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New challenges in data management

One of the key challenges in complex systems today is the management of data:

The amount of data has increased enormously.

The complexity of the data has increased:
structured ; semi-structured ; unstructured

The data may be of low quality, e.g., incomplete, inconsistent, not crisp.

Data is increasingly distributed and heterogeneous, but nevertheless
needs to be accessed in a uniform way.

Data needs to be consumed not only by humans, but also by machines.

Traditional data management systems are not sufficient anymore to fulfill
today’s data management requirements.
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Addressing data management challenges

Several efforts come from the database area:

New kinds of databases are studied, to manage semi-structured (XML),
and probabilistic data.

Data integration is one of the major challenges for the future or IT.
E.g., the market for data integration software is estimated to grow from $2.5

billion in 2007 to $3.8 billion in 2012 (+8.7% per year) [IDC. Worldwide Data

Integration and Access Software 2008-2012 Forecast. Doc No. 211636 (2008)].

On the other hand, management of complex kinds of information has
traditionally been the concern of Knowledge Representation in AI:

Research in AI and KR can bring new insights, solutions, techniques, and
technologies.

However, what has been done in KR needs to be adapted /
extended / tuned to address the new challenges coming from
today’s data management.
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Description logics

Description Logics [Baader et al., 2003] are an important area of KR, studied
for the last 25 years, that provide the foundations for the structured
representation of information:

By grounding the used formalisms in logic, the information is provided with
a formal semantics (i.e., a meaning).

The logic-based formalization allows one to provide automated support
for tasks related to data management, by means of logic-based inference.

Computational aspects are of concern, so that tools can provide
effective support for automated reasoning.

In this course we are looking into using description logics for data management.
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Ontologies

Description logics provide the formal foundations for ontology languages.

Def.: Ontology

is a representation scheme that describes a formal conceptualization of a
domain of interest.

The specification of an ontology usually comprises two distinct levels:

Intensional level: specifies a set of conceptual elements and of
constraints/axioms describing the conceptual structures of the domain.

Extensional level: specifies a set of instances of the conceptual elements
described at the intensional level.

Note: we do not consider here the meta-level, which may also be present in an
ontology.
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Ontologies at the core of information systems

C1

C2

C3
Ontology

Resource
1

Resource
2

Resource
3

Mapping

Resources

The usage of all system resources (data and services) is done through the
domain conceptualization.
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Ontology mediated access to data

Desiderata: achieve logical transparency in access to data:

Hide to the user where and how data are stored.

Present to the user a conceptual view of the data.

Use a semantically rich formalism for the conceptual view.

This setting is similar to the one of Data Integration. The difference is that
here the ontology provides a rich conceptual description of the data managed
by the system.
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Issues in ontology-based data access

1 Choice of the formalisms to adopt

2 Efficiency and scalability

3 Tool support
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Issue 1: Formalisms to adopt

1 Which is the right ontology language?

many proposals have been made
differ in expressive power and in complexity of inference

2 Which languages should we use for querying?

requirements for querying are different from those for modeling

3 How do we connect the ontology to the data sources?

mismatch between information in an ontology and data in the sources

In this course:

We discuss variants of ontology languages suited for ontology-based data
management, and study their logical and computational properties.

We study the problem of querying data through ontologies.

We briefly discuss problems and solutions related to the impedance
mismatch.
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Issue 2: Efficiency and scalability

How can we handle very large ontologies?

We have to take into account the tradeoff between expressive power and
complexity of inference.

How can we cope with very large amounts of data?

What may be good for large ontologies, may not be good enough for large
amounts of data.

Can we handle multiple data sources and/or multiple ontologies?

In this course:

We discuss in depth the above mentioned tradeoff . . .

. . . paying particular attention to the aspects related to data
management.

We do not deal with the problem of integrating multiple data sources,
since technological issues play a role there.
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Issue 3: Tools

According to the principle that “there is no meaning without a language
with a formal semantics”, the formal semantics becomes the solid basis for
dealing with ontologies.

