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New challenges in data management

One of the key challenges in complex systems today is the management of data:

The amount of data has increased enormously.

The complexity of the data has increased:
structured ; semi-structured ; unstructured

The data may be of low quality, e.g., incomplete, inconsistent, not crisp.

Data is increasingly distributed and heterogeneous, but nevertheless
needs to be accessed in a uniform way.

Data needs to be consumed not only by humans, but also by machines.

Traditional database management systems are not sufficient anymore to fulfill
today’s data management requirements.
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Addressing data management challenges

Several efforts come from the database area:

New kinds of databases are studied, to manage semi-structured (XML),
and probabilistic data.

Data integration is one of the major challenges for the future or IT.
E.g., the market for data integration software is estimated to grow from $2.5

billion in 2007 to $3.8 billion in 2012 (+8.7% per year) [IDC. Worldwide Data

Integration and Access Software 2008-2012 Forecast. Doc No. 211636 (2008)].

On the other hand, management of complex kinds of information has
traditionally been the concern of Knowledge Representation in AI:

Research in AI and KR can bring new insights, solutions, techniques, and
technologies.

However, what has been done in KR needs to be adapted /
extended / tuned to address the new challenges coming from
today’s data management.
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Ontologies

One important area of KR deals with the study of formalisms for the structured
representation of information:

By grounding the used formalisms in logic, the information is provided with
a formal semantics (i.e., a meaning).

The logic-based formalization allows one to provide automated support for
tasks related to data management, by means of logic-based inference.

Computational aspects are of concern, so that the automated reasoning
support can be done effectively, and built into tools.

Several proposals and studies in the last 30 years of formalisms, techniques,
algorithms, and tools:

Description Logics ; Ontologies

In this tutorial we are looking into using ontologies for managing data.
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Levels of an ontology

Def.: Ontology

is a representation scheme that describes a formal conceptualization of a
domain of interest.

The specification of an ontology usually comprises two distinct levels:

Intensional level: specifies a set of conceptual elements and of rules to
describe the conceptual structures of the domain.

Extensional level: specifies a set of instances of the conceptual elements
described at the intensional level.

Note: an ontology may specify also a meta-level, which specifies a set of
modeling categories of which the conceptual elements are instances.
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Ontologies at the core of information systems

C1

C2

C3
Ontology

Resource
1

Resource
2

Resource
3

Mapping

Resources

The usage of all system resources (data and services) is done through the
domain conceptualization.
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Ontology mediated access to data

Desiderata: achieve logical transparency in access to data:

Hide to the user where and how data are stored.

Present to the user a conceptual view of the data.

Use a semantically rich formalism for the conceptual view.

This setting is similar to the one of Data Integration. The difference is that
here the ontology provides a rich conceptual description of the data managed
by the system.
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Ontologies at the core of cooperation
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The cooperation between systems is done at the level of the conceptualization.
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Three novel challenges

1 Languages

2 Methodologies

3 Tools

. . . for specifying, building, and managing ontologies to be used in information
systems.
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Challenge 1: Ontology languages

Several proposals for ontology languages have been made.

Tradeoff between expressive power of the language and computational
complexity of dealing with (i.e., performing inference over) ontologies
specified in that language.

Usability needs to be addressed.

In this tutorial:

We discuss variants of ontology languages suited for managing ontologies
in information systems.

We discuss in depth the above mentioned tradeoff . . .

. . . paying particular attention to the aspects related to data management.

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (16/288)



Introduction to ontologies Ontology languages Query answering in databases Querying databases and ontologies

Challenges related to ontologies Part 1: Introduction to ontology-based data access

Challenge 2: Methodologies

Developing and dealing with ontologies is a complex and challenging task.

Developing good ontologies is even more challenging.

It requires to master the technologies based on semantics, which in turn
requires good knowledge about the languages, their semantics, and the
implications it has w.r.t. reasoning over the ontology.

In this tutorial:

We study in depth the semantics of ontologies, with an emphasis on
their relationship to data in information sources.

We thus lay the foundations for the development of methodologies,
though we do not present specific ontology-development methodologies
here.

