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Lecture 2:

‘Lightweight’ description logics:

DL-Lite and EL

[ A quick introduction to Description Logic,

focusing on tractable DL-Lite and EL logics ]
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Description Logic

http://en.wikipedia.org/wiki/Description_logic

DL is a (large) family of knowledge representation & reasoning formalisms

• more expressive than propositional logic

• less expressive than first-order logic
(≈ decidable modal logics, hybrid logics)

• developed by KR community for applications in AI

Application-driven equilibrium: expressiveness vs. computational costs

Applications:

• Ontologies (or terminologies) in medicine, bioinformatics, ...

• Semantic Web

• Ontology-based data access

Web Ontology Language (OWL) W3C standards OWL 1 (2004), OWL 2 (2009)

OWL = DL + XML
ESSLLI 2010, Copenhagen, Answering queries in DLs (2) 2

http://en.wikipedia.org/wiki/Description_logic


DL architecture

Knowledge Base (KB)

TBox (terminological box, schema)

Man ≡ Human uMale
Appendicitis v Disease u ∃morphology.Inflam

...

ABox (assertion box, data)

Man(john)
hasChild(john,mary)

...
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Description logic constructs

• Alphabet:

– concept names A0, A1, ... (e.g., Person, Female, ...)

– role names R0, R1, ... (e.g., hasChild, loves, ...)

– individual names a0, a1, ... (e.g., john, mary, ...)

– concept constructs: >, u, ¬, ∃, ∀, ≥ q, ... (e.g., Person u Female)

– role constructs: R−, R ◦ S, ... (e.g., isChildOf)

– axiom construct: v (e.g., Man v Person)

• Concepts:

– concept names

– >, ⊥, ¬C, C uD, ∀R.C, ∃R.C, ≥ qR.C,
where C, D are concepts and R a role

Examples: Person u Female, Person u ¬Female,
Person u ∃hasChild.>, Person u ∀hasChild.Male
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Description logic semantics

• (standard Tarski-style) interpretation is a structure I = (∆I, ·I)
– ∆I is the domain of I (a non-empty set)

– ·I is an interpretation function that maps:

∗ concept name Ai 7→ subset AIi of ∆I (AIi ⊆ ∆I)

∗ role name Ri 7→ binary relation RIi over ∆I (RIi ⊆ ∆I ×∆I)

∗ individual name ai 7→ element aIi of ∆I (aIi ∈ ∆I)

• interpretation of complex concepts in I:

– (>)I = ∆I and (⊥)I = ∅
– (¬C)I = ∆I \ CI

– (C uD)I = CI ∩DI

– (∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I
(
(x, y) ∈ RI → y ∈ CI

)
}

– (∃R.C)I = {x ∈ ∆I | ∃y ∈ CI (x, y) ∈ RI}
– (≥ qR.C)I =

{
x ∈ ∆I | ]{y ∈ CI | (x, y) ∈ RI} ≥ q

}
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TBoxes

statements about how concepts and roles are related to each other

A TBox T is a finite set of terminological axioms:

• C v D C is subsumed by D (concept inclusion)

• R v S R is a subrole of S (role inclusion)

an interpretation I satisfies an axiom
– I |= C v D iff CI ⊆ DI

– I |= R v S iff RI ⊆ SI

An interpretation I is a model of T if I satisfies every axiom of T
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ABoxes

assert knowledge about individuals

An ABox A is a finite set of assertional axioms

• C(a) concept assertion for an individual

• R(a, b) role assertion for a pair of individuals

an interpretation I satisfies an assertion
– I |= C(a) iff aI ∈ CI

– I |= R(a, b) iff (aI, bI) ∈ RI

An interpretation I is a model of a knowledge base K = (T ,A) if

I satisfies every axiom of T and A

ESSLLI 2010, Copenhagen, Answering queries in DLs (2) 7



OWL ontology example

• Protégé 4.0 a free, open source ontology editor

http://protege.stanford.edu/

where you can also find a library of ontologies

(tutorials explaining how to use Protégé are at

http://www.co-ode.org/resources/tutorials/ )