Hence every kind of access to an ontology (to extract information, to
modify it, etc.), requires to fully take into account its semantics.

We need tools that perform reasoning over the ontology that is sound and
complete wrt the semantics.

The tools have to be “efficient”, especially wrt the size of the data.

In this course:

We discuss the requirements, the principles, and the theoretical
foundations for ontology-based data access tools.

We briefly present a tool for querying data sources through ontologies that
has been built according to those principles.
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Which is the “right” expressive power?

What should an ontology language / description logic be able to express in
order to be well suited for data management applications?

Let’s start with an exercise!
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Exercise

Requirements: We are interested in building a software application to manage filmed
scenes for realizing a movie, by following the so-called “Hollywood Approach”.

Every scene is identified by a code (a string) and is described by a text in natural
language.

Every scene is filmed from different positions (at least one), each of this is called a
setup. Every setup is characterized by a code (a string) and a text in natural language
where the photographic parameters are noted (e.g., aperture, exposure, focal length,
filters, etc.). Note that a setup is related to a single scene.

For every setup, several takes may be filmed (at least one). Every take is
characterized by a (positive) natural number, a real number representing the number
of meters of film that have been used for shooting the take, and the code (a string) of
the reel where the film is stored. Note that a take is associated to a single setup.

Scenes are divided into internals that are filmed in a theater, and externals that are
filmed in a location and can either be “day scene” or “night scene”. Locations are
characterized by a code (a string) and the address of the location, and a text
describing them in natural language.

Write a precise specification of this domain using any formalism you like!
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What do we need to express?

The formalism we use should allow us to express the following:

domain partitioned into classes of objects (e.g., Scene, Location, . . . )

objects belonging to a class have specific (local) properties (e.g., code
and text for a scene, . . . )

relationships between objects (e.g., scenes are filmedFrom setups, . . . )

inclusions and hierarchies between classes (e.g., Internal and External
Scenes)

domain and range of relations (e.g., the relation filmedFrom has Scene as
domain and Setup as range)

mandatory participation to relations (e.g., every Scene is filmedFrom
some Setup)

functionality of relations and attributes (e.g., every Setup is for at most
one Scene), and more generally, numeric constraints

In addition, we may require:

inclusions and hierarchies between relationships

additional properties of relationships, such as transitivity, symmetry, . . .
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Solution 1: Use logic!!!

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x),
filmedFrom(x, y), tkOfStp(x, y), located(x, y), . . . .

Axioms:

∀x, y. codeScene(x, y)→ Scene(x) ∧ String(y)
∀x, y. description(x, y)→ Scene(x) ∧ Text(y)

∀x, y. codeSetup(x, y)→ Setup(x) ∧ String(y)
∀x, y. photographicPars(x, y)→ Setup(x) ∧ Text(y)

∀x, y. nbr(x, y)→ Take(x) ∧ Integer(y)
∀x, y. filmedMeters(x, y)→ Take(x) ∧ Real(y)
∀x, y. reel(x, y)→ Take(x) ∧ String(y)

∀x, y. theater(x, y)→ Internal(x) ∧ String(y)

∀x, y. nightScene(x, y)→ External(x) ∧ Boolean(y)

∀x, y. name(x, y)→ Location(x) ∧ String(y)
∀x, y. address(x, y)→ Location(x) ∧ String(y)
∀x, y. description(x, y)→ Location(x) ∧ Text(y)

∀x. Scene(x)→ (1 ≤ ]{y | codeScene(x, y)} ≤ 1)

∀x. Internal(x)→ Scene(x)
∀x. External(x)→ Scene(x)
∀x. Internal(x)→ ¬External(x)
∀x. Scene(x)→ Internal(x) ∨ External(x)

