Answering Queries in Description Logics: Theory and Applications to Data Management

Diego Calvanese¹, Michael Zakharyaschev²

¹ KRDB Research Centre Free University of Bozen-Bolzano

² Birbeck College, London

ESSLLI 2010, August 14–20, 2010 Copenhagen, Denmark

Overview of the Course

- Introduction and background
 - Ontology-based data management
 - Brief introduction to computational complexity
 - Query answering in databases
 - Querying databases and ontologies
- 2 Lightweight description logics
 - Introduction to description logics
 - **O** DLs for conceptual data modeling: the *DL-Lite* family
 - The *EL* family of tractable description logics
- Query answering in the *DL-Lite* family
 - Query answering in description logics
 - O Lower bounds for more expressive description logics
 - Query answering by rewriting
- The combined approach to query answering
 - Query answering in DL-Lite: data completion
 - Query rewriting in \mathcal{EL}
- Linking ontologies to relational data
 - The impedance mismatch problem
 - Query answering in Ontology-Based Data Access systems
- 6 Conclusions and references

Lecture 4:

The combined approach to query answering in *DL-Lite* and \mathcal{EL}

(A survey of query answering techniques

for *DL-Lite* and \mathcal{EL} logics)

Recommended reading

DL-Lite

available on the web

- (1) A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev. *The DL-Lite family and relations.* JAIR, 36:1–69, 2009.
- (2) R. Kontchakov, C. Lutz, D. Toman, F. Wolter and M. Zakharyaschev. *The combined approach to query answering in DL-Lite.* Proceedings of KR 2010.
- (3) R. Rosati and A. Almatelli. *Improving query answering over DL-Lite ontologies*. Proceedings of KR 2010.

\mathcal{EL}

(4) C. Lutz, D. Toman, F. Wolter. Conjunctive query answering in the description logic *EL* using a relational database system, Proceedings of IJCAI 2009.

Acknowledgements: Roman Kontchakov, Carsten Lutz, Frank Wolter

Ontology-based data access: the story so far

• Next generation of information systems: instance data + ontologies

Reasoning problem: answering queries over knowledge & data

• Instance queries q=C(x) over a TBox ${\mathcal T}$ and an Abox ${\mathcal A}$

an ABox individual a is an <u>answer</u> iff $\mathcal{T}, \mathcal{A} \models C(a)$

Example $T = \{Boss \sqsubseteq Employee\}, A = \{Boss(bob)\}, q = Emploee(x)$

`list all employees'

Answer: x = bob (not an answer over \mathcal{A} alone)

 $\mathcal{T}, \mathcal{A} \models C(a)$ iff there is no $\mathcal{I} \models \mathcal{T} \cup \mathcal{A}$ such that $\mathcal{I} \models \neg C(a)$ iff $\mathcal{T} \cup \mathcal{A} \cup \{\neg C(a)\}$ is not satisfiable

Instance checking is as complex as satisfiability checking

The story so far: more complex queries

• Conjunctive queries $q = \exists ec{y} \, arphi(ec{x}, ec{y})$,

where $arphi(ec{x},ec{y})$ is a conjunction of atoms A(z) , R(z,z') with $z,z'\inec{x}\cupec{y}$

 $ec{x}$ are the answer variables, $ec{y}$ the quantified variables

a tuple \vec{a} of ABox individuals is an <u>answer</u> iff $\mathcal{I} \models \exists \vec{y} \varphi(\vec{a}, \vec{y})$ for every $\mathcal{I} \models \mathcal{T} \cup \mathcal{A}$

usually more complex than satisfiability

complexity of answering CQs without quantified variables?

