dynamic System unibz

A dynamic system that manipulate data over time.)

Data-aware dynamic system

Recall the VSL keynote by F. Baader.

e Data layer: maintains data of interest.
» Relational database.
» (Description logic) ontology.
e Process layer: evolves the extensional part of the data layer.

» Control-flow component: determines when actions can be executed.
» Actions: atomic units of work that update the data.

* Interact with the external world to inject fresh data into the system.

Marco Montali (unibz) State-Boundedness KR 2014 2 /26

Data-Centric Dynamic Systems (DCDSs) unibz

e Data layer: relational database with FO constraints.

e Process (control-flow): condition-action rules.
e Actions: specified by (parallel) effects that query the current state
and determine the next state.
» Service calls can be invoked to get new data.

Example
e Data layer: schema {R/2, Q/1,S5/1}, no constraint.
e Process: Jy.R(z,y) — t(z).
R(z,y) Nz #p ~ R(z,y)
e Action: t(p): < R(p,y) ~ R(p, [(y))
R(p,y) ~ Q(p))

Marco Montali (unibz) State-Boundedness KR 2014 3/26

Data-Centric Dynamic Systems (DCDSs) unibz

e Data layer: relational database with FO constraints.
e Process (control-flow): condition-action rules.
e Actions: specified by (parallel) effects that query the current state
and determine the next state.
» Service calls can be invoked to get new data.

Example
e Data layer: schema {R/2, Q/1,S5/1}, no constraint.
e Process: Jy.R(z,y) — t(z).
R(z,y) Nz #p ~ R(z,y)
e Action: t(p): < R(p,y) ~ R(p, [(y))
R(p,y) ~ Q(p))
R(a,b), R(a,c),
R(c,d),
Q(d),
S(b)

Marco Montali (unibz) State-Boundedness KR 2014 3/26

Data-Centric Dynamic Systems (DCDSs) unibz

e Data layer: relational database with FO constraints.
e Process (control-flow): condition-action rules.
e Actions: specified by (parallel) effects that query the current state
and determine the next state.
» Service calls can be invoked to get new data.

Example
e Data layer: schema {R/2, Q/1,S5/1}, no constraint.
e Process: Jy.R(z,y) — t(z).
R(z,y) Nz #p ~ R(z,y)
e Action: t(p): < R(p,y) ~ R(p, [(y))
R(p,y) ~ Q(p))
R(a,b), R(a,c),
R(c,d), t(a)
Q(d), t(c)
S(b)

Marco Montali (unibz) State-Boundedness KR 2014 3/26

Data-Centric Dynamic Systems (DCDSs) unibz
e Data layer: relational database with FO constraints.
e Process (control-flow): condition-action rules.

e Actions: specified by (parallel) effects that query the current state
and determine the next state.

» Service calls can be invoked to get new data.
Example
e Data layer: schema {R/2, Q/1,S5/1}, no constraint.

e Process: Jy.R(z,y) — t(z).
R(z,y) Nz #a ~ R(z,y)
e Action: t(a) : ¢ R(a,y) ~ R(a,f(y))
R(a,y) ~ Q(a)
R(a,b), R(a,c),
R(c.d), t@) R(c.d). Q(a),
Q(d), R(a,f(b)) R(a,f(c))

S(b)

Marco Montali (unibz)

State-Boundedness KR 2014 3/26

Data-Centric Dynamic Systems (DCDSs) unibz
e Data layer: relational database with FO constraints.
e Process (control-flow): condition-action rules.

e Actions: specified by (parallel) effects that query the current state
and determine the next state.

» Service calls can be invoked to get new data.
Example
e Data layer: schema {R/2, Q/1,S5/1}, no constraint.

e Process: Jy.R(z,y) — t(z).
R(z,y) Nz #a ~ R(z,y)
e Action: t(a) : ¢ R(a,y) ~ R(a, f(y))
R(a,y) ~ Q(a)
R(a,b), R(a,c), R(c,d), Q(a),
R(c,d), t(a) R(c.d), Q(a), R(a,a)
Q(d), R(a,f(b)) R(af(c))

S(b)

Marco Montali (unibz)

State-Boundedness KR 2014 3/26

Data-Centric Dynamic Systems (DCDSs) unibz
e Data layer: relational database with FO constraints.
e Process (control-flow): condition-action rules.

e Actions: specified by (parallel) effects that query the current state
and determine the next state.