∀x, y. filmedFrom(x, y)→
Scene(x) ∧ Setup(y)
∀x, y. tkOfStp(x, y)→

Take(x) ∧ Setup(y)
∀x, y. located(x, y)→

External(x) ∧ Location(y)

∀x. Scene(x)→
(1 ≤ ]{y | filmedFrom(x, y))}
∀y. Setup(y)→

(1 ≤ ]{x | filmedFrom(x, y)} ≤ 1)
∀x. Take(x)→

(1 ≤ ]{y | tkOfStp(x, y)} ≤ 1)
∀x. Setup(y)→

(1 ≤ ]{x | tkOfStp(x, y)})
∀x. External(x)→

(1 ≤ ]{y | located(x, y)} ≤ 1)
· · ·
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Solution 1: Use logic – Discussion

Good points:

Precise semantics.

Formal verification.

Allows for query answering.

Machine comprehensible.

Virtually unlimited expressiveness (∗).

Bad points:

Difficult to generate.

Difficult to understand for humans.

Too unstructured (making reasoning difficult), no well-established
methodologies available.

Automated reasoning may be impossible.

(∗) Not really a bad point, in fact.
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Solution 2: Use conceptual modeling diagrams (UML)!

code: String
photographicPars: Text

Setup

  

code: String
description: Text

Scene

 
theater: String

Internal
 
nightScene: Boolean
External

1..*1..1
filmedFrom

 

Location
name: String
address: String
description: Text

1..*

1..10..*

tkOfStp

located

1..1

{disjoint, complete}

 

Take
nbr: Integer
filmedMeters: Real
reel: String
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Solution 2: Use conceptual modeling diagrams –
Discussion

Good points:

Easy to generate (it’s the standard in software design).

Easy to understand for humans.

Well disciplined, well-established methodologies available.

Bad points:

No precise semantics (people that use it wave hands about it).

Verification (or better validation) done informally by humans.

Machine incomprehensible (because of lack of formal semantics).

Automated reasoning and query answering out of question.

Limited expressiveness (∗).

(∗) Not really a bad point, in fact.
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Solution 3: Use both!!!

Note these two approaches seem to be orthogonal, but in fact they can be used
together cooperatively!!!

Basic idea:

Assign formal semantics to constructs of the conceptual design diagrams.

Use conceptual design diagrams as usual, taking advantage of
methodologies developed for them in Software Engineering.

Read diagrams as logical theories when needed, i.e., for formal
understanding, verification, automated reasoning, etc.

Added values:

Inherited from conceptual modeling diagrams: ease-to-use for humans

inherit from logic: formal semantics and reasoning tasks, which are needed
for formal verification and machine manipulation.
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Solution 3: Use both!!! (cont’d)

Important:

The logical theories that are obtained from conceptual modeling diagrams are
of a specific form.

Their expressiveness is limited (or better, well-disciplined).

One can exploit the particular form of the logical theory to simplify
reasoning.

The aim is getting:

decidability, and
reasoning procedures that match the intrinsic computational complexity of
reasoning over the conceptual modeling diagrams.

Question

Which are the ontology formalisms / description logics that capture precisely
such logical theories?
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Computational complexity (1/2)

[J.E. Hopcroft, 2007; Papadimitriou, 1994]

Computational complexity theory aims at understanding how difficult it is to
solve specific problems.

A problem is considered as an (in general infinite) set of instances of the
problem, each encoded in some meaningful (i.e., compact) way.

Standard complexity theory deals with decision problems: i.e., problems
that admit a yes/no answer.

Algorithm that solves a decision problem:

input: an instance of the problem
output: yes or no

The difficulty (complexity) is measured in terms of the amount of
resources (time, space) that the algorithm needs to solve the problem.
; complexity of the algorithm, or upper bound

To measure the complexity of the problem, we consider the best possible
algorithm that solves it.
; lower bound
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Computational complexity (2/2)

Worst-case complexity analysis: the complexity is measured in terms of a
(complexity) function f :

argument: the size n of an instance of the problem (i.e., the length of its
encoding)
result: the amount f(n) of time/space needed in the worst-case to solve an
instance of size n

The asymptotic behaviour of the complexity function when n grows is
considered.