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (17/288)



Introduction to ontologies Ontology languages Query answering in databases Querying databases and ontologies

Challenges related to ontologies Part 1: Introduction to ontology-based data access

Challenge 3: Tools

According to the principle that “there is no meaning without a language
with a formal semantics”, the formal semantics becomes the solid basis for
dealing with ontologies.

Hence every kind of access to an ontology (to extract information, to
modify it, etc.), requires to fully take into account its semantics.

We need to resort to tools that provide capabilities to perform automated
reasoning over the ontology, and the kind of reasoning should be sound
and complete w.r.t. the formal semantics.

In this tutorial:

We discuss the requirements for such ontology management tools.

We discuss the technologies behind a tool that has been specifically
designed for optimized access to information sources through ontologies.
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A challenge across the three challenges: Scalability

When we want to use ontologies to access information sources, we have to
address the three challenges of languages, methodologies, and tools by taking
into account scalability w.r.t.:

the size of (the intensional level of) the ontology

the number of ontologies

the size of the information sources that are accessed through the
ontology/ontologies.

In this tutorial we pay particular attention to the third aspect, since we work
under the realistic assumption that the extensional level (i.e., the data) largely
dominates in size the intensional level of an ontology.
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Elements of an ontology language

Syntax

Alphabet
Languages constructs
Sentences to assert knowledge

Semantics

Formal meaning

Pragmatics

Intended meaning
Usage
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Static vs. dynamic aspects

The aspects of the domain of interest that can be modeled by an ontology
language can be classified into:

Static aspects

Are related to the structuring of the domain of interest.
Supported by virtually all languages.

Dynamic aspects

Are related to how the elements of the domain of interest evolve over time.
Supported only by some languages, and only partially (cf. services).

Before delving into the dynamic aspects, we need a good understanding of the
static ones.

In this course we concentrate essentially on the static aspects.
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Intensional level of an ontology language

An ontology language for expressing the intensional level usually includes:

Concepts

Properties of concepts

Relationships between concepts, and their properties

Axioms

Queries

Ontologies are typically rendered as diagrams (e.g., Semantic Networks,
Entity-Relationship schemas, UML Class Diagrams).
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Example: ontology rendered as UML Class Diagram

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}
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Concepts

Def.: Concept

Is an element of an ontology that denotes a collection of instances (e.g., the set
of “employees”).

We distinguish between:

Intensional definition:
specification of name, properties, relations, . . .

Extensional definition:
specification of the instances

Concepts are also called classes, entity types, frames.
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Properties

Def.: Property

Is an element of an ontology that qualifies another element (e.g., a concept or a
relationship).

Property definition (intensional and extensional):

Name

Type: may be either

atomic (integer, real, string, enumerated, . . . ), or
e.g., eye-color → { blu, brown, green, grey }
structured (date, set, list, . . . )
e.g., date → day/month/year

The definition may also specify a default value.

Properties are also called attributes, features, slots, data properties.
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Relationships

Def.: Relationship

Is an element of an ontology that expresses an association among concepts.

We distinguish between:

Intensional definition:
specification of involved concepts
e.g., worksFor is defined on Employee and Project

Extensional definition:
specification of the instances of the relationship, called facts
e.g., worksFor(domenico, tones)

Relationships are also called associations, relationship types, roles, object
properties.
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Axioms

Def.: Axiom

Is a logical formula that expresses at the intensional level a condition that must
be satisified by the elements at the extensional level.

Different kinds of axioms/conditions:

subclass relationships, e.g., Manager v Employee

equivalences, e.g., Manager ≡ AreaManager t TopManager

disjointness, e.g., AreaManager u TopManager ≡ ⊥
(cardinality) restrictions,
e.g., each Employee worksFor at least 3 Project

. . .

Axioms are also called assertions.
A special kind of axioms are definitions.
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Extensional level of an ontology language

At the extensional level we have individuals and facts:

An instance represents an individual (or object) in the extension of a
concept.
e.g., domenico is an instance of Employee

A fact represents a relationship holding between instances.
e.g., worksFor(domenico, tones)
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Comparison with other formalisms

Ontology languages vs. knowledge representation languages:

Ontologies are knowledge representation schemas.

Ontology vs. logic:

Logic is the tool for assigning semantics to ontology languages.

Ontology languages vs. conceptual data models:

Conceptual schemas are special ontologies, suited for conceptualizing a
single logical model (database).