» Service calls can be invoked to get new data.
Example
e Data layer: schema {R/2, Q/1,S5/1}, no constraint.

e Process: Jy.R(z,y) — t(z).
R(z,y) Nz #a ~ R(z,y)
e Action: t(a) : ¢ R(a,y) ~ R(a,f(y))
R(a, y) ~ Q(a)
R(a,b), R(a,c),
R(c,d), t(a) R(c.d), Q(a),)
Q(d), R(a,f(b))

S(b)

Marco Montali (unibz)

R(af(c) [—o " [R(c,d), Q(a),]

State-Boundedness KR 2014 3/26

Data-Centric Dynamic Systems (DCDSs) unibz
e Data layer: relational database with FO constraints.
e Process (control-flow): condition-action rules.

e Actions: specified by (parallel) effects that query the current state
and determine the next state.

» Service calls can be invoked to get new data.
Example
e Data layer: schema {R/2, Q/1,S5/1}, no constraint.

e Process: Jy.R(z,y) — t(z).
R(z,y) Nz #a ~ R(z,y)
e Action: t(a) : ¢ R(a,y) ~ R(a,f(y))
R(a,) - Q) |
R(a,b), R(a,c),
R(c,d), t(a) R(c.d), Q(a),
Q(d), R(a,f(b)) R(a,f(c))

S(b) T

Marco Montali (unibz)

State-Boundedness KR 2014 3/26

Verification

Execution semantics: a relational
transition system, possibly with
infinitely many states.

Verification Problem

Check whether the dynamic system guarantees a desired property,

expressed in some variant of a first-order temporal logic.

Marco Montali (unibz)

State-Boundedness

KR 2014

4/26

Verification

Execution semantics: a relational
transition system, possibly with
infinitely many states.

Verification Problem

Check whether the dynamic system guarantees a desired property,
expressed in some variant of a first-order temporal logic.

VAN

Undecidable in general!
(Even for propositional temporal logics)

v

Marco Montali (unibz) State-Boundedness KR 2014

4/26

State-boundedness unibz

State-Bounded System

Has an overall bound on the number of
individuals stored in each single state of
the system.

Structurally State-Bounded

State-Bounded for any given initial database.

Marco Montali (unibz) State-Boundedness KR 2014 5/ 26

State-boundedness unibz

State-Bounded System

Has an overall bound on the number of
individuals stored in each single state of
the system.

Structurally State-Bounded

State-Bounded for any given initial database.

Decidability under state-boundedness

Shown in a plethora of recent works, for a variety of dynamic systems:
Artifact-centric MASs, and FO-CTLK [BelardinelliEtAI-KR12].

DCDSs and pLy,.

DL-based Dynamic Systems, and uLEY? [CalvaneseEtAl-RR13].

e Data-aware MASs with commitments, and pLFC9 [MontaliEtAI-AAMAS14].
Bounded situation calculus action theories, and L [DeGiacomoEtAl-KR12].)

Marco Montali (unibz) State-Boundedness KR 2014 5/ 26

Checking State-Boundedness unibz

State-boundedness is a semantic property
Typically, assumed to hold.

Theorem ([BagheriHaririEtAl-PODS13])
Checking whether a DCDS is state-bounded is undecidable.

v

~ study of sufficient, syntactic conditions guaranteeing state-boundedness.

Marco Montali (unibz) State-Boundedness KR 2014 6 /26

Checking State-Boundedness unibz

State-boundedness is a semantic property
Typically, assumed to hold.

Theorem ([BagheriHaririEtAl-PODS13])
Checking whether a DCDS is state-bounded is undecidable.

v

~ study of sufficient, syntactic conditions guaranteeing state-boundedness.

Central question

Do there exist significant classes of data-aware dynamic systems for
which checking state-boundedness is decidable?

Marco Montali (unibz) State-Boundedness KR 2014 6 /26

Checking State-Boundedness unibz

State-boundedness is a semantic property
Typically, assumed to hold.

Theorem ([BagheriHaririEtAl-PODS13])
Checking whether a DCDS is state-bounded is undecidable.

v

~ study of sufficient, syntactic conditions guaranteeing state-boundedness.

Central question

Do there exist significant classes of data-aware dynamic systems for
which checking state-boundedness is decidable?

A similar question has been extensively studied in a different setting ...