To abstract away from contingent issues (e.g., programming language,
processor speed, etc.), we refer to an abstract computing model: Turing
Machines (TMs).
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Complexity classes

To achieve robustness wrt encoding issues, usually one does not consider
specific complexity functions f , but rather families C of complexity functions,
giving rise to complexity classes.

Def.: A time/space complexity class C
. . . is the set of all problems P such that an instance of P of size n can be
solved in time/space at most C(n).

Note: Consider a (decision) problem P , and an encoding of the instances of P
into strings over some alphabet Σ.
Once we fix such an encoding, the problem actually corresponds to a language
LP , namely the set of strings encoding those instances of the problem for which
the answer is yes.

Hence, in the technical sense, a complexity class is actually a set of languages.
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Reductions

To establish lower bounds on the complexity of problems, we make use of the
notion of reduction:

Def.: A reduction from a problem P1 to a problem P2

. . . is a function R (the reduction) from instance of P1 to instances of P2 such
that:

1 R is efficiently computable (i.e., in logarithmic space), and

2 An instance I of P1 has answer yes iff R(I) has answer yes.

P1 reduces to P2 if there is a reduction R from P1 to P2.

Intuition: If P1 reduces to P2, then P2 is at least as difficult as P1, since we can
solve an instance I of P1 by reducing it to the instance R(I) of P2 and then
solve R(I).

D. Calvanese Answering Queries in DLs ESSLLI 2010 – 16-20/8/2010 (32/84)



unibz.itunibz.it

Ontology-based data management Computational complexity Query answering in databases Querying databases and ontologies References

Hardness and completeness Lecture 1: Introduction and background

Hardness and completeness

Def.: A problem P is hard for a complexity class C
. . . if every problem in C can be reduced to P .

Def.: A problem P is complete for a complexity class C if

1 it is hard for C, and

2 it belongs to C

Intuitively, a problem that is complete for C is among the hardest problems in C.
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Tractability and intractability: PTime and NP

Def.: PTime

Set of problems solvable in polynomial time by a deterministic TM.

These problems are considered tractable, i.e., solvable for large inputs.

Is a robust class (PTime computations compose).

Def.: NP

Set of problems solvable in polynomial time by a non-deterministic TM.

These problems are believed intractable, i.e., unsolvable for large inputs.

The best known algorithms actually require exponential time.

Corresponds to a large class of practical problems, for which the following
type of algorithm can be used:

1 Non-deterministically guess a possible solution of polynomial size.
2 Check in polynomial time that the guessed solutions is good.
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Complexity classes above NP

Def.: PSpace

Set of problems solvable in polynomial space by a deterministic TM.

Polynomial space is “not really good”, since these problems may require
exponential time.

These problems are considered to be more difficult than NP problems.

Practical algorithms and heuristics work less well than for NP problems.

Def.: ExpTime

Set of problems solvable in exponential time by a deterministic TM.

This is the first provably intractable complexity class.

These problems are considered to be very difficult.
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Most important complexity classes Lecture 1: Introduction and background

Complexity classes below PTime

Def.: LogSpace and NLogSpace

Set of problems solvable in logarithmic space by a (non-)deterministic TM.

Note: when measuring the space complexity, the size of the input does not
count, and only the working memory (TM tape) is considered.

Note 2: logarithmic space computations compose (this is not trivial).

Correspond to reachability in undirected and directed graphs, respectively.

Def.: AC0

Set of problems solvable in constant time using a polynomial number of
processors.

These problems are solvable efficiently even for very large inputs.