- Positive existential queries $q = \exists \vec{y} \varphi(\vec{x}, \vec{y}), \quad \varphi \text{ may contain both } \land \text{ and } \lor$ (but no ¬)
- General FO queries may contain \land , \lor , \neg , \forall , \exists

no good: validity of FO formulas is undecidable

description logics for which ontology-based query answering is

(1) as efficient as database query answering and

(2) based on relational database management systems

Answering CQs in *DL-Lite*^{\mathcal{N}} exercise

Research \sqsubseteq \exists worksln,

Project \sqsubseteq \exists manages $^-$,

 $\exists teaches \sqsubseteq$ Academic \sqcup Research,

```
Research \sqcap Visiting \sqsubseteq \perp,
```

 $\exists worksln^- \sqsubseteq Project,$

 \exists manages \sqsubseteq Academic \sqcup Visiting,

Academic \sqsubseteq \exists teaches $\sqcap \leq 1$ teaches,

 \exists writes \sqsubseteq Academic \sqcup Research,

 $\mathcal{A} = \{ \text{teaches}(a, b), \text{teaches}(a, c) \}$

 $q = \exists y ((\exists teaches)(y) \land (\leq 1 teaches)(y))$

is there anybody who teaches precisely one module?

 $\mathcal{T}' = \mathcal{T} \cup \{ \forall isiting \sqsubseteq \geq 2 \text{ writes} \}$

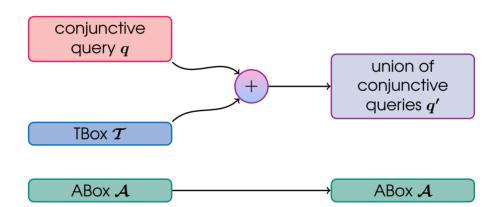
Disjunction is (NP-) hard even for data complexity

Only Horn logics can be suitable for ontology-based data access

Approach 1: query rewriting

Given a CQ $q(ec{x})$ over $\mathcal T$, rewrite $q(ec{x})$ into an FO query $q'(ec{x})$ such that

for all $\mathcal A$ and ec a, $\mathcal T, \mathcal A \models q[ec a]$ iff $\mathcal A \models q'[ec a]$



'Maximal' DLs for which query answering is in FO (=AC⁰) for data complexity:

 $DL-Lite_{horn}^{(\mathcal{H},\mathcal{N})}$ under UNA and $DL-Lite_{horn}^{\mathcal{H}}$ without UNA ESSLLI 2010, Copenhagen, Answering queries in DLs (4)

Query rewriting (cont.)

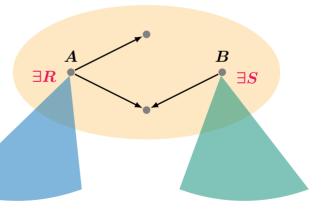
<u>Want:</u> all tuples \vec{a} of individuals in \mathcal{A} such that $\mathcal{I}_{\mathcal{K}} \models q(\vec{a})$ where $\mathcal{I}_{\mathcal{K}}$ is the **canonical model** of $\mathcal{K} = (\mathcal{T}, \mathcal{A})$

<u>Can:</u> query the ABox \mathcal{A} (using an RDBMS)

To construct the canonical model $\mathcal{I}_{\mathcal{K}}$:

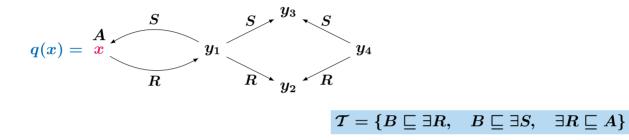
1. take the ABox

- 2. apply TBox axioms to ABox
- 3. satisfy the existential quantifiers by introducing `fresh' witnesses



Query rewriting: exercise

Compute the rewriting q' for the following CQ and TBox:



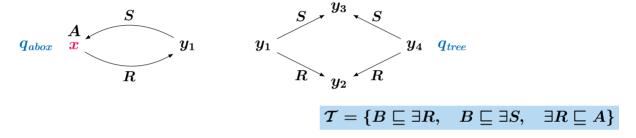
or

$$egin{aligned} q(x) &= \exists y_1, y_2, y_3, y_4 \left[A(x) \wedge R(x,y_1) \wedge S(y_1,x) \wedge
ight. \ & \left. R(y_1,y_2) \wedge S(y_1,y_3) \wedge R(y_4,y_2) \wedge S(y_4,y_3)
ight] \end{aligned}$$

Hint: Consider all possible locations for y_1 , y_2 , y_3 , y_4 in the canonical model (in ABox or the tree part)

Exercise (cont.)

