Answering Queries in Description Logics: Theory and Applications to Data Management

Diego Calvanese¹, Michael Zakharyaschev²

¹ KRDB Research Centre Free University of Bozen-Bolzano

² Birbeck College, London

ESSLLI 2010, August 14–20, 2010 Copenhagen, Denmark

Overview of the Course

- Introduction and background
 - Ontology-based data management
 - Brief introduction to computational complexity
 - Query answering in databases
 - Querying databases and ontologies
- 2 Lightweight description logics
 - Introduction to description logics
 - O DLs for conceptual data modeling: the DL-Lite family
 - The *EL* family of tractable description logics
- Query answering in the *DL-Lite* family
 - Query answering in description logics
 - O Lower bounds for more expressive description logics
 - Query answering by rewriting
- The combined approach to query answering
 - Query answering in DL-Lite: data completion
 - Query rewriting in \mathcal{EL}
- Linking ontologies to relational data
 - The impedance mismatch problem
 - Query answering in Ontology-Based Data Access systems
- 6 Conclusions and references

Lecture 2:

'Lightweight' description logics:

DL-Lite and \mathcal{EL}

(A quick introduction to Description Logic, focusing on tractable *DL-Lite* and \mathcal{EL} logics)

Recommended reading

DL-Lite

available on the web

- (1) A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev. *The DL-Lite family and relations.* JAIR, 36:1–69, 2009.
- (2) D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable description logics for ontologies. Proceedings of AAAI 2005.
- (3) D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati. Tractable reasoning and efficient query answering in DLs: The DL-Lite family. Journal of Automated Reasoning, 39:385–429, 2007.

\mathcal{EL}

- (4) F. Baader, S. Brandt, C. Lutz. Pushing the \mathcal{EL} envelope. IJCAI 2005.
- (5) F. Baader, S. Brandt, C. Lutz. Pushing the *EL* envelope further. OWLED 2008.
- (6) C. Lutz, R. Piro, F. Wolter. Enriching *EL*-concepts with greatest fixpoints. ECAI 2010.

Acknowledgements: Roman Kontchakov, Carsten Lutz, Frank Wolter

Description Logic

http://en.wikipedia.org/wiki/Description_logic

DL is a (large) family of knowledge representation & reasoning formalisms

- more expressive than propositional logic
- less expressive than first-order logic

(\approx decidable modal logics, hybrid logics)

• developed by KR community for applications in AI

Application-driven equilibrium: expressiveness vs. computational costs

Applications:

- Ontologies (or terminologies) in medicine, bioinformatics, ...
- Semantic Web
- Ontology-based data access

Web Ontology Language (OWL) W3C standards OWL 1 (2004), OWL 2 (2009)

OWL = DL + XML

DL architecture

TBox (terminological box, schema)

 $Man \equiv Human \sqcap Male$ Appendicitis \sqsubseteq Disease \sqcap $\exists morphology.Inflam$

ABox (assertion box, data)

Man(john) hasChild(john, mary)

...

Inference System

Interface

Description logic constructs

• Alphabet:

- concept names A_0, A_1, \dots (e.g., Person, Female, ...)- role names R_0, R_1, \dots (e.g., hasChild, loves, ...)- individual names a_0, a_1, \dots (e.g., john, mary, ...)- concept constructs: $\top, \Box, \neg, \exists, \forall, \ge q, \dots$ (e.g., Person \Box Female)- role constructs: $R^-, R \circ S, \dots$ (e.g., Man \sqsubseteq Person)- axiom construct: \sqsubseteq (e.g., Man \sqsubseteq Person)
- Concepts:
 - concept names
 - \top , \perp , $\neg C$, $C \sqcap D$, $\forall R.C$, $\exists R.C$, $\geq qR.C$,

where C, D are concepts and R a role

Examples: Person □ Female, Person □ ¬Female, Person □ ∃hasChild.⊤, Person □ ∀hasChild.Male