• built-in ontology reasoners FaCT++, Pellet or HermiT

http://owl.man.ac.uk/factplusplus/ http://pellet.owldl.com/

http://hermit-reasoner.com/
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Reasoning problems

Concept satisfiability: given T and a concept C, decide whether there is
I |= T with CI 6= ∅

Subsumption: given T and concepts C, D, decide whether T |= C v D
i.e., ∀I (I |= T → I |= C v D)

Instance checking: given K = (T ,A), C and an individual a from A,
decide whether K |= C(a)

Exercise: show that these three problems are reducible to each other

Conjunctive query answering: given a KB K = (T ,A), a CQ q(~x) and a tuple
~a of individual names from A, decide whether K |= q(~a)

Query answering is typically a harder problem than the other three
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First-order translation

A ; A(x)

¬C ; ¬C(x)

C uD ; C(x) ∧D(x)

∀R.C ; ∀y
(
R(x, y)→ C(y)

)
∃R.C ; ∃y

(
R(x, y) ∧ C(y)

)
≥ qR.C ; ∃y1, . . . , yq

∧
i<j

(
yi 6= yj ∧R(x, yi) ∧ C(yi)

)
C v D ; ∀x

(
C(x)→ D(x)

)
DL is embeddable into the 2-variable guarded fragment of first-order logic

(full FOL is undecidable; this guarded fragment is NExpTime-complete)

ESSLLI 2010, Copenhagen, Answering queries in DLs (2) 10



Unique name assumption (UNA)

An interpretation I is a model of a KB K = (T ,A) under the UNA if I |= K
and aIi 6= aIj , for any distinct object names ai and aj occurring in A

OWL: a more flexible approach

• UNA is dropped (so no restrictions on interpretations of object names)

• User is provided with the constructs = (sameAs) and 6= (differentFrom)
to explicitly impose constraints on individual names

• UNA is expressible: add ai 6= aj to A, for all distinct ai and aj in A

Price of = Have to check whether a = b inA under given equality constraints

Equivalent to reachability in undirected graphs, which is

LOGSPACE-complete

(Reingold 2008)
. . . just peanuts for most DLs, but not for DL-Lite & OWL 2 QL. . .
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The history of description logic so far

. . . – mid 1990s: efficient reasoning cannot afford full Booleans

sub-Boolean DLs with u and ∀ are enough

FL, AL, . . . combined complexity ≤ NP

mid 1990s – 2005 ‘efficient’ reasoning possible for ExpTime DLs (FaCT,...)

full Booleans and other constructs

SHIQ, SHOIN (≈ OWL 1), SROIQ (≈ OWL 2) ≥ EXPTIME

mid 2005 – . . . new challenges: answering queries & HUGE ontologies

Horn DLs with u and ∃

DL-Lite and EL families ≤ P
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Which DLs are suitable for ontology-based data access?

Aim: to achieve logical transparency in accessing data

– hide from the user where and how data is stored
– present only a conceptual view of the data
– query the data sources through the conceptual model using RDBMSs

AcademicStaff

Lecturer Module

teachessu
b

c
la

ss

range

domain
ontology

data sources
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Designing DL for conceptual data modelling

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..1

1..*

boss

 
projectName: String

Project
3..*

1..1

1..1

worksOn

manages

1..*

{disjoint, complete}

Translating into DL:

TopManager v Manager

AreaManager v ¬TopManager

Manager v AreaManager t TopManager

Employee v ∃salary.>>>

∃salary−.>>> v Integer

≥ 2 salary.>>> v ⊥

Project v ≥ 3 worksOn−.>>>

manages v worksOn

CEO u (≥ 5 worksOn.>>>) u ∃manages.>>> v ⊥ (integrity constraint)

DL-Lite
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Basic DL-Lite logics