Suppose y_1 is in the ABox, while y_2 , y_3 , y_4 are in the tree part

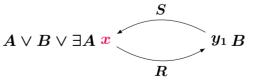


• Which concepts at y_1 can ensure that there is a match for q_{tree} in

the canonical model?

Which concepts at x can ensure A?

rewritten query for this partition:



take disjunction of such queries for all partitions

ESSLLI 2010, Copenhagen, Answering queries in DLs (4)

Query rewriting: summary

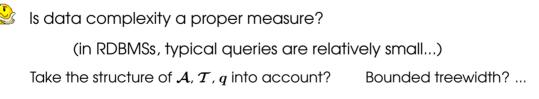
Off-the-shelf RDBMSs can be used for CQ answering in *DL-Lite* working systems available (Quonto, Requiem, Presto)

3

Experimental results: not scalable for large *DL-Lite_{core}* ontologies

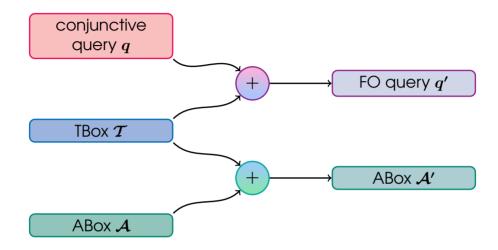
complexity paradox?

<u>Reason:</u> q over $(\mathcal{T}, \mathcal{A}) \sim_{\mathcal{T}} q'$ over \mathcal{A} with $|q'| = O(|\mathcal{T}| \cdot |q|)^{|q|}$ is it optimal?



The rewriting approach is not applicable to other tractable DLs, e.g., \mathcal{EL} why?

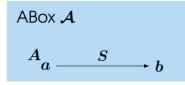
Approach 2: data completion



- Extend ABox to the canonical model of $(\mathcal{T}, \mathcal{A})$
- Encode it as a finite structure \mathcal{A}'
- Rewrite q into q' to ensure that the answers to q' over \mathcal{A}' are correct

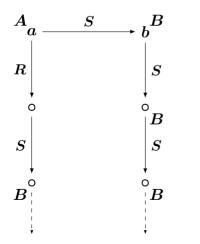
 \rightarrow combined approach

Compact canonical models (example)

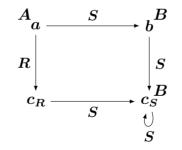


TBox ${\cal T}$	
$A \sqsubseteq \exists R,$	$\exists S^{-} \sqsubseteq B,$
$\exists R^{-} \sqsubseteq \exists S,$	$\exists S^- \sqsubseteq \exists S$

Canonical model $\mathcal{I}_{\mathcal{K}}$



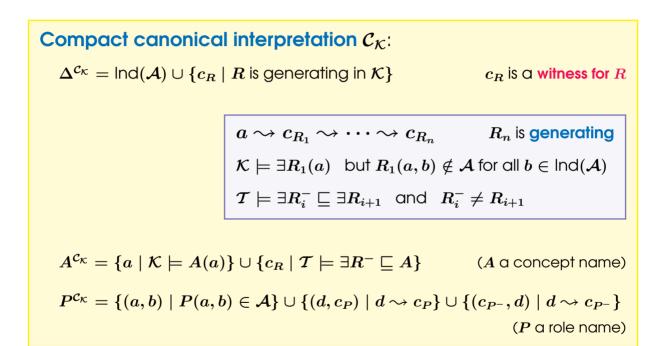
'Compact' canonical model $\mathcal{C}_{\mathcal{K}}$



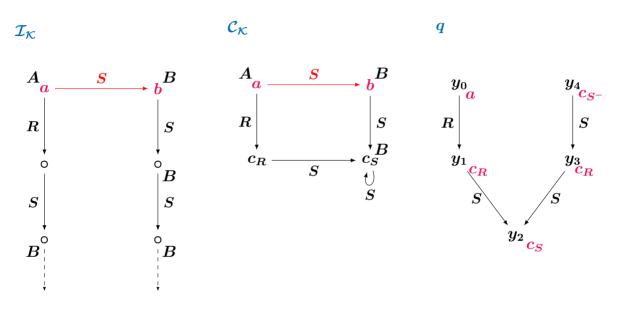
 $\mathcal{I}_{\mathcal{K}}$ is obtained by 'unravelling' $\mathcal{C}_{\mathcal{K}}$

Does $\mathcal{C}_{\mathcal{K}}$ give correct answers to queries?