Marco Montali (unibz) State-Boundedness KR 2014 6 /26

P/T nets unibz

e Introduced by Carl Adam Petri in his PhD thesis (1962).
o Extensively used for modelling concurrent systems:
» Distributed systems, workflows, business processes, ...

e Study of several formal properties: reachability, deadlock
freedom, boundedness.

OLHOGFO OfFFQ O
o--a

Marco Montali (unibz) State-Boundedness KR 2014 7 /26

P/T nets - The Good unibz

e Introduced by Carl Adam Petri in his PhD thesis (1962). ‘
o Extensively used for modelling concurrent systems:
» Distributed systems, workflows, business processes, ...

e Study of several formal properties: reachability, deadlock
freedom, boundedness.

|

OO O
O-

qg
1

f (—~

Marco Montali (unibz) State-Boundedness KR 2014 7 /26

P/T nets - The Good unibz

e Introduced by Carl Adam Petri in his PhD thesis (1962). ‘
o Extensively used for modelling concurrent systems:
» Distributed systems, workflows, business processes, ...

e Study of several formal properties: reachability, deadlock
freedom, boundedness.

|

O-LEHO-BHO O
O-

qg
1

f (—~

Marco Montali (unibz) State-Boundedness KR 2014 7 /26

P/T nets - The Good unibz

e Introduced by Carl Adam Petri in his PhD thesis (1962). ‘
e Extensively used for modelling concurrent systems: i
» Distributed systems, workflows, business processes, ...

e Study of several formal properties: reachability, deadlock
freedom, boundedness.

v

GO O

Q ©
of

O

Marco Montali (unibz) State-Boundedness KR 2014 7/ 26

P/T nets - The Good unibz

e Introduced by Carl Adam Petri in his PhD thesis (1962). ‘
e Extensively used for modelling concurrent systems: i
» Distributed systems, workflows, business processes, ...

e Study of several formal properties: reachability, deadlock
freedom, boundedness.

v

GO0 ©
©-

O\g
1

f >

Marco Montali (unibz) State-Boundedness KR 2014 7/ 26

P/T nets - The Good unibz

e Introduced by Carl Adam Petri in his PhD thesis (1962). ‘
e Extensively used for modelling concurrent systems: i
» Distributed systems, workflows, business processes, ...

e Study of several formal properties: reachability, deadlock
freedom, boundedness.

v

OO0 OfE@
o-F-g

f >

Marco Montali (unibz) State-Boundedness KR 2014 7/ 26

P/T nets - The Good unibz

e Introduced by Carl Adam Petri in his PhD thesis (1962). ‘
o Extensively used for modelling concurrent systems:
» Distributed systems, workflows, business processes, ...

e Study of several formal properties: reachability, deadlock
freedom, boundedness.

|

O-LEFOBHO O
O-

G>\‘g
1

f (—~

Marco Montali (unibz) State-Boundedness KR 2014 7 /26

P/T nets - The Good unibz

e Introduced by Carl Adam Petri in his PhD thesis (1962). ‘
o Extensively used for modelling concurrent systems:
» Distributed systems, workflows, business processes, ...

e Study of several formal properties: reachability, deadlock
freedom, boundedness.

|

O-LEFOBHO O
O-

qg
1

f (—~

Marco Montali (unibz) State-Boundedness KR 2014 7 /26

P/T Nets - The Bad

A

Not all marked Petri nets are bounded.

N

.

Marco Montali (unibz) State-Boundedness

P/T Nets - The Bad

A

Not all marked Petri nets are bounded.

N

.

Marco Montali (unibz) State-Boundedness

P/T Nets - The Bad

A

Not all marked Petri nets are bounded.

N

.

Marco Montali (unibz) State-Boundedness

P/T Nets - The Bad

A

Not all marked Petri nets are bounded.

N

.

\.

Marco Montali (unibz) State-Boundedness

P/T Nets - The Bad

A

Not all marked Petri nets are bounded.

N

.

Marco Montali (unibz) State-Boundedness

P/T Nets - The Bad

A

Not all marked Petri nets are bounded.

N

.

\.

Marco Montali (unibz) State-Boundedness

P/T Nets - The Bad

A

Not all marked Petri nets are bounded.

N

.

Marco Montali (unibz) State-Boundedness

P/T Nets - The Bad

A

Not all marked Petri nets are bounded.

N

.

\.