Description logic semantics

- (standard Tarski-style) interpretation is a structure $\mathcal{I}=(\Delta^{\mathcal{I}},\,\cdot^{\mathcal{I}})$
 - $\Delta^{\mathcal{I}}$ is the **domain** of \mathcal{I} (a non-empty set)
 - $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
 - * concept name $A_i \mapsto \text{subset } A_i^{\mathcal{I}} \text{ of } \Delta^{\mathcal{I}} \qquad (A_i^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}})$
 - * role name $R_i \mapsto$ binary relation $R_i^{\mathcal{I}}$ over $\Delta^{\mathcal{I}} (R_i^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}})$
 - * individual name $a_i \mapsto$ element $a_i^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$
- interpretation of complex concepts in I:
 - $(\top)^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $(\bot)^{\mathcal{I}} = \emptyset$
 - $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
 - $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
 - $\hspace{0.2cm} (\forall R.C)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \forall y \in \Delta^{\mathcal{I}} \left((x,y) \in R^{\mathcal{I}} \rightarrow y \in C^{\mathcal{I}} \right) \}$
 - $(\exists R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}} (x, y) \in R^{\mathcal{I}}\}$
 - $\hspace{0.2cm} (\geq qR.C)^{\mathcal{I}} = \left\{ x \in \Delta^{\mathcal{I}} \mid \sharp \{ y \in C^{\mathcal{I}} \mid (x,y) \in R^{\mathcal{I}} \} \geq q \right\}$

 $(a_i^\mathcal{I} \in \Delta^\mathcal{I})$

TBoxes

statements about how concepts and roles are related to each other

A TBox ${\mathcal T}$ is a finite set of terminological axioms:

• $C \sqsubseteq D$ C is subsumed by D (concept inclusion)

• $R \sqsubseteq S$ R is a subrole of S (role inclusion)

an interpretation \mathcal{I} satisfies an axiom

-
$$\mathcal{I} \models C \sqsubseteq D$$
 iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

-
$$\mathcal{I} \models R \sqsubseteq S$$
 iff $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

An interpretation \mathcal{I} is a **model** of \mathcal{T} if \mathcal{I} satisfies **every axiom** of \mathcal{T}

ABoxes

assert knowledge about individuals

An ABox ${\boldsymbol{\mathcal{A}}}$ is a finite set of assertional axioms

- C(a) concept assertion for an individual
- old R(a,b) role assertion for a pair of individuals

an interpretation \mathcal{I} satisfies an assertion - $\mathcal{I} \models C(a)$ iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$ - $\mathcal{I} \models R(a, b)$ iff $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$

An interpretation \mathcal{I} is a **model** of a knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ if \mathcal{I} satisfies **every axiom** of \mathcal{T} and \mathcal{A}

OWL ontology example

• Protégé 4.0 a free, open source ontology editor

http://protege.stanford.edu/

where you can also find a library of ontologies

(tutorials explaining how to use Protégé are at

http://www.co-ode.org/resources/tutorials/)

built-in ontology reasoners FaCT++, Pellet or HermiT

http://owl.man.ac.uk/factplusplus/

http://pellet.owldl.com/

http://hermit-reasoner.com/

Reasoning problems

Concept satisfiability: given T and a concept C, decide whether there is $\mathcal{I} \models T$ with $C^{\mathcal{I}} \neq \emptyset$

Subsumption: given \mathcal{T} and concepts C, D, decide whether $\mathcal{T} \models C \sqsubseteq D$ i.e., $\forall \mathcal{I} \ (\mathcal{I} \models \mathcal{T} \rightarrow \mathcal{I} \models C \sqsubseteq D)$

Instance checking: given $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, C and an individual a from \mathcal{A} , decide whether $\mathcal{K} \models C(a)$

Exercise: show that these three problems are reducible to each other

Conjunctive query answering: given a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a CQ $q(\vec{x})$ and a tuple \vec{a} of individual names from \mathcal{A} , decide whether $\mathcal{K} \models q(\vec{a})$

Query answering is typically a harder problem than the other three

First-order translation

\boldsymbol{A}	\sim	A(x)
$\neg C$	\sim	eg C(x)
$C\sqcap D$	$\sim \rightarrow$	$C(x) \wedge D(x)$
$\forall R.C$	$\sim \rightarrow$	$orall y\left(R(x,y) ightarrow C(y) ight)$
$\exists R.C$	\sim	$\exists y \ ig(R(x,y) \wedge C(y) ig)$
$\geq qR.C$	\sim	$\exists y_1, \dots, y_q igwedge_{i < j} ig(y_i eq y_j \wedge R(x, y_i) \wedge C(y_i)ig)$
$C \sqsubseteq D$	\sim	$orall x \left(C(x) ightarrow D(x) ight)$