Ontology languages vs. programming languages:

Class definitions are special ontologies, suited for conceptualizing a single
structure for computation.
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Classification of ontology languages

Graph-based

Semantic networks
Conceptual graphs
UML class diagrams, Entity-Relationship schemas

Frame based

Frame Systems
OKBC, XOL

Logic based

Description Logics (e.g., SHOIQ, DLR, DL-Lite, OWL, . . . )
Rules (e.g., RuleML, LP/Prolog, F-Logic)
First Order Logic (e.g., KIF)
Non-classical logics (e.g., non-monotonic, probabilistic)
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FOL queries

We assume we are given a relational alphabet Σ, i.e., a set of relation symbols,
each with an associated arity.

Def.: A FOL query ϕ(x1, . . . , xk) over Σ (of arity k)

. . . is a FOL formula over Σ with free variables x1, . . . , xk.

Such a query is evaluated w.r.t. a FOL interpretation I and an assignment α of
elements of the domain of I to x1, . . . , xk, i.e., we ask whether:

I, α |= ϕ

Given a query ϕ(x1, . . . , xk), we denote with 〈a1, . . . , ak〉 the assignment that
assigns ai to xi, for i ∈ {1, . . . , k}.
Note:

The interpretation I corresponds to the database over which the query is
evaluated.

The assignments α to the free variables of ϕ such that I, α |= ϕ are the
answer to ϕ over I, denoted ϕI .
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FOL boolean queries

Def.: A FOL boolean query is a FOL query without free variables.

Hence, the answer to a boolean query ϕ() is defined as follows:

ϕ()I = {() | I, 〈〉 |= ϕ()}

Such an answer is

(), if I |= ϕ

∅, if I 6|= ϕ.

As an obvious convention we read () as “true” and ∅ as “false”.
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Query evaluation

Let us consider:

a finite alphabet Σ, i.e., we have a finite number of predicates and
functions, and

a finite interpretation I, i.e., an interpretation (over the finite alphabet)
for which ∆I is finite.

Then we can consider query evaluation as an algorithmic problem, and study its
computational properties.

Note: To study the computational complexity of the problem, we need to
define a corresponding decision problem.
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Query evaluation problem

Definitions

Query answering problem: given a finite interpretation I and a FOL
query ϕ(x1, . . . , xk), compute

ϕI = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)}

Recognition problem (for query answering): given a finite
interpretation I, a FOL query ϕ(x1, . . . , xk), and a tuple (a1, . . . , ak),
with ai ∈ ∆I , check whether (a1, . . . , ak) ∈ ϕI , i.e., whether

I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)

Note: The recognition problem for query answering is the decision problem
corresponding to the query answering problem.
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Query evaluation – Complexity measures [Vardi, 1982]

Def.: Combined complexity

The combined complexity is the complexity of {〈I, α, ϕ〉 | I, α |= ϕ}, i.e.,
interpretation, tuple, and query are all considered part of the input.

Def.: Data complexity

The data complexity is the complexity of {〈I, α〉 | I, α |= ϕ}, i.e., the query ϕ
is fixed (and hence not considered part of the input).

Def.: Query complexity

The query complexity is the complexity of {〈α,ϕ〉 | I, α |= ϕ}, i.e., the
interpretation I is fixed (and hence not considered part of the input).
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(Union of) Conjunctive queries – (U)CQs

(Unions of) conjunctive queries are an important class of queries:

A (U)CQ is a FOL query using only conjunction, existential quantification
(and disjunction).

Hence, UCQs contain no negation, no universal quantification, and no
function symbols besides constants.

Correspond to SQL/relational algebra (union) select-project-join (SPJ)
queries – the most frequently asked queries.

(U)CQs exhibit nice computational and semantic properties, and have been
studied extensively in database theory.

They are important in practice, since relational database engines are
specifically optimized for CQs.
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Definition of conjunctive queries

Def.: A conjunctive query (CQ) is a FOL query of the form

∃~y.conj (~x, ~y)

where conj (~x, ~y) is a conjunction of atoms and equalities over the free
variables ~x, the existentially quantified variables ~y, and possibly constants.

Note:

CQs contain no disjunction, no negation, no universal quantification, and
no function symbols besides constants.