Constructing $\mathcal{C}_{\mathcal{K}}$



Querying $\mathcal{C}_{\mathcal{K}}$



What is the answer to q over $\mathcal{I}_{\mathcal{K}}$?

What is the answer to q over $C_{\mathcal{K}}$?

Find an FO expressible condition for such situations

Tree witnesses

Given $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, q and $R(x, y) \in q$,

one can compute (in polynomial time) a partial function

$$f_{R(x,y)}: terms(q)
ightarrow \{c_S \mid S ext{ used in } \mathcal{K} \} \cup \{ arepsilon \}$$

such that

- if $f_{R(x,y)}$ does not exist then y cannot mapped to c_R
- if y is mapped to c_R in $\mathcal{C}_{\mathcal{K}}$ and $f_{R(x,y)}(z)$ is defined then

– if $f_{R(x,y)}(z)=arepsilon$ then we must have x=z

– otherwise z must be mapped to $f_{R(x,y)}(z)$

In the previous example, $f_{R(y_1,y_2)}(y_3)=arepsilon$

 $f_{R(y,y)}$ does not exists

Query rewriting for *DL-Lite*^N_{horn} (1)

rewrite a given CQ $q=\existsec{u}\,arphi$ into an FO query q^{\dagger} such that

• answers to q over $\mathcal{I}_{\mathcal{K}}$ = answers to q^{\dagger} over $\mathcal{C}_{\mathcal{K}}$

$$ullet \ |q^{\dagger}| = O(|q| \cdot |\mathcal{T}|)$$

$$q^{\dagger}=\existsec{u}\left(arphi\wedgearphi_{1}\wedgearphi_{2}\wedgearphi_{3}
ight)$$

$$arphi_1 = igwedge_{v
otin ec u} igwedge_R$$
 a role in au $(v
eq c_R)$

`all answer variables must get ABox values'

NB. if φ_1 is replaced with $\varphi'_1 = \bigwedge_{v \notin \vec{u}} \neg aux(v)$, where aux is a new relation containing all c_R , then $|q^{\dagger}| = O(|q|)$

Query rewriting for *DL-Lite*^{\mathcal{N}}_{horn} (2)

$$arphi_2 = igwedge_{R(x,y)\in q} (y
eq c_R) \ f_{R(x,y)} ext{ does not exist}$$

if no tree witness exists then y cannot be mapped to a non-ABox element

$$arphi_3 = igwedge_{R(x,y)\in q} igwedge_{f_{R(x,y)} ext{ exists}} ig((y=c_R) \ o igwedge_{f_{R(x,y)}(z)=arepsilon} igwedge_{f_{R($$

Exercises

Exercise 1: compute q' for the exercise on page 13

$$arphi_1=arphi_2= op$$
 $arphi_3=(y_2=c_S) o (y_1=y_3)$

Exercise 2: Use the rewriting and combined approaches for the following KB and query:

$$q(x) = \text{teaches}(x, y), \text{hasTutor}(y, z), \text{hasTutor}(u, z)$$

Query answering in *DL-Lite*^(\mathcal{HN})_{horn}

what can we do with role inclusions?