DL is embeddable into the 2-variable guarded fragment of first-order logic

(full FOL is undecidable; this guarded fragment is NExpTime-complete)

Unique name assumption (UNA)

An interpretation \mathcal{I} is a **model** of a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ under the UNA if $\mathcal{I} \models \mathcal{K}$ and $a_i^{\mathcal{I}} \neq a_i^{\mathcal{I}}$, for any distinct object names a_i and a_i occurring in \mathcal{A}

OWL: a more flexible approach

- UNA is **dropped** (so no restrictions on interpretations of object names)
- User is provided with the constructs = (sameAs) and \neq (differentFrom) to explicitly impose constraints on individual names
- UNA is expressible: add $a_i
 eq a_j$ to \mathcal{A}_i for all distinct a_i and a_j in \mathcal{A}_j
- Price of = Have to check whether a = b in A under given equality constraints Equivalent to reachability in undirected graphs, which is

LOGSPACE-complete

... just peanuts for most DLs, but not for *DL-Lite* & OWL 2 QL...

(Reingold 2008)

The history of description logic so far

...- mid 1990s: efficient reasoning cannot afford full Booleans sub-Boolean DLs with □ and ∀ are enough

 $\mathcal{FL}, \mathcal{AL}, \dots$ combined complexity $\leq NP$

mid 1990s – 2005 `efficient' reasoning possible for ExpTime DLs (FaCT,...) full Booleans and other constructs

 $\mathcal{SHIQ}, \mathcal{SHOIN} (\approx \text{OWL 1}), \mathcal{SROIQ} (\approx \text{OWL 2}) \geq \text{ExpTime}$

mid 2005 - . . .new challenges: answering queries & HUGE ontologiesHorn DLs with \sqcap and \exists

DL-Lite and \mathcal{EL} families $\leq P$

Which DLs are suitable for ontology-based data access?

Aim: to achieve logical transparency in accessing data

- hide from the user where and how data is stored
- present only a conceptual view of the data
- query the data sources through the conceptual model using RDBMSs

ESSLLI 2010, Copenhagen, Answering queries in DLs (2)

Designing DL for conceptual data modelling

ESSLLI 2010, Copenhagen, Answering queries in DLs (2)

Basic *DL-Lite* logics

under UNA

1. DL-Lite $_{bool}^{\mathcal{N}}$ R ::= P P^-	data comp. instance: in AC ⁰ data comp. query: coNP		
$B \hspace{.1in} ::= \hspace{.1in} \perp \hspace{.1in} \mid \hspace{.1in} A \hspace{.1in} \mid \hspace{.1in} \geq qR$			
$C \hspace{0.1in} ::= \hspace{0.1in} B \hspace{0.1in} \hspace{0.1in} \neg C \hspace{0.1in} \hspace{0.1in} C_1 \sqcap C_2$	2		
TBox axioms $C_1 \sqsubseteq C_2$			
2. $DL-Lite_{horn}^{N}$	combined complexity: P data comp. instance: in AC ⁰		
TBox axioms $B_1 \sqcap \cdots \sqcap B_n \sqsubseteq B$	data comp. query: in AC ⁰		
3 DL Lito ^N			
S. DE-LITE _{krom}	comb. comp.: NLOGSPACE		
TBox axioms $B_1 \sqsubseteq B_2$ $B_1 \sqsubseteq \neg B_2$ $\neg B_1 \sqsubseteq$	B_2 d.c. query: coNP		
$A = D + i t e^{N} = D + i t e^{N}$			
4. DL -LIT $e_{core} = DL$ -LIT e_{horn} DL -LIT e_{krom}	d.c. instance: in AC ⁰		

 $DL-Lite_{bool}$, $DL-Lite_{horn}$, $DL-Lite_{krom}$, $DL-Lite_{core}$: only $\exists R$ available