Corresponds to the complexity of model checking a fixed FO formula when
the input is the model only.
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Most important complexity classes Lecture 1: Introduction and background

Relationship between the complexity classes

The following relationships are known:

AC0 ( LogSpace ⊆ NLogSpace ⊆ PTime ⊆
⊆ NP ⊆ PSpace ⊆ ExpTime

Moreover, we know that PTime ( ExpTime.
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First-order logic queries Lecture 1: Introduction and background

FOL queries

We assume we are given a relational alphabet Σ, i.e., a set of relation symbols,
each with an associated arity.

Def.: A FOL query ϕ(x1, . . . , xk) over Σ (of arity k)

. . . is a FOL formula over Σ with free variables x1, . . . , xk.

Such a query is evaluated w.r.t. a FOL interpretation I, and an assignment α of
elements of the domain of I to x1, . . . , xk, i.e., we ask whether:

I, α |= ϕ

Given a query ϕ(x1, . . . , xk), we denote with 〈a1, . . . , ak〉 the assignment that
assigns ai to xi, for i ∈ {1, . . . , k}.

Note:

The interpretation I corresponds to the database over which the query is
evaluated.

The assignments α to the free variables of ϕ such that I, α |= ϕ are the
answer to ϕ over I, denoted ϕI .
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First-order logic queries Lecture 1: Introduction and background

FOL boolean queries

Def.: A FOL boolean query is a FOL query without free variables.

Hence, the answer to a boolean query ϕ() is defined as follows:

ϕ()I = {() | I, 〈〉 |= ϕ()}

Such an answer is

(), if I |= ϕ

∅, if I 6|= ϕ.

As an obvious convention we read () as “true” and ∅ as “false”.

D. Calvanese Answering Queries in DLs ESSLLI 2010 – 16-20/8/2010 (42/84)



unibz.itunibz.it

Ontology-based data management Computational complexity Query answering in databases Querying databases and ontologies References

First-order logic queries Lecture 1: Introduction and background

Query evaluation

Let us consider:

a finite alphabet Σ, i.e., we have a finite number of predicates and
functions, and

a finite interpretation I, i.e., an interpretation (over the finite alphabet)
for which ∆I is finite.

Then we can consider query evaluation as an algorithmic problem, and study its
computational properties.

Note: To study the computational complexity of the problem, we need to
define a corresponding decision problem.
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First-order logic queries Lecture 1: Introduction and background

Query evaluation problem

Definitions

Query answering problem: given a finite interpretation I and a FOL
query ϕ(x1, . . . , xk), compute

ϕI = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)}

Recognition problem (for query answering): given a finite
interpretation I, a FOL query ϕ(x1, . . . , xk), and a tuple (a1, . . . , ak),
with ai ∈ ∆I , check whether (a1, . . . , ak) ∈ ϕI , i.e., whether

I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)

Note: The recognition problem for query answering is the decision problem
corresponding to the query answering problem.
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First-order logic queries Lecture 1: Introduction and background

Query evaluation – Complexity measures [Vardi, 1982]

Def.: Combined complexity

The combined complexity is the complexity of {〈I, α, ϕ〉 | I, α |= ϕ}, i.e.,
interpretation, tuple, and query are all considered part of the input.

Def.: Data complexity

The data complexity is the complexity of {〈I, α〉 | I, α |= ϕ}, i.e., the query ϕ
is fixed (and hence not considered part of the input).

Def.: Query complexity

The query complexity is the complexity of {〈α,ϕ〉 | I, α |= ϕ}, i.e., the
interpretation I is fixed (and hence not considered part of the input).
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Conjunctive queries Lecture 1: Introduction and background

(Union of) Conjunctive queries – (U)CQs

(Unions of) conjunctive queries are an important class of queries:

A (U)CQ is a FOL query using only conjunction, existential quantification
(and disjunction).

Hence, UCQs contain no negation, no universal quantification, and no
function symbols besides constants.

Correspond to SQL/relational algebra (union) select-project-join (SPJ)
queries – the most frequently asked queries.