Hence, they correspond to relational algebra select-project-join (SPJ)
queries.

CQs are the most frequently asked queries.
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Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as their
boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ: (the distinguished variables are the blue ones)

∃b, e, p1, c1, p2, c2.Person(n, a) ∧Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

Or simpler: ∃b, c.Person(n, a) ∧Manages(b, n) ∧ Lives(n, c) ∧ Lives(b, c)
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Datalog notation for CQs

A CQ q = ∃~y.conj (~x, ~y) can also be written using datalog notation as

q(~x1)← conj ′(~x1, ~y1)

where conj′(~x1, ~y1) is the list of atoms in conj (~x, ~y) obtained by equating the
variables ~x, ~y according to the equalities in conj (~x, ~y).

As a result of such an equality elimination, we have that ~x1 and ~y1 can contain
constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

q(~x1) the head;

conj ′(~x1, ~y1) the body;

the variables in ~x1 the distinguished variables;

the variables in ~y1 the non-distinguished variables.
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Conjunctive queries – Example

Consider the alphabet Σ = {E/2} and an interpretation I = (∆I , ·I).
Note that EI is a binary relation, i.e., I is a directed graph.

The following CQ q returns all nodes that participate to a triangle in the
graph:

∃y, z.E(x, y) ∧ E(y, z) ∧ E(z, x)

The query q in datalog notation becomes:

q(x)← E(x, y), E(y, z), E(z, x)

The query q in SQL is (we use Edge(f,s) for E(x, y):

SELECT E1.f
FROM Edge E1, Edge E2, Edge E3
WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (47/288)



Introduction to ontologies Ontology languages Query answering in databases Querying databases and ontologies

Conjunctive queries Part 1: Introduction to ontology-based data access

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it by:

1 guessing a truth assignment for the non-distinguished variables;

2 evaluating the resulting formula (that has no quantifications).

We define a boolean function for CQ evaluation:

boolean ConjTruth(I,α,∃~y.conj(~x, ~y)) {
GUESS assignment α[~y 7→ ~a] {

return Truth(I,α[~y 7→ ~a],conj (~x, ~y));
}

where Truth(I, α, ϕ) is defined inductively as follows.
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Nondeterministic CQ evaluation algorithm

boolean Truth(I,α,ϕ) {
if (ϕ is t 1 = t 2)
return TermEval(I,α,t 1) = TermEval(I,α,t 2);

if (ϕ is P (t 1, . . . , t k))
return P I(TermEval(I,α,t 1),...,TermEval(I,α,t k));

if (ϕ is ψ ∧ ψ′)
return Truth(I,α,ψ) ∧ Truth(I,α,ψ′);

}

∆I TermEval(I,α,t) {
if (t is a variable x) return α(x);
if (t is a constant c) return cI;

}
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CQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)

{〈I, α, q〉 | I, α |= q} is NP-complete — see below for hardness.

time: exponential
space: polynomial

Theorem (Data complexity of CQ evaluation)

{〈I, α〉 | I, α |= q} is in LogSpace

time: polynomial
space: logarithmic

Theorem (Query complexity of CQ evaluation)

{〈α, q〉 | I, α |= q} is NP-complete — see below for hardness.

time: exponential
space: polynomial

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (50/288)



Introduction to ontologies Ontology languages Query answering in databases Querying databases and ontologies

Conjunctive queries Part 1: Introduction to ontology-based data access

3-colorability

An undirected graph is k-colorable if it is possible to assign to each node one
of k colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem

Given an undirected graph G = (V,E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query evaluation.
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Reduction from 3-colorability to CQ evaluation

Let G = (V,E) be an undirected graph. We consider a relational alphabet
consisting of a single binary relation Edge and define:

An Interpretation: I = (∆I , ·I) where:

∆I = {r, g, b}
EdgeI = {(r, g), (g, r), (r, b), (b, r), (g, b), (b, g)}

A conjunctive query: Let V = {x1, . . . , xn}, then consider the boolean
conjunctive query defined as:

qG = ∃x1, . . . , xn.
∧

(xi,xj)∈E

Edge(xi, xj) ∧ Edge(xj , xi)

Theorem

G is 3-colorable iff I |= qG.
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NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on the
actual graph. Hence, the reduction provides also the lower-bound for query
complexity.