Observations and examples

DL-Lite can only speak about the **domains** and **ranges** of binary relations, and **how many** successors and predecessors a point can have but **not** about the **types** of these successors/predecessors; types are defined **uniformly** by domain/range constraints

Examples. Describe the models of the following KBs:

1.
$$\mathcal{T} = \{\top \sqsubseteq \exists R, \ge 2R \sqsubseteq \bot\}$$
, (*R* is total and functional)
 $\mathcal{A} = \emptyset$

- 2. $\mathcal{T} = \{A \sqsubseteq \neg \exists R^-, A \sqsubseteq \exists R, \exists R^- \sqsubseteq \exists R, \ge 2^-R \sqsubseteq \bot\},\$ $\mathcal{A} = \{A(a)\}$
- Infinite models are required; no finite model property
- Tree model property (see page 19)
- Can be simulated by first-order formulas with **one** variable (see page 20)

Bisimulations for *DL-Lite*^{\mathcal{N}}

Let ${\mathcal I}$ and ${\mathcal J}$ be two interpretations.

A relation $\varrho \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{J}}$ is called a **lite-bisimulation** between \mathcal{I} and \mathcal{J} if

(concept) for every concept name A, if $x \varrho y$ then $x \in A^{\mathcal{I}}$ iff $y \in A^{\mathcal{J}}$ (role) for every role R, if $x \varrho y$ then $x \in (=qR)^{\mathcal{I}}$ iff $y \in (=qR)^{\mathcal{J}}$ where $q \in \mathbb{N} \cup \{\infty\}$, $=qR ::= \ge qR \sqcap \neg \ge (q+1)R$

 $(\mathcal{I},x)\sim (\mathcal{J},y)$ if there is a lite-bisimulation arrho between \mathcal{I} and \mathcal{J} with xarrho y

 $\begin{array}{l} \textit{DL-Lite}_{\textit{bool}}^{\mathcal{N}} \text{ concepts are invariant under lite-bisimulations, that is,} \\ & \text{if } (\mathcal{I},x) \sim (\mathcal{J},y) \text{ then } x \in C^{\mathcal{I}} \text{ iff } y \in C^{\mathcal{J}} \text{, for every concept } C \\ & \text{A first-order formula } \varphi(x) \text{ is equivalent to a } \textit{DL-Lite}_{\textit{bool}}^{\mathcal{N}} \text{ concept } \text{ iff } \\ & \varphi(x) \text{ is invariant under lite-bisimulations} \end{array}$

Global lite-bisimulations for *DL-Lite*^{\mathcal{N}}_{bool}

A lite-bisimulation relation arrho between $\mathcal I$ and $\mathcal J$ is global if

- for every $x\in\Delta^{\mathcal{I}}$ there is $y\in\Delta^{\mathcal{J}}$ with xarrho y , and
- for every $y\in\Delta^{\mathcal{J}}$ there is $x\in\Delta^{\mathcal{I}}$ with xarrho y

 ${\mathcal I}$ is lite-bisimilar to ${\mathcal J}, \ \ {\mathcal I} \sim {\mathcal J}, \ \ {
m if}$

there is a global lite-bisimulation between ${\mathcal I}$ and ${\mathcal J}$

 $\begin{array}{l} \textit{DL-Lite}_{\textit{bool}}^{\mathcal{N}} \text{ TBoxes are invariant under global lite-bisimulations, that is,} \\ & \text{if } \mathcal{I} \sim \mathcal{J} \text{ then } \mathcal{I} \models \mathcal{T} \text{ iff } \mathcal{J} \models \mathcal{T} \text{, for every } \textit{DL-Lite}_{\textit{bool}}^{\mathcal{N}} \text{ TBox } \mathcal{T} \end{array}$

Given \mathcal{I} and $x \in \Delta^{\mathcal{I}}$, let $t_{\mathcal{I}}(x) = \{C \mid x \in C^{\mathcal{I}}\}$ — the **type** of x in \mathcal{I} $T_{\mathcal{I}} = \{t_{\mathcal{I}}(x) \mid x \in \Delta^{\mathcal{I}}\}$ — set of all types in \mathcal{I}

models are determined by their types \sim 1-ary predicates

 $\mathcal{I} \sim \mathcal{J}$ iff $T_{\mathcal{I}} = T_{\mathcal{J}}$

Tree model propety

Every model of a *DL-Lite*^N_{bool} TBox is globally lite-bisimilar to a **tree-shaped model**

Examples. Construct a tree-shaped model which is globally lite-bisimilar to

Tree models of *DL-Lite* $_{bool}^{N}$ KBs?