Reduce **positive existential queries** over *DL-Lite*^($\mathcal{H}\mathcal{N}$) KBs to unions of (**exponentially many**) CQs over *DL-Lite*^{\mathcal{N}}_{horn} KBs <u>Step 1.</u> *DL-Lite*^($\mathcal{H}\mathcal{N}$) KB $\mathcal{K} = (\mathcal{T}, \mathcal{A}) \implies DL-Lite$ ^{\mathcal{N}}_{horn} KB $\mathcal{K} = (\mathcal{T}_h, \mathcal{A})$ by replacing all $\mathbb{R} \sqsubseteq^* S$ with $\exists \mathbb{R} \sqsubseteq \exists S$ (\sqsubseteq^* is the transitive closure of \sqsubseteq) <u>Step 2.</u> Positive existential q over $\mathcal{K} \implies$ union of CQs q_h over $\mathcal{C}_{\mathcal{K}_h}$: – replace each $\mathbb{R}(t, t')$ in q with $\bigvee_{S \sqsubset^* \mathbb{R}} S(t, t')$

- convert result into disjunctive normal form (exponential blowup)

 $\leq r^{|q|}$ conjuncts, where r is the depth of \sqsubseteq^*

$$\mathcal{K}\models q(ec{a})$$
 iff $\mathcal{C}_{\mathcal{K}_h}\models q_h$

is there a polynomial rewriting?

Other applications

• $\mathcal{C}_{\mathcal{K}}$ can be constructed by first-order queries \rightsquigarrow

pure polynomial rewriting for $DL-Lite_{core}^{(\mathcal{N})}$

- without the UNA, the technique is applicable to query answering in DL-Lite^(\mathcal{HF}) (which is P-complete for data complexity)
- experiments show that the approach is **competitive** with executing the **original query** over the data (the formulas $\varphi_1 - \varphi_3$ introduce additional selection conditions on top of the original query)

Open questions

- is the exponential blowup unavoidable for role inclusions?
- is the exponential blowup unavoidable for positive existential queries?
- for which DLs pure rewriting can be polynomial?

Query rewriting in \mathcal{EL}

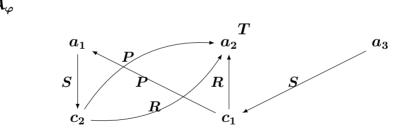
The query rewriting approach cannot work for \mathcal{EL} because already

instance checking in *EL* is **PTime-complete** w.r.t. data complexity

Lower bound: by reduction of PTime-complete entailment for Horn CNF

E.g.,
$$arphi = (a_1 \wedge a_2 o a_3) \wedge (a_2 o a_1) \wedge a_2$$

is encoded by the ABox

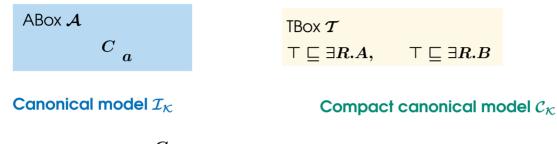


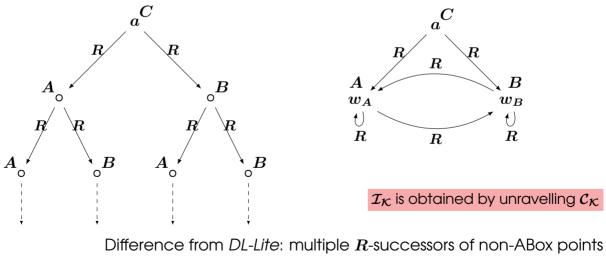
and the (φ -independent) TBox \mathcal{T} : $\mathcal{T} = \{ \exists S. (\exists P.T \sqcap \exists R.T) \sqsubseteq T \}$

$$arphi \models a_i \quad ext{iff} \quad (\mathcal{T}, \mathcal{A}_arphi) \models T(a_i)$$

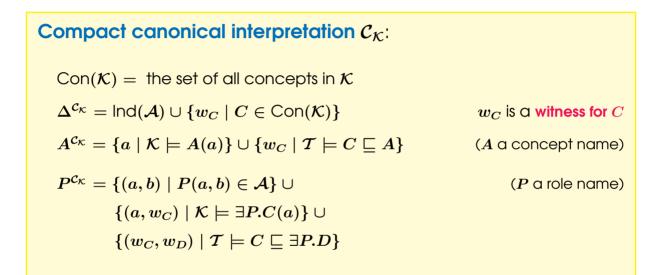
ESSLLI 2010, Copenhagen, Answering queries in DLs (4)