(U)CQs exhibit nice computational and semantic properties, and have been
studied extensively in database theory.

They are important in practice, since relational database engines are
specifically optimized for CQs.
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Conjunctive queries Lecture 1: Introduction and background

Definition of conjunctive queries

Def.: A conjunctive query (CQ) is a FOL query of the form

∃~y.conj (~x, ~y)

where conj (~x, ~y) is a conjunction of atoms and equalities over the free
variables ~x, the existentially quantified variables ~y, and possibly constants.

Note:

CQs contain no disjunction, no negation, no universal quantification, and
no function symbols besides constants.

Hence, they correspond to relational algebra select-project-join (SPJ)
queries.

CQs are the most frequently asked queries.
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Conjunctive queries Lecture 1: Introduction and background

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as their
boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ: (the distinguished variables are the blue ones)

∃b, e, p1, c1, p2, c2.Person(n, a) ∧Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

Or simpler: ∃b, c.Person(n, a) ∧Manages(b, n) ∧ Lives(n, c) ∧ Lives(b, c)
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Conjunctive queries Lecture 1: Introduction and background

Datalog notation for CQs

A CQ q = ∃~y.conj (~x, ~y) can also be written using datalog notation as

q(~x1)← conj ′(~x1, ~y1)

where conj′(~x1, ~y1) is the list of atoms in conj (~x, ~y) obtained by equating the
variables ~x, ~y according to the equalities in conj (~x, ~y).

As a result of such an equality elimination, we have that ~x1 and ~y1 can contain
constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

q(~x1) the head;

conj ′(~x1, ~y1) the body;

the variables in ~x1 the distinguished variables;

the variables in ~y1 the non-distinguished variables.
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Conjunctive queries Lecture 1: Introduction and background

Conjunctive queries – Example

Consider the alphabet Σ = {E/2} and an interpretation I = (∆I , ·I).
Note that EI is a binary relation, i.e., I is a directed graph.

The following CQ q returns all nodes that participate to a triangle in the
graph:

∃y, z.E(x, y) ∧ E(y, z) ∧ E(z, x)

The query q in datalog notation becomes:

q(x)← E(x, y), E(y, z), E(z, x)

The query q in SQL is (we use Edge(f,s) for E(x, y):

SELECT E1.f

FROM Edge E1, Edge E2, Edge E3

WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f
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Conjunctive queries Lecture 1: Introduction and background

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it by:

1 guessing a truth assignment for the non-distinguished variables;

2 evaluating the resulting formula (that has no quantifications).

We define a boolean function for CQ evaluation:

boolean ConjTruth(I,α,∃~y.conj(~x, ~y)) {

GUESS assignment α[~y 7→ ~a] {

return Truth(I,α[~y 7→ ~a],conj (~x, ~y));
}

where Truth(I, α, ϕ) is defined inductively as follows.
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Conjunctive queries Lecture 1: Introduction and background

Nondeterministic CQ evaluation algorithm

boolean Truth(I,α,ϕ) {

if (ϕ is t 1 = t 2)
return TermEval(I,α,t 1) = TermEval(I,α,t 2);

if (ϕ is P (t 1, . . . , t k))
return P I(TermEval(I,α,t 1),...,TermEval(I,α,t k));

if (ϕ is ψ ∧ ψ′)
return Truth(I,α,ψ) ∧ Truth(I,α,ψ′);

}

∆I TermEval(I,α,t) {

if (t is a variable x) return α(x);
if (t is a constant c) return cI;

}
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Conjunctive queries Lecture 1: Introduction and background

CQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)

{〈I, α, q〉 | I, α |= q} is NP-complete — see below for hardness.

time: exponential
space: polynomial

Theorem (Data complexity of CQ evaluation)

{〈I, α〉 | I, α |= q} is in AC0

time: polynomial
space: logarithmic

Theorem (Query complexity of CQ evaluation)