1. DL-LiteNbool
R ::= P | P−

B ::= ⊥ | A | ≥ qR
C ::= B | ¬C | C1 u C2

TBox axioms C1 v C2

2. DL-LiteNhorn

TBox axioms B1 u · · · uBn v B

3. DL-LiteNkrom

TBox axioms B1 v B2 B1 v ¬B2 ¬B1 v B2

4. DL-LiteNcore = DL-LiteNhorn ∩ DL-LiteNkrom

under UNA
combined complexity sat.: NP

data comp. instance: in AC0

data comp. query: coNP

combined complexity: P
data comp. instance: in AC0

data comp. query: in AC0

comb. comp.: NLOGSPACE
d.c. instance: in AC0

d.c. query: coNP

comb. comp.: NLOGSPACE
d.c. instance: in AC0

d.c. query: in AC0

DL-Litebool, DL-Litehorn, DL-Litekrom, DL-Litecore: only ∃R available
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Observations and examples

DL-Lite can only speak about the domains and ranges of binary relations, and

how many successors and predecessors a point can have

but not about the types of these successors/predecessors;

types are defined uniformly by domain/range constraints

Examples. Describe the models of the following KBs:

1. T = {> v ∃R, ≥ 2R v ⊥}, (R is total and functional)

A = ∅

2. T = {A v ¬∃R−, A v ∃R, ∃R− v ∃R, ≥ 2−R v ⊥},

A = {A(a)}

• Infinite models are required; no finite model property

• Tree model property (see page 19)

• Can be simulated by first-order formulas with one variable (see page 20)
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Bisimulations for DL-LiteNbool

Let I and J be two interpretations.

A relation % ⊆ ∆I ×∆J is called a lite-bisimulation between I and J if

(concept) for every concept name A, if x%y then x ∈ AI iff y ∈ AJ

(role) for every role R, if x%y then x ∈ (= qR)I iff y ∈ (= qR)J

where q ∈ N ∪ {∞}, = qR ::= ≥ qR u ¬≥(q + 1)R

(I, x) ∼ (J , y) if there is a lite-bisimulation % between I and J with x%y

DL-LiteNbool concepts are invariant under lite-bisimulations, that is,

if (I, x) ∼ (J , y) then x ∈ CI iff y ∈ CJ , for every concept C

A first-order formula ϕ(x) is equivalent to a DL-LiteNbool concept iff

ϕ(x) is invariant under lite-bisimulations
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Global lite-bisimulations for DL-LiteNbool

A lite-bisimulation relation % between I and J is global if

– for every x ∈ ∆I there is y ∈ ∆J with x%y, and

– for every y ∈ ∆J there is x ∈ ∆I with x%y

I is lite-bisimilar to J , I ∼ J , if
there is a global lite-bisimulation between I and J

DL-LiteNbool TBoxes are invariant under global lite-bisimulations, that is,

if I ∼ J then I |= T iff J |= T , for every DL-LiteNbool TBox T

Given I and x ∈ ∆I , let tI(x) = {C | x ∈ CI} — the type of x in I

TI = {tI(x) | x ∈ ∆I} — set of all types in I

I ∼ J iff TI = TJ models are determined by their types ; 1-ary predicates
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Tree model propety

Every model of a DL-LiteNbool TBox is globally lite-bisimilar to a tree-shaped model

Examples. Construct a tree-shaped model which is globally lite-bisimilar to

t1

t2 t3

R R

R

where t1, t2, t3 are distinct types

Tree models of DL-LiteNbool KBs? ABox
A B

Why is the tree-model property so important?
ESSLLI 2010, Copenhagen, Answering queries in DLs (2) 19



Embedding DL-Lite into 1-variable FO logic

Satisfiability of DL-LiteNbool KBs is NP-complete (for combined complexity)

Proof DL-LiteNbool K ; K† (a universal 1-variable FO formula)

T = {A v ∃P−, ∃P− v A, A v ≥ 2P, > v ≤ 1P−, ∃P v A}, A = {A(a), P (a, a′)}

∀x
[
(A(x)→E1P

−(x))∧(E1P
−(x)→A(x))∧(A(x)→E2P (x))∧¬E2P

−(x)∧(E1P (x)→ A(x))

∧ (E2P (x)→E1P (x)) ∧ (E2P
−(x)→E1P

−(x))

∧ (E1P (x)→E1P
−(dp−)) ∧ (E1P

−(x)→E1P (dp))
]
∧ A(a)∧E1P (a)∧E1P

−(a′)

(∃P )I 6= ∅ iff (∃P−)I 6= ∅
∃xE1P (x)↔ ∃xE1P

−(x)

.