Why is the tree-model property so important?

Embedding DL-Lite into 1-variable FO logic

Satisfiability of *DL-Lite*^N_{bool} KBs is **NP**-complete (for combined complexity) <u>Proof</u> *DL-Lite*^N_{bool} $\mathcal{K} \rightsquigarrow \mathcal{K}^{\dagger}$ (a universal 1-variable FO formula) $\mathcal{T} = \{A \sqsubseteq \exists P^{-}, \exists P^{-} \sqsubseteq A, A \sqsubseteq \geq 2P, \top \sqsubseteq \leq 1P^{-}, \exists P \sqsubseteq A\}, \mathcal{A} = \{A(a), P(a, a')\}$ $\forall x \Big[(A(x) \rightarrow E_1 P^{-}(x)) \land (E_1 P^{-}(x) \rightarrow A(x)) \land (A(x) \rightarrow E_2 P(x)) \land \neg E_2 P^{-}(x) \land (E_1 P(x) \rightarrow A(x))$ $\land (E_2 P(x) \rightarrow E_1 P(x)) \land (E_2 P^{-}(x) \rightarrow E_1 P^{-}(x))$ $\land (E_1 P(x) \rightarrow E_1 P^{-}(dp^{-})) \land (E_1 P^{-}(x) \rightarrow E_1 P(dp)) \Big] \land A(a) \land E_1 P(a) \land E_1 P^{-}(a')$ $(\exists P)^{\mathcal{I}} \neq \emptyset \text{ iff } (\exists P^{-})^{\mathcal{I}} \neq \emptyset$ $\exists x E_1 P(x) \leftrightarrow \exists x E_1 P^{-}(x)$

 $\mathcal K$ is satisfiable iff $\mathcal K^{\dagger}$ is.

 \mathcal{K}^{\dagger} computed in **LogSpace**.

 \mathcal{K}^{\dagger} says that

– \exists appropriate dr

 $-\forall$ point is of proper type

DL-Lite Horn, Krom and core (under UNA)

For *DL-Lite*^{\mathcal{N}} KBs \mathcal{K} , the translation \mathcal{K}^{\dagger} is a conjunction of formulas of the form

$$orall x \left(A_1(x) \wedge \dots \wedge A_n(x)
ightarrow A(x)
ight)$$

Satisfiability of Horn formulas is P-complete (combined complexity)

For *DL-Lite*^{\mathcal{N}}_{krom} KBs \mathcal{K} , the translation \mathcal{K}^{\dagger} is a conjunction of formulas of the form

(krom)
$$\forall x \left(A_1(x) \to A_2(x)\right), \ \forall x \left(A_1(x) \to \neg A_2(x)\right), \ \forall x \left(\neg A_1(x) \to A_2(x)\right)$$

Satisfiability of Krom formulas is NLogSpace-complete (combined complexity)

For DL-Lite $_{\rm core}^{\cal N}$ KBs ${\cal K}$, the translation ${\cal K}^{\dagger}$ is a conjunction of formulas of the form

(core) $orall x \left(A_1(x)
ightarrow A_2(x)
ight), \ orall x \left(A_1(x)
ightarrow
eg A_2(x)
ight)$

(horn)

Satisfiability of core formulas is NLogSpace-complete (combined complexity)ESSLLI 2010, Copenhagen, Answering queries in DLs (2)21

Canonical models for *DL-Lite*^{\mathcal{N}} and *DL-Lite*^{\mathcal{N}} core

For a consistent *DL-Lite*^{\mathcal{N}}_{horn} KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, the **canonical model** $\mathcal{I}_{\mathcal{K}}$ is constructed as follows:

