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Overview

I Linear logic, some general features, proof-search complexity,

I A model for (multi-unit) combinatorial auctions,

I Modelling agents bids as formulas of linear logic,

I Modelling allocations of goods to bidders as proofs in linear logic,

I Adequacy of the notion of proof to capture allocations,

I Further applications, and some conclusions.



Linear Logic: resource-sensitive account of proofs

(Girard, 1987)
In classical logic sequent calculus, structural rules of contraction and weakening
define how to deal with hypotheses in a proof:

Γ,A,A,` ∆
(C)

Γ,A ` ∆

Γ ` ∆ (W)
Γ,A ` ∆

W and C determine the behaviour of logical connectives, in particular they
make the following two presentations of logical rules are equivalent:

Γ ` A ∆ ` B ∧
Γ,∆ ` A ∧ B

Γ ` A Γ ` B ∧
Γ ` A ∧ B

(multiplicative and additive presentation)

I Rejecting structural rules, we are lead to define two conjunctions with
different behavior: copying contexts (⊗) or identifying them (&).
Linear logic rejects the global validity of structural rules providing a
resource sensitive account of proofs.



Example: meaning of linear logic connectives

Meaning of linear logic connectives:

I Price: 27 euros,

I Appetizer: Prosciutto e melone/fichi (depending on season)

I Primo: Spaghetti/Gnocchi,

I Drink: Water (as much as you like)

Pz ( ((P ⊗M)⊕ (P ⊗ F ))⊗ (S & G)⊗!W

A ( B : consuming one A, you get one B;
A⊗ B : you have one copy of A and one of B. E.g. A⊗ B 0 A: in order to sell
A and B, we need someone who buys both A and B.
A⊕ B : you have one of the two but you cannot chose;
A & B : you have one of the two and you can chose;

!A : use A ad libitum (! reintroduce structural rules)



Horn sequents for LL, (Kanovich, 1994)

Proof-search complexity results:

I MLL (⊗, `): NP-complete (and so is MLL with full weakening (W))
(Lincoln, 1995).

I IMLL, IMLL with (W): intuitionistic versions (single-conclusion sequents):
NP-complete

I MALL (⊗, `, &, ⊕) and IMALL are PSPACE-complete (Lincoln et al.,
1992).

We will use Horn sequents (HLL) , i.e. sequents must be of the form X , Γ ` Y
where X and Y are tensors of positive atoms, and Γ is one of the following
(with Xi , Yi being tensors of positive atoms):

(i) ⊗-Horn implications: (X1 ( Y1)⊗ · · · ⊗ (Xn ( Yn)

(ii) &-Horn implications: (X1 ( Y1) & · · ·& (Xn ( Yn)

HLL is NP-complete, and so is HLL + W (Kanovich, 1994)



A model of (multi-unit) combinatorial auctions

I An auctioneer wants to sell elements of a finite multiset of goods M
(with finite multiplicity) to a group of bidders.

I We define Atoms A = {p1, . . . , pm} as the elements of M ignoring their
multiplicity. Then, multisets of goods can be defined as tensor formulas.
E.g. p ⊗ p ⊗ q.

I Bids: 〈Bi ,wi 〉, with Bi ⊆M and a price wi .

I Bids generate valuations: v〈B,w〉 : P(M) −→W , v〈B,w〉(X ) = w if
B ⊆ X , v(B,w)(X ) = 0 otherwise.

I An allocation A is a function associating goods to bidders.

I The value of an allocation (here) is given by the sum of the satisfied bids.

I Winner determination problem: finding an allocation that maximizes the
revenue.



Bids as LL formulas
We model atomic bids as formulas of the form:

B ( uk

(if you give me B, I give you uk)

where B is a tensor product of atoms in A and uk is used to model prices
symbolically: prices are tensors of a given unit symbol u: uk = u ⊗ . . .|{z}

k−times

⊗u

The agreement between the auctioneer and a bidder is interpreted as modus
ponens:

I Non-free disposal (a bidder is willing to obtain exactly what she
demands): (LL)

p, q, r| {z }
goods

, p ⊗ q ⊗ r ( uk| {z }
bid

` uk

I Free disposal (a bidder is willing to obtain at least what she demands):
(W)

p, q, r , s, t| {z }
goods

, p ⊗ q ⊗ r ( uk| {z }
bid

`W uk



Complex bids: three bidding languages

We can adapt three well known bidding languages for single-unit case to the
multi-unit case: XOR, OR (Nisan 2006) and K-additive languages (Chevaleyre
et al., 2008). All these languages can be defined using Horn sequents:

I XOR bids: a bidder would like to get at most one of the bundles she
specifies, for the associated price

(B1 ( w1) & . . . & (B` ( w`),

I OR-bids: a bidder would pay the sum of the corresponding wi for each
bundle of goods Bi she gets

(B1 ( w1)⊗ · · · ⊗ (B` ( w`),

I k-additive bids: bidders specify weights for the marginal valuations derived
from sets of goods

(B1 ( B1 ⊗ w1)⊗ · · · ⊗ (B` ( B` ⊗ w`),

(Remark: a bundle of goods B is available for satisfying different bids)