.

dp−

dp

a

a′

|= K†
.

.

dp−

dp

a

a′

|= K†
.

.

dp−

dp

a

a′

|= K† |= K

K is satisfiable iff K† is.

K† computed in LogSpace.

K† says that

– ∃ appropriate dr

– ∀ point is of proper type
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DL-Lite Horn, Krom and core (under UNA)

For DL-LiteNhorn KBs K, the translation K† is a conjunction of formulas of the form

(horn) ∀x
(
A1(x) ∧ · · · ∧An(x)→ A(x)

)
Satisfiability of Horn formulas is P-complete (combined complexity)

For DL-LiteNkrom KBs K, the translation K† is a conjunction of formulas of the form

(krom) ∀x
(
A1(x)→ A2(x)

)
, ∀x

(
A1(x)→ ¬A2(x)

)
, ∀x

(
¬A1(x)→ A2(x)

)
Satisfiability of Krom formulas is NLogSpace-complete (combined complexity)

For DL-LiteNcore KBs K, the translation K† is a conjunction of formulas of the form

(core) ∀x
(
A1(x)→ A2(x)

)
, ∀x

(
A1(x)→ ¬A2(x)

)
Satisfiability of core formulas is NLogSpace-complete (combined complexity)
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Canonical models for DL-LiteNhorn and DL-LiteNcore

For a consistent DL-LiteNhorn KB K = (T ,A), the canonical model IK
is constructed as follows:

1. take the ABox and add ≥ qR to t(a) if q-many R-arrows start from a in A

2. ‘saturate’ the existing types by applying the rules in T

3. for every x, if (≥ qR) ∈ t(x) but there are < q R-arrows starting from x,
draw the missing R-arrows to fresh points and add ∃R− to their types

4. go to Step 2

• If I |= K then there is a map h : ∆IK → ∆I such that,

for all x, y ∈ ∆IK , basic concepts B and roles R,

– if x ∈ BIK then h(x) ∈ BI ;

– if (x, y) ∈ RIK then (h(x), h(y)) ∈ RI

• K |= q(~a) iff IK |= q(~a)

Exercise: construct IK for K on page 20
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DL-Lite with role hierarchies

DL-LiteFcore (only functionality) is NLogSpace-complete for combined complexity
and in AC0 for data complexity

DL-LiteHFcore (DL-LiteFcore + R1 v R2) is ExpTime-complete for combined complexity
and P-complete for data complexity

Example: A1 uA2 v C can be simulated by the axioms:

A1 v ∃R1 A2 v ∃R2

R1 v R12 R2 v R12

≥ 2R12 v ⊥
∃R−1 v ∃R

−
3

∃R3 v C

R3 v R23 R2 v R23

≥ 2R−23 v ⊥
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DL-Lite(RN )
α : pushing the limits of DL-Lite

• role inclusions + number restrictions

if R has a proper sub-role in T then T contains
no negative occurrences of ≥ q R or ≥ q R− with q ≥ 2

• positive occurrences of qualified number restrictions≥ q R.C≥ q R.C≥ q R.C

if ≥ q R.C occurs in T then T contains
no negative occurrences of ≥ q′R or ≥ q′ inv(R) with q′ ≥ 2

no TBox can contain both a functionality constraint ≥ 2R v ⊥ and ≥ q R.C, for any q ≥ 1

• role disjointness, symmetry, asymmetry, reflexivity and irreflexivity constraints

all these extensions do not change the complexity
in particular, same complexity of DL-Lite(RN )

α and DL-LiteNα

NB. transitive roles do not change the combined complexity
(NLogSpace-hard for data complexity)
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DL-Lite without UNA