Compact canonical models for \mathcal{EL}





Constructing $\mathcal{C}_{\mathcal{K}}$



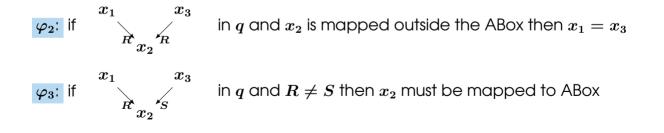
Query rewriting for \mathcal{EL}

rewrite a given CQ $q=\existsec{u}\,arphi$ into an FO query q^{\dagger} such that

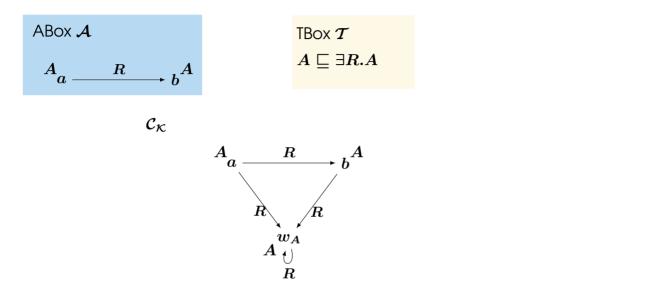
- answers to q over $\mathcal{I}_{\mathcal{K}}$ = answers to q^* over $\mathcal{C}_{\mathcal{K}}$
- $\bullet \quad |q^*| = O(|q| \cdot |\mathcal{T}|)$

$$q^{\dagger}=\existsec{u}\left(arphi\wedgearphi_{1}\wedgearphi_{2}\wedgearphi_{3}
ight)$$

 $arphi_1$: answer variables and variables in cycles in q must be mapped to ABox



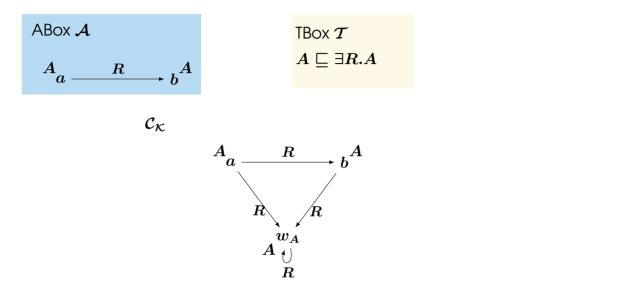
Query rewriting for \mathcal{EL} : example 1



 $q(x) \ = \ \exists y \ ig[R(x,y) \wedge R(y,y) ig]$ answers $x = a, \ \ x = b$

 $q^*(x) \;=\; \exists y \; ig[R(x,y) \land R(y,y) \land \mathsf{ABox}(x) \land \mathsf{ABox}(y) ig]$ no answer

Query rewriting for \mathcal{EL} : example 2



$$q(x,x') \;=\; \exists y \;ig[R(x,y) \wedge R(x',y) \wedge R(x,x')ig]$$
 answers $x=a, \;\; x'=b$

ESSLLI 2010, Copenhagen, Answering queries in DLs (4)

Discussion

Horn-SHIQ T. Eiter, G. Gottlob, M. Ortiz, M. Šimkus (2008):

answering CQs in Horn- \mathcal{SHIQ} is

- ExpTime-complete w.r.t. combined complexity, and
- PTime-complete w.r.t. data complexity

(no experimental data yet)

Combined technique for Horn-SHIQ?

Other formalisms? E.g., the TGD and EGD fragment of FOL $(\varphi \rightarrow \exists \vec{y}\psi)$

Datalog rewritings? E.g., *ELHIO* – H. Perez-Urbina, B. Motik, I. Horrocks (2009)

What is the proper complexity measure? E.g., can we have sameAs?

CWA or OWA? E.g., datalog^{\pm} A. Calì, G. Gottlob, T. Lukasiewicz (2009)