Valuations defined by formulas

The following definition of valuation induced by bids applies to atomic bids as
well as to the more powerful bidding languages:
Every bid formula bid generates a valuation vbid mapping multisets X ⊆M to
prices:

vbid(X ) = max{k | X ,bid ` uk}

(the value of is given by the maximal k we can prove using the bid and the
multiset of goods X )

I Simple additive valuation can be expressed in the OR language via:O
i∈{1,...,m}

[(pi ( u)⊗ · · · ⊗ (pi ( u)| {z }
M(pi ) times

]

I Simple unit demand valuation, can be expressed in the XOR language via:

(p1 ( u) & · · ·& (pm ( u)



Allocation as proof search
There are many logical languages modelling bids, however linear logic can also
model procedural aspects: we show how we can model allocations as proofs in
linear logic:

Firstly, we define bids with indexed resources: e.g. bidder’s i bid are expressed
as pi ⊗ qi ( uk .
We specify which bidder gets which good by means of the following formula:

map :=
O
p∈A

[&j∈N (p ( pj)]M(p)

(for each good, the formula choses an agent j who gets it)

Define an allocation sequent for goods p1, . . . , pm, bids bid1, . . . ,bidn, and
revenue k as the following HLL sequent:

p1, . . . , pm| {z }
goods

,
O
p∈A

[&j∈N (p ( pj)]M(p)

| {z }
who gets what

,bid1, . . . ,bidn| {z }
bids

` uk|{z}
revenue

(Given goods p1, . . . , pm and bids bid1, . . . ,bidn, we can prove the revenue uk)



Example

Goods owned by the auctioneer: p, q, r , s.
Bidders: 1,2.
Bids:
(p1 ( u3)⊗ (q1 ( u2) (OR bid);
(r 2 ( u2) & (q2 ( u2) (XOR bid)

Question: can we achieve revenue u7?

i.e. can we prove

p, q, r , s,map, (p1 ( u3)⊗ (q1 ( u2), (r 2 ( u2) & (q ( u2) ` u7

?
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p, q, r , s,map, (p1 ( u3)⊗ (q1 ( u2), (r 2 ( u2) & (q ( u2) ` u7

p ` p p1 ` p1

p, p ( p1 ` p1 u3 ` u3

p, p ( p1, p1 ( u3 ` u3

q ` q q1 ` q1

q, q ( q1 ` q1 u2 ` u2

q, q ( q1, q1 ( u2 ` u2

⊗
p, q, p ( p1, q ( q1, (p1 ( u3)⊗ (q1 ( u2)| {z }

OR bid

` u3 ⊗ u2

r ` r r 2 ` r 2

r , r ( r 2 ` r 2 u2 ` u2

r , r ( r 2, r 2 ( u2 ` u2

&
r , r ( r 2, (r 2 ( u2) & (q ( u2)| {z }

XOR bid

` u2

. . .

p, q, r| {z }
Goods actually used

, p ( p1, q ( q1, r ( r 2| {z }
who gets what

, (p1 ( u3)⊗ (q1 ( u2), (r 2 ( u2) & (q ( u2)| {z }
bids

` u3 ⊗ u2 ⊗ u2| {z }
revenue

Then, we build up the map formula:

& L
p, q, r| {z }

Goods actually used

, map|{z}
who gets what
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bids

` u3 ⊗ u2 ⊗ u2| {z }
revenue

Unallocated goods are obtained by weakening:

Weakening
p, q, r| {z }

Goods actually used

, s, map|{z}
who gets what
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bids
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revenue
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Allocations as proofs:

We can prove the following result:

Proposition
Given n bids in any of the bidding languages introduced (XOR, OR, k-add.),
every allocation α with revenue k provides a proof π of an allocation sequent
for k, and vice versa, every proof π of an allocation sequent for k provides an
allocation α with revenue k.

Remark on Complexity :

I For the three languages presented (OR, XOR, K-add.), checking whether
revenue k is attainable is in NP (proof-search for HLL).

I So our form of modelling the problem does not increase complexity with
respect to the standard approach
(Cramton, Shoham, Steinberg, Combinatorial Auctions).

I Of course, the Proposition only provides a method for solving the decision
variant of the WDP.



Some conclusions

I We saw how fragments of linear logic can be used to model in a principled
general framework several bidding languages for multi-unit combinatorial
auctions.
Moreover, the allocation procedure can be modelled within our framework
as a proof of a particular sequent, so our logical model takes into account
procedural aspects.

I Further applications of our model:

I Mixed auctions : agents trade transformations of goods (or
capabilities), negotiation.

I Language expressivity : we can specify different kinds of goods:
sharable vs. non-sharable (between agents), reusable vs.
non-reusable (by a single agents. E.g. menu example !W ).

I Formula auctions : agents trade general formulas (generalization of
bids).

I Further works: succintness of the languages. We can study different
aggregators in the general framework of resource allocation, e.g.
egalitarian aggregation and fair division.
Properties of allocations as properties of proofs (qualitative analysis of
allocations, importing techniques from proof theory of LL).
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