Without UNA, satisfiability of DL-LiteNα KBs is NP-complete w.r.t. both

combined and data complexity, for any α ∈ {core, krom, horn, bool}

source of non-determinism: different ways of identifying ABox individuals

Lower bound: by reduction of monotone 1-in-3 3SAT
∧n
k=1(ak,1 ∨ ak,2 ∨ ak,3)

a1,1 a1,2 a1,3 an,1 an,2 an,3

q q q
c1 cn

a1, a2, . . . , am︷ ︸︸ ︷u u u u u u
u u@

@
@
@I

@
@
@
@I6 6

�
�
�
��

�
�
�
��

A = {ak,i 6= ak,j | i 6= j} ∪ {P (ck, ak,j) | k ≤ n, j ≤ 3} T = {≥ 4P v ⊥}

Answer is yes iff there is a (true) variable ai in the given CNF such that

Kai
= (T ,A ∪ {P (ck, ai) | k ≤ n}) is satisfiable without UNA

NB: One can get rid of 6= in A
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DL-Lite(R,F)
α without UNA

Deterministically glue together those ABox objects a and b for which

• either A |= (a = b)

• or T |= (≥ 2R v ⊥) and R(c, a), R(c, b), for some ABox object c

This gives a polynomial reduction of no-UNA to UNA for DL-Lite(R,F)
α logics,

which increases complexity by P

Can’t do better: functionality constraints can encode inference for Horn CNFs

Example: Represent ϕ = (a ∧ b→ c) ∧ a ∧ b as follows:

a

f

b

g

c

R

P Pt

RSS
u u u

u u
u

? ?

6

�
�
�
�
���

��
��

��*

HH
HH

HHY

A includes all these P -, R- and S-arrows

T says that P , R and S are functional

ϕ |= c iff (T ,A ∪ {¬S(t, c)}) is not satisfiable

Without UNA, satisfiability of DL-Lite(R,F)
α KBs (with or without = and 6=) is

P-hard for both combined and data complexity
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The DL-Lite family: complexity-scape

.

.

UNA
no role inclusions

horn
core

kro
m

bool

F
N AC0

P
CONP

instance checking
data complexity

EXPTIME

NP

P
NLOGSPACE

satisfiability
combined complexity

Legend
query answering

CONPquery answering
= instance checking

.

.

no UNA
no role inclusions

F
N

F
N

AC0
P
CONP

instance checking
data complexity

EXPTIME

NP

P
NLOGSPACE

satisfiability
combined complexity

Legend
query answering

CONPquery answering
= instance checking

.

.

with/without UNA
role inclusions

F
N

F
N

F
N

AC0
P
CONP

instance checking
data complexity

EXPTIME

NP

P
NLOGSPACE

satisfiability
combined complexity

Legend
query answering

CONPquery answering
= instance checking
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OWL 2 QL

‘An OWL 2 profile is a trimmed down version of OWL 2 that trades
some expressive power for the efficiency of reasoning’

‘OWL 2 QL is aimed at applications that use very large volumes of instance
data, and where query answering is the most important reasoning task.

In OWL 2 QL, conjunctive query answering can be implemented using
conventional relational database systems.’

OWL 2 QL = DL-LiteHcore with/without UNA

with 6= (but no =)

with (a)symmetric, (ir)reflexive and disjoint roles

(but no transitive roles)

Why not DL-LiteHhorn?
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OWL 2 EL

‘The OWL 2 EL profile is designed as a subset of OWL 2 that

• is particularly suitable for applications employing ontologies that define
very large numbers of classes and/or properties,

• captures the expressive power used by many such ontologies, and

• for which ontology consistency, class expression subsumption, and
instance checking can be decided in polynomial time.’

For example, OWL 2 EL provides class constructors that are sufficient to express
the very large biomedical ontology SNOMED CT (≈ 400.000 axioms)

Pericardium v Tissue u ∃cont in.Heart

Pericarditis v Inflammation u ∃has loc.Pericardium

Inflammation v Disease u ∃acts on.Tissue

Disease u ∃has loc.∃cont in.Heart v Heartdisease u NeedsTreatment
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Basic EL

EL concepts: C ::= > | ⊥ | A | ∃R.C | C1 u C2

EL TBoxes: finite sets of CIs C1 v C2

EL ABoxes: finite sets of assertions C(a), R(a, b)

Concept satisfiability: given T , C, decide whether there is I |= T with CI 6= ∅

Subsumption: given T and concepts C, D, decide whether T |= C v D

Instance checking: given a KB K = (T ,A), C and an individual a from A,
decide whether K |= C(a)

Reducible to each other!