Theorem

CQ evaluation is NP-hard in query (and combined) complexity.
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Homomorphism

Let I = (∆I , ·I) and J = (∆J , ·J ) be two interpretations over the same
alphabet (for simplicity, we consider only constants as functions).

Def.: A homomorphism from I to J
is a mapping h : ∆I → ∆J that preserves constants and relations, i.e., such
that:

h(cI) = cJ

if (a1, . . . , ak) ∈ P I then (h(a1), . . . , h(ak)) ∈ PJ

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem

FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic.
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Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q of
arity k. Then

I, α |= q(x1, . . . , xk) iff Iα,~c |= q(c1, . . . , ck)

where Iα,~c is identical to I but includes new constants c1, . . . , ck that are

interpreted as c
Iα,~c
i = α(xi).

That is, we can reduce the recognition problem to the evaluation of a
boolean query.
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Canonical interpretation of a (boolean) CQ

Let q be a boolean conjunctive query ∃x1, . . . , xn.conj

Def.: The canonical interpretation Iq associated with q

is the interpretation Iq = (∆Iq , ·Iq ), where

∆Iq = {x1, . . . , xn} ∪ {c | c constant occurring in q},
i.e., all the variables and constants in q;

cIq = c, for each constant c in q;

(t1, . . . , tk) ∈ P Iq iff the atom P (t1, . . . , tk) occurs in q.

Sometimes the procedure for obtaining the canonical interpretation is called
freezing of q.
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Canonical interpretation of a (boolean) CQ – Example

Consider the boolean query q

q(c)← E(c, y), E(y, z), E(z, c)

Then, the canonical interpretation Iq is defined as

Iq = (∆Iq , ·Iq )

where

∆Iq = {y, z, c}
EIq = {(c, y), (y, z), (z, c)}
cIq = c
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Canonical interpretation and (boolean) CQ evaluation

Theorem ([Chandra and Merlin, 1977])

For boolean CQs, I |= q iff there exists a homomorphism from Iq to I.

Proof.
“⇒” Let I |= q, let α be an assignment to the existential variables that makes
q true in I, and let α̂ be its extension to constants. Then α̂ is a homomorphism
from Iq to I.

“⇐” Let h be a homomorphism from Iq to I. Then restricting h to the
variables only we obtain an assignment to the existential variables that makes q
true in I.
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Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced to
finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational
structures) is also known as solving a Constraint Satisfaction Problem
(CSP), a problem well-studied in AI – see also [Kolaitis and Vardi, 1998].

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (60/288)



Introduction to ontologies Ontology languages Query answering in databases Querying databases and ontologies

Unions of conjunctive queries Part 1: Introduction to ontology-based data access

Outline of Part 1

1 Introduction to ontologies

2 Ontology languages

3 Query answering in databases
First-order logic queries
Conjunctive queries
Conjunctive queries and homomorphisms
Unions of conjunctive queries

4 Querying databases and ontologies

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (61/288)



Introduction to ontologies Ontology languages Query answering in databases Querying databases and ontologies

Unions of conjunctive queries Part 1: Introduction to ontology-based data access

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form∨
i=1,...,n

∃~yi.conj i(~x, ~yi)

where each ∃~yi.conj i(~x, ~yi) is a conjunctive query (note that all CQs in a UCQ
have the set of distinguished variables.

Note: Obviously, each conjunctive query is also a of union of conjunctive
queries.
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Datalog notation for UCQs

A union of conjunctive queries

q =
∨

i=1,...,n

∃~yi.conj i(~x, ~yi)

is written in datalog notation as

{ q(~x) ← conj ′1(~x, ~y1
′)

...
q(~x) ← conj ′n(~x, ~yn

′) }

where each element of the set is the datalog expression corresponding to the
conjunctive query qi = ∃~yi.conj i(~x, ~yi).