Marco Montali (unibz) State-Boundedness

Forms of Boundedness

Boundedness

A marked Petri net is bounded
if all executions starting from the
given marking do not produce an
unbounded amount of tokens.

unibz

Structural boundedness

A Petri net is structurally
bounded if for all possible initial
markings the resulting marked
net is bounded.

Marco Montali (unibz) State-Boundedness KR 2014 9 /26

Forms of Boundedness

Boundedness

A marked Petri net is bounded
if all executions starting from the
given marking do not produce an
unbounded amount of tokens.

unibz

Structural boundedness

A Petri net is structurally
bounded if for all possible initial
markings the resulting marked
net is bounded.

Bounded

N

Ny

b C

RO

v

Structurally unbounded

N

a

\y

b (¢

~0’

4

Marco Montali (unibz)

State-Boundedness

KR 2014

9/26

Reset Transfer Nets - The Ugly unibz

P/T nets| C | RT nets ‘C

Reset Post G-nets [DufourEtAlICALP98[T

.

Reset arc

p
@1

When ¢ fires, all tokens in P are removed.l

Transfer pair

< > Pl 7 1 '
When ¢ fires, all tokens in P are transferred to Q).

Marco Montali (unibz)

State-Boundedness KR 2014 10 / 26

Boundedness Spectrum unibz

structural

boundedness boundedness

RT nets

[R nets T nets] [R nets

Marco Montali (unibz) State-Boundedness KR 2014 11 /26

P/T nets

Boundedness Spectrum unibz

structural

boundedness boundedness

RT nets

UNDEC.

P

((R)

AN
P/T nets

R nets] [T nets

—

P/T nets

I</

Marco Montali (unibz) State-Boundedness KR 2014 11 /26

Boundedness Spectrum unibz

structural

boundedness boundedness

UNDEC.

R nets] [T nets [R nets]

—/

DEc.

Marco Montali (unibz) KR 2014 11 /26

Understanding State-Boundedness unibz

Goal

Devise a connection between RT nets and DCDSs so as to understand the
state-boundedness spectrum in data-aware dynamic systems.

Main issue: set vs bag semantics.

Marco Montali (unibz) State-Boundedness KR 2014 12 /26

Understanding State-Boundedness unibz

Goal

Devise a connection between RT nets and DCDSs so as to understand the
state-boundedness spectrum in data-aware dynamic systems.

Main issue: set vs bag semantics.

Marco Montali (unibz) State-Boundedness KR 2014 12 /26

Understanding State-Boundedness unibz

Goal

Devise a connection between RT nets and DCDSs so as to understand the
state-boundedness spectrum in data-aware dynamic systems.

Main issue: set vs bag semantics.

“state bounded

structurally
bounded

structurally
state bounded

Marco Montali (unibz) State-Boundedness KR 2014 12 /26

From RT Nets to DCDSs unibz

.

Idea
Tokens as distinct identifiers distributed over place relations.
Only cardinalities matter, not the data values.

Data layer.
e Unary relations for places: {P;/1|i€ {1,...,4}}
e No constraints.

Process layer: each transition becomes an action 4 condition-action rule.
e Condition: gets tokens from input places; feeds the action with them.
e Action: moves tokens according to the firing semantics of the net.

» Service calls to generate identifiers for new tokens.
Marco Montali (unibz) State-Boundedness KR 2014 13 /26

From RT Nets to DCDSs - The P/T Case unibz

@ a/’ ~

Marco Montali (unibz) State-Boundedness

From RT Nets to DCDSs - The P/T Case unibz

o
.

Po(xl) —> a(:cl)

Po Po(y) ANy #m1 ~ Po(f(y))

a(z): 4 P2

Marco Montali (unibz) State-Boundedness KR 2014 14 / 26

From RT Nets to DCDSs - The P/T Case unibz

o
.

Po(xl) —> a(:cl)

Po Po(y) Ny#m ~ Po(f(y))
P1 Pi(y) ~ Pr(h(y))
true ~ Pi(g1())
a(m): 4 P2 Pay) ~ Pa(ha(y))
true ~ Pa(g2())
P3
Py

KR 2014 14 / 26

From RT Nets to DCDSs - The P/T Case unibz

o
.