- 1. take the ABox and add $\geq qR$ to t(a) if q-many R-arrows start from a in \mathcal{A}
- 2. `saturate' the existing types by applying the rules in ${\cal T}$
- 3. for every x, if $(\geq qR) \in t(x)$ but there are < q R-arrows starting from x, draw the missing R-arrows to **fresh** points and add $\exists R^-$ to their types
- 4. go to Step 2
- If I ⊨ K then there is a map h: Δ^{I_K} → Δ^I such that, for all x, y ∈ Δ^{I_K}, basic concepts B and roles R, - if x ∈ B^{I_K} then h(x) ∈ B^I; - if (x, y) ∈ R^{I_K} then (h(x), h(y)) ∈ R^I
 K ⊨ q(ā) iff I_K ⊨ q(ā)

Exercise: construct $\mathcal{I}_{\mathcal{K}}$ for \mathcal{K} on page 20

DL-Lite with role hierarchies

 $DL-Lite_{core}^{\mathcal{F}}$ (only functionality) is **NLogSpace**-complete for combined complexity and in **AC**⁰ for data complexity

 $DL-Lite_{core}^{\mathcal{HF}}$ ($DL-Lite_{core}^{\mathcal{F}} + R_1 \sqsubseteq R_2$) is **ExpTime**-complete for combined complexity and **P**-complete for data complexity

Example: $A_1 \sqcap A_2 \sqsubseteq C$ can be simulated by the axioms:

$DL-Lite_{\alpha}^{(\mathcal{RN})}$: pushing the limits of DL-Lite

role inclusions + number restrictions

if R has a proper sub-role in $\mathcal T$ then $\mathcal T$ contains no *negative occurrences* of $\geq q R$ or $\geq q R^-$ with $q \geq 2$

• positive occurrences of qualified number restrictions $\geq q R.C$

 $\begin{array}{l} \text{if } \geq q \ R.C \ \text{occurs in } \mathcal{T} \ \text{then } \mathcal{T} \ \text{contains} \\ \text{ no } \textit{negative occurrences} \ \text{of } \geq q' \ R \ \text{or} \geq q' \ \textit{inv}(R) \ \text{with} \ q' \geq 2 \end{array}$

no TBox can contain both a functionality constraint $\geq 2\,R \sqsubseteq \perp$ and $\geq q\,R.C$, for any $q \geq 1$

role disjointness, symmetry, asymmetry, reflexivity and irreflexivity constraints

all these extensions do not change the complexity in particular, same complexity of $DL-Lite_{\alpha}^{(\mathcal{RN})}$ and $DL-Lite_{\alpha}^{\mathcal{N}}$

NB. transitive roles do not change the combined complexity (NLogSpace-hard for data complexity)

DL-Lite without UNA

Without UNA, satisfiability of *DL-Lite*^{\mathcal{N}} KBs is **NP-complete** w.r.t. both **combined** and **data complexity**, for any $\alpha \in \{core, krom, horn, bool\}$

source of non-determinism: different ways of identifying ABox individuals

Lower bound: by reduction of monotone 1-in-3 3SAT $\bigwedge_{k=1}^{n} (a_{k,1} \lor a_{k,2} \lor a_{k,3})$

 $\mathcal{A} = \{a_{k,i}
eq a_{k,j} \mid i
eq j\} \cup \{P(c_k, a_{k,j}) \mid k \leq n, \hspace{0.1cm} j \leq 3\} \hspace{1.5cm} \mathcal{T} = \{\geq 4P \sqsubseteq \bot\}$

Answer is yes iff there is a (true) variable a_i in the given CNF such that $\mathcal{K}_{a_i} = (\mathcal{T}, \mathcal{A} \cup \{P(c_k, a_i) \mid k \leq n\})$ is satisfiable without UNA

NB: One can get rid of \neq in \mathcal{A}

ESSLLI 2010, Copenhagen, Answering queries in DLs (2)

$\textit{DL-Lite}_{\alpha}^{(\mathcal{R},\mathcal{F})}$ without UNA

Deterministically glue together those ABox objects a and b for which

• either
$$\mathcal{A} \models (a = b)$$

• or $\mathcal{T}\models (\geq 2R\sqsubseteq ot)$ and R(c,a) , R(c,b) , for some ABox object c