Note: in general, we omit the set brackets.
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Evaluation of UCQs

From the definition of FOL query we have that:

I, α |=
∨

i=1,...,n

∃~yi.conj i(~x, ~yi)

if and only if

I, α |= ∃~yi.conj i(~x, ~yi) for some i ∈ {1, . . . , n}.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of
q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.
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UCQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)

{〈I, α, q〉 | I, α |= q} is NP-complete.

time: exponential
space: polynomial

Theorem (Data complexity of UCQ evaluation)

{〈I, q〉 | I, α |= q} is in LogSpace (query q fixed).

time: polynomial
space: logarithmic

Theorem (Query complexity of UCQ evaluation)

{〈α, q〉 | I, α |= q} is NP-complete (interpretation I fixed).

time: exponential
space: polynomial
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Query answering

In ontology-based data access we are interested in a reasoning service that is
not typical in ontologies (or in a FOL theory, or in UML class diagrams, or in a
knowledge base) but it is very common in databases: query answering.

Def.: Query

Is an expression at the intensional level denoting a set of tuples of individuals
satisfying a given condition.

Def.: Query Answering

Is the reasoning service that actually computes the answer to a query.
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Example of query

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

q(ce, cm, sa) ← ∃e, p,m.
worksFor(e, p) ∧manages(m, p) ∧ boss(m, e) ∧ empCode(e, ce) ∧
empCode(m, cm) ∧ salary(e, sa) ∧ salary(m, sa)
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Query answering under different assumptions

There are two fundamentally different assumptions when addressing query
answering:

Complete information on the data, as in traditional databases.

Incomplete information on the data, as in ontologies (aka knowledge
bases), but also information integration in databases.
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Query answering in traditional databases

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and therefore the
schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

; Query answering amounts to query evaluation, which is computationally
easy.
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Query answering in traditional databases (cont’d)

Reasoning

ResultQuery

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering in traditional databases – Example

  
Manager

ProjectworksFor
 

Employee

For each concept/relationship we have a (complete) table in the DB.
DB: Employee = { john, mary, nick }

Manager = { john, nick }
Project = { prA, prB }
worksFor = { (john,prA), (mary,prB) }

Query: q(x) ← ∃p. Manager(x) ∧ Project(p) ∧ worksFor(x, p)

Answer: { john }

{
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Query answering in ontologies

An ontology (or conceptual schema, or knowledge base) imposes
constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

; Query answering amounts to logical inference, which is computationally
more costly.

Note:

The size of the data is not considered critical (comparable to the size of the
intensional information).

Queries are typically simple, i.e., atomic (a class name), and query answering
amounts to instance checking.
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Query answering in ontologies (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering in ontologies – Example

  
Manager

ProjectworksFor
 

Employee

The tables in the database may be incompletely specified, or even missing for
some classes/properties.

DB: Manager ⊇ { john, nick }
Project ⊇ { prA, prB }
worksFor ⊇ { (john,prA), (mary,prB) }

Query: q(x) ← Employee(x)

Answer: { john, nick, mary }

{
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Query answering in ontologies – Example 2

 
Person

 

hasFather
1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }
hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x)← ∃y. hasFather(x, y)
q3(x)← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3)← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{
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QA in ontologies – Andrea’s Example(∗)

 
Employee

 

  
Manager

  
AreaManager

  
TopManager

supervisedBy 

{disjoint, complete}

officeMate

(∗) Due to Andrea Schaerf
[Schaerf, 1993].

Manager is partitioned into AreaManager and
TopManager.

Employee ⊇ { andrea, nick, mary, john }
Manager ⊇ { andrea, nick, mary }

AreaManager ⊇ { nick }
TopManager ⊇ { mary }
supervisedBy ⊇ { (john,andrea), (john,mary) }

officeMate ⊇ { (mary,andrea), (andrea,nick) }

john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate
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QA in ontologies – Andrea’s Example (cont’d)

 
Employee

 

  
Manager

  
AreaManager

  
TopManager

supervisedBy 

{disjoint, complete}

officeMate john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate

q(x)← ∃y, z. supervisedBy(x, y) ∧ TopManager(y) ∧
officeMate(y, z) ∧ AreaManager(z)

Answer: { john }

To determine this answer, we need to resort to reasoning by cases.
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Query answering in ontology-based data access

In OBDA, we have to face the difficulties of both settings:

The actual data is stored in external information sources (i.e., databases),
and thus its size is typically very large.