Po(xl) —> a(:cl)

Po Po(y) Ny #m ~ Po(f(y))

P1 Pi(y) ~ Pi(h(y))

true ~ Pi(g1())

a(m): 4 P2 Pay) ~ Pa(he(y))
true ~ Pa(g2())

Ps Ps(y) ~ P3(hs(y))

Pa Py(y) ~ Py(ha(y))

KR 2014 14 / 26

From RT Nets to DCDSs - The Reset Case

P1(171) A\ Pg(CCQ) — b(:L‘l, :L“g)

Marco Montali (unibz) State-Boundedness

unibz

From RT Nets to DCDSs - The Reset Case unibz

b(z;,20) :

Marco Montali (unibz) State-Boundedness KR 2014 15 / 26

From RT Nets to DCDSs - The Reset Case unibz

/
06

Po Po(y) ~ Po(ho(y))
Pi Pi(y) Ny#m ~ Pi(h(y))

b(zi, 1) : Ps Ps(y) ANy #xz2 ~ Ps(h3(y))

Marco Montali (unibz) State-Boundedness KR 2014 15 / 26

From RT Nets to DCDSs - The Reset Case unibz

/
06

Po Poly) ~ Po(ho(y))
Pi Piy) ANy #z1 ~ Pi(h(y))
Py, -

b(zi, 1) : Ps Ps(y) ANy #xz2 ~ Ps(h3(y))

Marco Montali (unibz) State-Boundedness KR 2014 15 / 26

From RT Nets to DCDSs - The Reset Case unibz

b(z;,20) :

KR 2014 15 / 26

From RT Nets to DCDSs - The Reset Case

b(z;,20) :

Pi(y) Ny #x1 ~

P3(y) Ny # wp ~
Py(y)

true

$ 8
3
A~~~
=
¥
//

N—

A A relation (P2) does not appear in the action!

Marco Montali (unibz)

unibz

J

State-Boundedness

KR 2014

15/ 26

From RT Nets to DCDSs - The Transfer Case unibz

Marco Montali (unibz) State-Boundedness

From RT Nets to DCDSs - The Transfer Case unibz

N .
> ¢

Pl(l‘l) — C(ZL‘1)

Po Po(y) ~ Po(ho(y))
P1

c(xl) : P2
Ps P3(y) ~ Ps(hs(y))
P4

Marco Montali (unibz) State-Boundedness KR 2014 16 / 26

From RT Nets to DCDSs - The Transfer Case

c(xl) :

Marco Montali (unibz)

P1
P2

P4

Y H

©

N o
——

Pl(l‘l) — C(ZL‘1)

Pi(y) Ny # m

Ps(y)

State-Boundedness

~ Po(ho(y))
~ Pi(ha(y)

~—

~ P3(hs(y))

KR 2014

16 / 26

From RT Nets to DCDSs - The Transfer Case unibz

Y H

Po Po(y) ~ Po(ho(y))
Pi Pi(y)ANy#m ~ Pi(hi(y))

c(z1): ¢ P2 Pa(y) ~ Py(ha(y))
Ps P3(y) ~ Ps(hs(y))
P4

KR 2014 16 / 26

From RT Nets to DCDSs - The Transfer Case unibz

Y H

Po Po(y) ~ Po(ho(y))
Pi Piy) ANy#m ~ Pi(h(y))
c(z1):{ P2 Pa(y) ~ Py(ha(y))
Ps Ps3(y) ~ P3(hs(y))
Ps Pu(y) ~ Py(ha(y))

KR 2014 16 / 26

From RT Nets to DCDSs - The Transfer Case unibz

Y H

Po Po(y) ~ Po(ho(y))
Pi Piy) ANy#m ~ Pi(h(y))
c(z1): ¢ P2 Pa(y) ~ Py(ha(y))
Ps Ps3(y) ~ P3(hs(y))
Pz Pu(y) ~ Py(ha(y))

A There is an effect involving two different relations (P2 and Py)! J

Marco Montali (unibz) State-Boundedness KR 2014 16 / 26

Is the Translation Correct? unibz
The resulting DCDS has a lossy behavior.

Marco Montali (unibz) State-Boundedness

Is the Translation Correct?
The resulting DCDS has a lossy behavior.

Petri net

7@

unibz

DCDS

PO oo — t

Marco Montali (unibz)

ho(a) = a, ho(b) = a, ho(c) = ¢

State-Boundedness

e

o —>

P(] —{ t -
ho(a) = a, ho(b) = a, ho(c) = a
T Lg Py e — t >

t

KR 2014

> o .o

17 / 26

Is the Translation Correct? unibz

However. ..