This gives a **polynomial** reduction of no-UNA to UNA for $DL-Lite_{\alpha}^{(\mathcal{R},\mathcal{F})}$ logics, which increases complexity by **P**

Can't do better: functionality constraints can encode inference for Horn CNFs

Without UNA, satisfiability of *DL-Lite*^(\mathcal{R},\mathcal{F}) KBs (with or without = and \neq) is **P-hard** for both **combined** and **data complexity**

The DL-Lite family: complexity-scape

OWL 2 QL

'An OWL 2 profile is a trimmed down version of OWL 2 that trades some expressive power for the efficiency of reasoning'

`OWL 2 QL is aimed at applications that use very large volumes of instance data, and where query answering is the most important reasoning task.

In OWL 2 QL, conjunctive query answering can be implemented using conventional relational database systems."

Why not *DL-Lite*^{\mathcal{H}}_{horn}?

OWL 2 EL

'The OWL 2 EL profile is designed as a subset of OWL 2 that

- is particularly suitable for applications employing ontologies that define very large numbers of classes and/or properties,
- captures the expressive power used by many such ontologies, and
- for which ontology consistency, class expression subsumption, and instance checking can be decided in polynomial time.'

For example, OWL 2 EL provides class constructors that are sufficient to express the very large biomedical ontology SNOMED CT (≈ 400.000 axioms)

```
Pericardium \sqsubseteq Tissue \sqcap \exists cont\_in.Heart

Pericarditis \sqsubseteq Inflammation \sqcap \exists has\_loc.Pericardium

Inflammation \sqsubseteq Disease \sqcap \exists acts\_on.Tissue

Disease \sqcap \exists has\_loc.\exists cont\_in.Heart \sqsubseteq Heartdisease \sqcap NeedsTreatment
```

Basic \mathcal{EL}

 \mathcal{EL} concepts: $C ::= \top \mid \perp \mid A \mid \exists R.C \mid C_1 \sqcap C_2$

 \mathcal{EL} TBoxes: finite sets of Cls $C_1 \sqsubseteq C_2$

 \mathcal{EL} ABoxes: finite sets of assertions C(a), R(a, b)

Concept satisfiability: given \mathcal{T} , C, decide whether there is $\mathcal{I} \models \mathcal{T}$ with $C^{\mathcal{I}} \neq \emptyset$

Subsumption: given \mathcal{T} and concepts C, D, decide whether $\mathcal{T} \models C \sqsubseteq D$

Instance checking: given a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, C and an individual a from \mathcal{A} , decide whether $\mathcal{K} \models C(a)$

Reducible to each other!

Conjunctive query answering: given a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a CQ $q(\vec{x})$ and a tuple \vec{a} of individual names from \mathcal{A} , decide whether $\mathcal{K} \models q(\vec{a})$

Observations and examples

 \mathcal{EL} can specify some **positive** information about types of points, viz:

 \checkmark that a point belongs to a certain concept

(but not that it **does not** belong to a concept);

- \checkmark that there is an outgoing *R*-arrow which ends in a certain concept (but not that all outgoing *R*-arrows end in the concept);
- \checkmark that some concepts are disjoint

Example. Describe the models of the following KBs:

 $\mathcal{T} = \{A \sqsubseteq B_1, \quad B_1 \sqsubseteq \exists R.B_1, \quad \exists R.B_1 \sqsubseteq B_2, \quad B_1 \sqcap B_2 \sqsubseteq \exists S.B_2\}, \ \mathcal{A} = \{A(a)\}$

- Finite models are enough (finite model property)
- Tree model property (but infinite!)
- Not `local' as *DL-Lite*; one-variable first-order formulas are not enough

Simulations for \mathcal{EL}

Let ${\mathcal I}$ and ${\mathcal J}$ be two interpretations.