Conjunctive query answering: given a KB K = (T ,A), a CQ q(~x) and a tuple
~a of individual names from A, decide whether K |= q(~a)
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Observations and examples

EL can specify some positive information about types of points, viz:

X that a point belongs to a certain concept

(but not that it does not belong to a concept);

X that there is an outgoing R-arrow which ends in a certain concept

(but not that all outgoing R-arrows end in the concept);

X that some concepts are disjoint

Example. Describe the models of the following KBs:

T = {A v B1, B1 v ∃R.B1, ∃R.B1 v B2, B1 uB2 v ∃S.B2},

A = {A(a)}

• Finite models are enough (finite model property)

• Tree model property (but infinite!)

• Not ‘local’ as DL-Lite; one-variable first-order formulas are not enough
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Simulations for EL

Let I and J be two interpretations.

A relation % ⊆ ∆I ×∆J is called a simulation of I in J if

(concept) for every concept name A, if x%y then x ∈ AI ⇒ y ∈ AJ

(role) for every role name R, if x%y then

(x, x′) ∈ RI ⇒ ∃y′
[
(y, y′) ∈ RJ and x′%y′

]
(I, x) � (J , y) if there is a simulation % of I in J with x%y

EL concepts are preserved under simulations, that is,

if (I, x) � (J , y) then x ∈ CI ⇒ y ∈ CJ , for every concept C

EL concepts cannot distinguish between (I, x) and (J , y) if

(I, x) � (J , y) and (J , y) � (I, x)

What are the differences between DL-Lite and EL?
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Tree canonical models for EL
(basically the same construction as for DL-LiteNhorn)

For a consistent EL KB K = (T ,A), the canonical model IK
is constructed as follows

1. ‘saturate’ the existing types (starting with A) by applying the rules in T

2. for every x, if ∃R.C ∈ t(x) but no R-arrow from x leads to C,
draw an R-arrow to a fresh point and add C to its type

3. go to Step 1

• If I |= K then there is a map h : ∆IK → ∆I such that,

for all x, y ∈ ∆IK , concept and role names A and R,

– if x ∈ AIK then h(x) ∈ AI ;

– if (x, y) ∈ RIK then (h(x), h(y)) ∈ RI

• K |= q(~a) iff IK |= q(~a)

IK can be infinite
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Compact canonical models for EL

ABox A

a
C

TBox T
> v ∃R.A, > v ∃R.B

Canonical model IK

a
C

◦A ◦B

◦A ◦B ◦A ◦B

R R

R R R R

Compact canonical model CK

a
C

wA
A

wB
B

R R

R

R

R R

IK is obtained by unravelling CK; (CK, a) � (IK, a)
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Constructing CK

Compact canonical interpretation CK:

Con(K) = the set of all concepts in K

∆CK = Ind(A) ∪ {wC | C ∈ Con(K)} wC is a witness for C

ACK = {a | K |= A(a)} ∪ {wC | T |= C v A} (A a concept name)

RCK = {(a, b) | R(a, b) ∈ A} ∪ (R a role name)

{(a,wC) | K |= ∃R.C(a)} ∪

{(wC, wD) | T |= C v ∃R.D}

Construct CK for K on page 31

• Can be constructed in polynomial time in the size of K

• Inconsistency can be detected during construction

; Satisfiability of EL KBs is PTime-complete
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EL++ and OWL 2 EL

EL can be extended, without losing tractability , with

X role implications R1 ◦ · · · ◦Rn v R (e.g., R ◦R v R means transitivity)

X range restrictions > v ∀R.C

X domain restrictions > v ∀R−.C

X nominals {a}, a an individual name

≈ OWL 2 EL

Extensions with any of the constructs

C tD, ∀R.C, ≥ qR, R−, symmetric roles

result in ExpTime-hard reasoning

Exercise: construct an ELI (EL + inverse roles) KB K with CK of exponential size
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