{〈α, q〉 | I, α |= q} is NP-complete — see below for hardness.

time: exponential
space: polynomial
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Conjunctive queries Lecture 1: Introduction and background

3-colorability

An undirected graph is k-colorable if it is possible to assign to each node one
of k colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem

Given an undirected graph G = (V,E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query evaluation.
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Conjunctive queries Lecture 1: Introduction and background

Reduction from 3-colorability to CQ evaluation

Let G = (V,E) be an undirected graph (without edges connecting a node to
itself). We consider a relational alphabet consisting of a single binary relation
Edge, and we define:

An Interpretation: I = (∆I , ·I) where:

∆I = {r, g, b}
EdgeI = {(r, g), (g, r), (r, b), (b, r), (g, b), (b, g)}

A conjunctive query: Let V = {v1, . . . , vn}, then consider the boolean
conjunctive query defined as:

qG = ∃x1, . . . , xn.
∧

{vi,vj}∈E

Edge(xi, xj) ∧ Edge(xj , xi)

Theorem

G is 3-colorable iff I |= qG.
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Conjunctive queries Lecture 1: Introduction and background

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on the
actual graph. Hence, the reduction provides also the lower-bound for query
complexity.

Theorem

CQ evaluation is NP-hard in query (and combined) complexity.
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Unions of conjunctive queries Lecture 1: Introduction and background
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Unions of conjunctive queries Lecture 1: Introduction and background

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form∨
i=1,...,n

∃~yi.conj i(~x, ~yi)

where each ∃~yi.conj i(~x, ~yi) is a conjunctive query (note that all CQs in a UCQ
have the same set of distinguished variables).

Note: Obviously, each conjunctive query is also a union of conjunctive queries.
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Unions of conjunctive queries Lecture 1: Introduction and background

Datalog notation for UCQs

A union of conjunctive queries

q =
∨

i=1,...,n

∃~yi.conj i(~x, ~yi)

is written in datalog notation as

{ q(~x) ← conj ′1(~x, ~y1
′)

...
q(~x) ← conj ′n(~x, ~yn

′) }

where each element of the set is the datalog expression corresponding to the
conjunctive query qi = ∃~yi.conj i(~x, ~yi).

Note: in general, we omit the set brackets.
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Unions of conjunctive queries Lecture 1: Introduction and background

Evaluation of UCQs

From the definition of FOL query we have that:

I, α |=
∨

i=1,...,n

∃~yi.conj i(~x, ~yi)

if and only if

I, α |= ∃~yi.conj i(~x, ~yi) for some i ∈ {1, . . . , n}.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of
q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.
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Unions of conjunctive queries Lecture 1: Introduction and background

UCQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)

{〈I, α, q〉 | I, α |= q} is NP-complete.

time: exponential
space: polynomial

Theorem (Data complexity of UCQ evaluation)

{〈I, q〉 | I, α |= q} is in AC0 (query q fixed).

time: polynomial
space: logarithmic

Theorem (Query complexity of UCQ evaluation)

{〈α, q〉 | I, α |= q} is NP-complete (interpretation I fixed).

time: exponential
space: polynomial
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Lecture 1: Introduction and background

Query answering

In ontology-based data access we are interested in a reasoning service that is
not typical in ontologies (or in a FOL theory, or in UML class diagrams, or in a
knowledge base) but it is very common in databases: query answering.

Def.: Query

Is an expression at the intensional level denoting a set of tuples of individuals
satisfying a given condition.

Def.: Query Answering

Is the reasoning service that actually computes the answer to a query.
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Lecture 1: Introduction and background

Example of query

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

q(ce, cm, sa) ← ∃e, p,m.
worksFor(e, p) ∧manages(m, p) ∧ boss(m, e) ∧ empCode(e, ce) ∧
empCode(m, cm) ∧ salary(e, sa) ∧ salary(m, sa)
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Lecture 1: Introduction and background

Query answering under different assumptions

There are two fundamentally different assumptions when addressing query
answering:

Complete information on the data, as in traditional databases.