A relation $\varrho \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{J}}$ is called a simulation of \mathcal{I} in \mathcal{J} if

(concept) for every concept name A, if $x \varrho y$ then $x \in A^{\mathcal{I}} \Rightarrow y \in A^{\mathcal{J}}$ (role) for every role name R, if $x \varrho y$ then $(x, x') \in R^{\mathcal{I}} \Rightarrow \exists y' [(y, y') \in R^{\mathcal{J}} \text{ and } x' \varrho y']$

 $(\mathcal{I},x) \preceq (\mathcal{J},y)$ if there is a simulation arrho of \mathcal{I} in \mathcal{J} with x arrho y

 \mathcal{EL} concepts are **preserved under simulations**, that is, if $(\mathcal{I}, x) \preceq (\mathcal{J}, y)$ then $x \in C^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{J}}$, for every concept C \mathcal{EL} concepts cannot distinguish between (\mathcal{I}, x) and (\mathcal{J}, y) if $(\mathcal{I}, x) \preceq (\mathcal{J}, y)$ and $(\mathcal{J}, y) \preceq (\mathcal{I}, x)$

What are the differences between *DL-Lite* and \mathcal{EL} ?

Tree canonical models for \mathcal{EL}

(basically the same construction as for *DL-Lite* $_{horn}^{N}$)

For a consistent \mathcal{EL} KB $\mathcal{K}=(\mathcal{T},\mathcal{A})$, the **canonical model** $\mathcal{I}_{\mathcal{K}}$

is constructed as follows

1. `saturate' the existing types (starting with $\mathcal A$) by applying the rules in $\mathcal T$

2. for every x, if $\exists R.C \in t(x)$ but no R-arrow from x leads to C,

draw an *R*-arrow to a **fresh** point and add *C* to its type

3. go to Step 1

If I ⊨ K then there is a map h: Δ^{I_K} → Δ^I such that, for all x, y ∈ Δ^{I_K}, concept and role names A and R, - if x ∈ A^{I_K} then h(x) ∈ A^I; - if (x, y) ∈ R^{I_K} then (h(x), h(y)) ∈ R^I
K ⊨ q(a) iff I_K ⊨ q(a)

Compact canonical models for \mathcal{EL}

Constructing $\mathcal{C}_{\mathcal{K}}$

$\begin{array}{l} \textbf{Compact canonical interpretation } \mathcal{C}_{\mathcal{K}}:\\ \texttt{Con}(\mathcal{K}) = \texttt{ the set of all concepts in } \mathcal{K}\\ \Delta^{\mathcal{C}_{\mathcal{K}}} = \texttt{Ind}(\mathcal{A}) \cup \{w_{C} \mid C \in \texttt{Con}(\mathcal{K})\} & w_{C} \texttt{ is a witness for } \mathcal{C}\\ A^{\mathcal{C}_{\mathcal{K}}} = \{a \mid \mathcal{K} \models A(a)\} \cup \{w_{C} \mid \mathcal{T} \models C \sqsubseteq A\} & (A \texttt{ a concept name})\\ R^{\mathcal{C}_{\mathcal{K}}} = \{(a, b) \mid R(a, b) \in \mathcal{A}\} \cup & (R \texttt{ a role name})\\ \{(a, w_{C}) \mid \mathcal{K} \models \exists R.C(a)\} \cup & \{(w_{C}, w_{D}) \mid \mathcal{T} \models C \sqsubseteq \exists R.D\} \end{array}$

Construct $C_{\mathcal{K}}$ for \mathcal{K} on page 31

- Can be constructed in polynomial time in the size of ${\cal K}$
- Inconsistency can be detected during construction

$\mathcal{EL}\text{++}$ and OWL 2 EL

 \mathcal{EL} can be extended, without losing tractability, with

 \checkmark role implications $R_1 \circ \cdots \circ R_n \sqsubseteq R$ (e.g., $R \circ R \sqsubseteq R$ means transitivity)

 \checkmark range restrictions $\top \sqsubseteq \forall R.C$

 \checkmark domain restrictions $\top \sqsubseteq \forall R^-.C$

 \checkmark nominals {a}, a an individual name

 \approx OWL 2 EL

Extensions with any of the constructs

 $C \sqcup D$, $\forall R.C$, $\geq qR$, R^- , symmetric roles

result in ExpTime-hard reasoning

Exercise: construct an \mathcal{ELI} (\mathcal{EL} + inverse roles) KB \mathcal{K} with $\mathcal{C}_{\mathcal{K}}$ of exponential size

ESSLLI 2010, Copenhagen, Answering queries in DLs (2)