The resulting DCDS reproduces all behaviors of the net (and more).

Marco Montali (unibz) State-Boundedness KR 2014 18 / 26

Is the Translation Correct? unibz

However. . .

The resulting DCDS reproduces all behaviors of the net (and more).

Theorem

An RT net is (structurally) bounded if and only if the corresponding
DCDS is (structurally) state-bounded.

Marco Montali (unibz) State-Boundedness KR 2014 18 / 26

LRT DCDS

Data Layer

Schema R with unary relations only, and no constraint.

unibz

Process

Only one rule per action, of the form Q(Z) — «(Z), where

Q(:El,. oo

7xn) =

i€{l,...

,n}, Pi#Pj for i#j

Shape of action a(Z)

For each P; € RELS(Q)), @ must contain:

o Pi(y) Ay # zi ~ Pi(fi(y))

and may contain:

® true ~ P;(gi())

For each P, € R \ RELS(Q®), @ may contain:
® Pi(y) ~ Pi(hu(y)

)
o either true ~~> P;(g;()),
i (y

or Pj(y) ~ Pj(h;(y))
for some P; € R\ (RELS(Q) U P;).

v

Marco Montali (unibz)

State-Boundedness

KR 2014 19 / 26

From LRT DCDSs to RT Nets unibz

Consider schema R = { Py, P1, P2, P3, P,}, and action t with:
e process condition-action rule Py(zo) A Pi(z1) — t(zo, 21)

Po(y) Ny #x0 ~ Po(fo(y))
Pi(y)Ny#x1 ~ Pi(fi(y))
« sction t(a) { 7 ~ PO
P3(y) ~ Py(hs(y))
Py(y) ~ - Py(ha(y))

Marco Montali (unibz) State-Boundedness KR 2014 20 / 26

From LRT DCDSs to RT Nets

Consider schema R = { Py, P1, P2, P3, P,}, and action t with:
e process condition-action rule Py(zo) A Pi(z1) — t(zo, 21)

Po(y) Ny # xo
Pi(y) Ny # m

e action t(zp, z1) :

Marco Montali (unibz)

State-Boundedness

>

>
>
>
>
>

KR 2014

unibz

20/ 26

From LRT DCDSs to RT Nets unibz

Consider schema R = { Py, P1, P2, P3, P,}, and action t with:
e process condition-action rule Py(zo) A Pi(z1) — t(zo, 21)

Po(y) Ny #x0 ~ Po(fo(y))
Pi(y)Ny#x1 ~ Pi(fi(y))
« sction t(a) { 7 ~ PO
P3(y) ~ Py(hs(y))
Py(y) ~ - Py(ha(y))

Marco Montali (unibz) State-Boundedness KR 2014 20 / 26

=+

From LRT DCDSs to RT Nets unibz

Consider schema R = { Py, P1, P2, P3, P,}, and action t with:
e process condition-action rule Py(zo) A Pi(z1) — t(zo, 21)

Po(y) Ny #x0 ~ Po(fo(y))
Pi(y)Ny#x1 ~ Pi(fi(y))
« sction t(a) { 7 ~ PO
P3(y) ~ Py(hs(y))
Py(y) ~ - Py(ha(y))

=+

Vs

Marco Montali (unibz) State-Boundedness KR 2014 20 / 26

From LRT DCDSs to RT Nets unibz

Consider schema R = { Py, P1, P2, P3, P,}, and action t with:
e process condition-action rule Py(zo) A Pi(z1) — t(zo, 21)

Po(y) Ny #x0 ~ Po(fo(y))
Pi(y)Ny#x1 ~ Pi(fi(y))
« sction t(a) { 7 ~ PO
P3(y) ~ Py(hs(y))
Py(y) ~ - Py(ha(y))

Marco Montali (unibz) State-Boundedness KR 2014 20 / 26

From LRT DCDSs to RT Nets unibz

Consider schema R = { Py, P1, P2, P3, P,}, and action t with:
e process condition-action rule Py(zo) A Pi(z1) — t(zo, 21)

Po(y) Ny #x0 ~ Po(fo(y))
Pi(y)Ny#x1 ~ Pi(fi(y))
+ acion tm,m) | 11 ~ R0)
P3(y) ~ Py(hs(y))
Py(y) ~ - Py(ha(y))

Marco Montali (unibz) State-Boundedness KR 2014 20 / 26

From LRT DCDSs to RT Nets unibz

Consider schema R = { Py, P1, P2, P3, P,}, and action t with:
e process condition-action rule Py(zo) A Pi(z1) — t(zo, 21)

Po(y) Ny #x0 ~ Po(fo(y))
Pi(y)Ny#x1 ~ Pi(fi(y))
« sction t(a) { 7 ~ PO
P3(y) ~ - Py(hg(y))
Py(y) ~ - Py(ha(y))
@ Theorem

An LRT DCDS is (structurally)
state-bounded if and only if the
corresponding RT net is
(structurally) bounded.