The ontology introduces incompleteness of information, and we have to
do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints expressed in the
ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus face also
the problems that are typical of data integration.
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Questions that need to be addressed

In the context of ontology-based data access:

1 Which is the “right” query language?

2 Which is the “right” ontology language?

3 How can we bridge the semantic mismatch between the ontology and the
data sources?

4 How can tools for ontology-based data access take into account these
issues?
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Which language to use for querying ontologies?

Two borderline cases:

1 Just classes and properties of the ontology ; instance checking

Ontology languages are tailored for capturing intensional relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the ontology,
i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)

Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

A good tradeoff is to use (unions of) conjunctive queries.
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Part II

Description Logics and the DL-Lite family
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Ingredients of Description Logics Part 2: Description Logics and the DL-Lite family

What are Description Logics?

Description Logics (DLs) [Baader et al., 2003] are logics specifically designed to
represent and reason on structured knowledge.

The domain of interest is composed of objects and is structured into:

concepts, which correspond to classes, and denote sets of objects

roles, which correspond to (binary) relationships, and denote binary
relations on objects

The knowledge is asserted through so-called assertions, i.e., logical axioms.
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Ingredients of a Description Logic

A DL is characterized by:

1 A description language: how to form concepts and roles
Human uMale u ∃hasChild u ∀hasChild.(Doctor t Lawyer)

2 A mechanism to specify knowledge about concepts and roles (i.e., a
TBox)
T = { Father ≡ Human uMale u ∃hasChild,

HappyFather v Father u ∀hasChild.(Doctor t Lawyer) }

3 A mechanism to specify properties of objects (i.e., an ABox)
A = { HappyFather(john), hasChild(john, mary) }

4 A set of inference services: how to reason on a given KB
T |= HappyFather v ∃hasChild.(Doctor t Lawyer)
T ∪ A |= (Doctor t Lawyer)(mary)
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Architecture of a Description Logic system
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Description language

A description language provides the means for defining:

concepts, corresponding to classes: interpreted as sets of objects;

roles, corresponding to relationships: interpreted as binary relations on
objects.

To define concepts and roles:

We start from a (finite) alphabet of atomic concepts and atomic roles,
i.e., simply names for concept and roles.

Then, by applying specific constructors, we can build complex concepts
and roles, starting from the atomic ones.

A description language is characterized by the set of constructs that are
available for that.
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Semantics of a description language

The formal semantics of DLs is given in terms of interpretations.

Def.: An interpretation I = (∆I , ·I) consists of:

a nonempty set ∆I , the domain of I
an interpretation function ·I , which maps

each individual c to an element cI of ∆I

each atomic concept A to a subset AI of ∆I

each atomic role P to a subset P I of ∆I ×∆I

The interpretation function is extended to complex concepts and roles according
to their syntactic structure.

We adopt the unique name assumption, i.e., when c1 6= c2 then cI1 6= cI2 .
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Concept constructors

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

atomic negation ¬A ¬Doctor ∆I \AI
conjunction C uD Hum uMale CI ∩DI
(unqual.) exist. res. ∃R ∃hasChild { a | ∃b. (a, b) ∈ RI }
value restriction ∀R.C ∀hasChild.Male {a | ∀b. (a, b) ∈ RI → b ∈ CI}
bottom ⊥ ∅

(C, D denote arbitrary concepts and R an arbitrary role)

The above constructs form the basic language AL of the family of AL
languages.
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Additional concept and role constructors

Construct AL· Syntax Semantics

disjunction U C tD CI ∪DI
top > ∆I

qual. exist. res. E ∃R.C { a | ∃b. (a, b) ∈ RI ∧ b ∈ CI }
(full) negation C ¬C ∆I \ CI
number N (≥ k R) { a | #{b | (a, b) ∈ RI} ≥ k }
restrictions (≤ k R) { a | #{b | (a, b) ∈ RI} ≤ k }
qual. number Q (≥ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≥ k }
restrictions (≤ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≤ k }
inverse role I R− { (a, b) | (b, a) ∈ RI }
role closure reg R∗ (RI)∗

Many different DL constructs and their combinations have been investigated.
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Further examples of DL constructs

Disjunction: ∀hasChild.(Doctor t Lawyer)

Qualified existential restriction: ∃hasChild.Doctor

Full negation: ¬(Doctor t Lawyer)

Number restrictions: (≥ 2 hasChild) u (≤ 1 sibling)

Qualified number restrictions: (≥ 2 hasChild. Doctor)

Inverse role: ∀hasChild−.Doctor

Reflexive-transitive role closure: ∃hasChild∗.Doctor
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Reasoning on concept expressions

An interpretation I is a model of a concept C if CI 6= ∅.