Incomplete information on the data, as in ontologies, but also
information integration in databases.
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Query answering in traditional databases Lecture 1: Introduction and background

Query answering in traditional databases

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and therefore the
schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

; Query answering amounts to query evaluation, which is computationally
easy.
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Query answering in traditional databases Lecture 1: Introduction and background

Query answering in traditional databases (cont’d)

Reasoning

ResultQuery

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering in traditional databases Lecture 1: Introduction and background

Query answering in traditional databases – Example

  
Manager

ProjectworksFor
 

Employee

For each concept/relationship we have a (complete) table in the DB.
DB: Employee = { john, mary, nick }

Manager = { john, nick }
Project = { prA, prB }
worksFor = { (john,prA), (mary,prB) }

Query: q(x) ← ∃p. Manager(x) ∧ Project(p) ∧ worksFor(x, p)

Answer: { john }

{
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Query answering in ontologies Lecture 1: Introduction and background
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Query answering in ontologies Lecture 1: Introduction and background

Query answering in ontologies

An ontology (or conceptual schema, or knowledge base) imposes
constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

; Query answering amounts to logical inference, which is computationally
more costly.

Note:

The size of the data is not considered critical (comparable to the size of the
intensional information).

Queries are typically simple, i.e., atomic (a class name), and query answering
amounts to instance checking.
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Query answering in ontologies Lecture 1: Introduction and background

Query answering in ontologies (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering in ontologies – Example

  
Manager

ProjectworksFor
 

Employee

The tables in the database may be incompletely specified, or even missing for
some classes/properties.

DB: Manager ⊇ { john, nick }
Project ⊇ { prA, prB }
worksFor ⊇ { (john,prA), (mary,prB) }

Query: q(x) ← Employee(x)

Answer: { john, nick, mary }

{
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Query answering in ontologies – Example 2

 
Person

 

hasFather
1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }
hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x)← ∃y. hasFather(x, y)
q3(x)← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3)← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{
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QA in ontologies – Andrea’s Example(∗)

 
Person

 

  
Female

  
Male

loves 

{disjoint, complete}

dislikes

(∗) Due to Andrea Schaerf
[Schaerf, 1993].

Person is partitioned into Female and Male.

Person ⊇ { andrea, paul, mary, john }
Female ⊇ { mary }

Male ⊇ { paul }
loves ⊇ { (john,andrea), (john,mary) }

dislikes ⊇ { (mary,andrea), (andrea,paul) }

john

andrea:Person mary:Female
dislikes

loves loves

paul:Male

dislikes
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QA in ontologies – Andrea’s Example (cont’d)

 
Person

 

  
Female

  
Male

loves 

{disjoint, complete}

dislikes john

andrea:Person mary:Female
dislikes

loves loves

paul:Male

dislikes

q(x)← ∃y, z. loves(x, y) ∧ Female(y) ∧ dislikes(y, z) ∧Male(z)

Answer: { john }

To determine this answer, we need to resort to reasoning by cases.
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Query answering in ontology-based data access

In OBDA, we have to face the difficulties of both settings:

The actual data is stored in external information sources (i.e., databases),
and thus its size is typically very large.

The ontology introduces incompleteness of information, and we have to
do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints expressed in the
ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus face also
the problems that are typical of data integration.
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Questions that need to be addressed

In the context of ontology-based data access:

1 Which is the “right” query language?

2 Which is the “right” ontology language?

3 How can we bridge the semantic mismatch between the ontology and the
data sources?

4 How can tools for ontology-based data access take into account these
issues?
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Which language to use for querying ontologies?

Two borderline cases:

1 Just classes and properties of the ontology ; instance checking

Ontology languages are tailored for capturing intensional relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the ontology,
i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)

Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

A good tradeoff is to use (unions of) conjunctive queries.
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