Marco Montali (unibz) State-Boundedness KR 2014 20 / 26

State-Boundedness Spectrum unibz

state structural state
boundedness boundedness

UNDEC.

[LR DCDSs] [LT DCDSs] [LR DCDSs]

& LT DCDSs
- DEC.
: g EXPSPACE

Marco Montali (unibz) KR 2014 21 /26

Take Home Message unibz
LRT DCDSs are weak:

Only unary relations.

Only conjunctions without joins in conditions.

Only atomic queries inside effects (possibly with a value inequality).

Very limited use of negation (inequalities).

No direct transfer of values from one state to the other.

Marco Montali (unibz) State-Boundedness KR 2014 22 /26

Take Home Message unibz
LRT DCDSs are weak:

Only unary relations.

Only conjunctions without joins in conditions.

Only atomic queries inside effects (possibly with a value inequality).

Very limited use of negation (inequalities).
e No direct transfer of values from one state to the other.

Still, to ensure that (structural) state-boundedness is decidable . ..

Boundedness

All relations must appear on the left-hand side of action effects, i.e.,
contribute to form the new state.

Structural Boundedness

Each action must be such that only a fixed amount of tuples is added
to/removed from each relation in the schema.

v

Marco Montali (unibz) State-Boundedness KR 2014 22 /26

Back to our Question unibz

Central question

Do there exist significant classes of data-aware dynamic systems for
which checking state-boundedness is decidable?

Answer

Hence, it becomes important to provide significant sufficient, checkable
syntactic conditions that guarantee structural state-boundedness.

Marco Montali (unibz) State-Boundedness KR 2014 23 /26

Back to our Question unibz

Central question

Do there exist significant classes of data-aware dynamic systems for
which checking state-boundedness is decidable?

v

Answer

Hence, it becomes important to provide significant sufficient, checkable
syntactic conditions that guarantee structural state-boundedness.

We follow this line, focusing on DCDSs and starting from
[BagheriHaririEtAI-PODS13].

Marco Montali (unibz) State-Boundedness KR 2014 23 /26

GR-Acyclicity [BagheriHaririEtAI-PODS13] unibz

Example
Consider a DCDS with process {true — «()}, and

KR 2014 24 /26

GR-Acyclicity [BagheriHaririEtAI-PODS13] unibz

Example
Consider a DCDS with process {true — «()}, and

P(z) ~ P(x)
a() : § Pz) ~ Qf(x))
Q(z) ~ Q(z)

We approximate the DCDS data-flow through a dependency graph.

The system is not state-bounded, due to:
e a generate cycle that continuously feeds a path issuing service calls;
e a recall cycle that accumulates the obtained results.
o (+ the fact that both cycles are simultaneously active)

GR-acycliclity detects exactly these undesired situations.
Marco Montali (unibz) State-Boundedness KR 2014 24 / 26

Our Contribution unibz

oo
Y
‘ GR ’ in CONP ! in 35

Marco Montali (unibz) State-Boundedness

Our Contribution

)

Marco Montali (unibz)

—

—
/:/V

GR++

in CONP ! in X5

State-Boundedness

JGRTT

unibz

Conclusion unibz

1.

No significant decidable classes of data-aware dynamic systems for which
state-boundedness is decidable.

2.
It becomes crucial to provide checkable, sufficient conditions.

e We have built on results on chase termination for tuple-generating
dependencies, providing a family of conditions for DCDSs.

Ongoing and future work

o Refine the syntactic conditions to handle if-then-else effects.

e Follow a different approach: provide modelling guidelines towards
systems that are structurally state bounded by design.

Preliminary results in [SolomakhinEtAl-ICSOC13].

v

Marco Montali (unibz) State-Boundedness KR 2014 26 / 26