Basic reasoning tasks:

1 Concept satisfiability: does C admit a model?

2 Concept subsumption C v D: does CI ⊆ DI hold for all interpretations
I?

Subsumption is used to build the concept hierarchy:

Human

Man Woman

Father

HappyFather

Note: (1) and (2) are mutually reducible if DL is propositionally closed.
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Complexity of reasoning on concept expressions

Complexity of concept satisfiability: [Donini et al., 1997]

AL, ALN PTime
ALU , ALUN NP-complete
ALE coNP-complete
ALC, ALCN , ALCI, ALCQI PSpace-complete

Observations:

Two sources of complexity:

union (U) of type NP,
existential quantification (E) of type coNP.

When they are combined, the complexity jumps to PSpace.

Number restrictions (N ) do not add to the complexity.
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Structural properties vs. asserted properties

We have seen how to build complex concept and roles expressions, which
allow one to denote classes with a complex structure.

However, in order to represent real world domains, one needs the ability to
assert properties of classes and relationships between them (e.g., as done in
UML class diagrams).

The assertion of properties is done in DLs by means of an ontology (or
knowledge base).

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (100/288)



A quick overview of DLs Reasoning and query answering in DLs The DL-Lite family

Description Logics ontologies Part 2: Description Logics and the DL-Lite family

Description Logics ontology (or knowledge base)

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:

Def.: Description Logics TBox

Consists of a set of assertions on concepts and roles:

Inclusion assertions on concepts: C1 v C2

Inclusion assertions on roles: R1 v R2

Property assertions on (atomic) roles:
(transitive P ) (symmetric P ) (domain P C)
(functional P ) (reflexive P ) (range P C) · · ·

Def.: Description Logics ABox

Consists of a set of membership assertions on individuals:

for concepts: A(c)
for roles: P (c1, c2) (we use ci to denote individuals)
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Description Logics ontology – Example

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

TBox assertions:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant), (functional hasFather)

ABox membership assertions:

Teacher(mary), hasFather(mary, john), HappyAnc(john)
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Semantics of a Description Logics ontology

The semantics is given by specifying when an interpretation I satisfies an
assertion:

C1 v C2 is satisfied by I if CI1 ⊆ CI2 .

R1 v R2 is satisfied by I if RI1 ⊆ RI2 .

A property assertion (prop P ) is satisfied by I if P I is a relation that has
the property prop.
(Note: domain and range assertions can be expressed by means of concept
inclusion assertions.)

A(c) is satisfied by I if cI ∈ AI .

P (c1, c2) is satisfied by I if (cI1 , c
I
2 ) ∈ P I .

Def.: Model of a DL ontology

An interpretation I is a model of O = 〈T ,A〉 if it satisfies all assertions in T
and all assertions in A.
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Relationship between DLs and ontology formalisms

DLs are nowadays advocated to provide the foundations for ontology
languages.

Different versions of the W3C standard Web Ontology Language
(OWL) have been defined as syntactic variants of certain DLs.

DLs are also ideally suited to capture the fundamental features of
conceptual modeling formalism used in information systems design:

Entity-Relationship diagrams, used in database conceptual modeling
UML Class Diagrams, used in the design phase of software applications

We briefly overview these correspondences, highlighting essential DL constructs,
also in light of the tradeoff between expressive power and computational
complexity of reasoning.
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DLs vs. OWL

The Web Ontology Language (OWL) comes in different variants:

OWL1 Lite is a variant of the DL SHIF(D), where:

S stands for ALC extended with transitive roles,
H stands for role hierarchies (i.e., role inclusion assertions),
I stands for inverse roles,
F stands for functionality of roles,
(D) stand for data types, which are necessary in any practical knowledge
representation language.

OWL1 DL is a variant of SHOIN (D), where:

O stands for nominals, which means the possibility of using individuals in
the TBox (i.e., the intensional part of the ontology),
N stands for (unqualified) number restrictions.
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DLs vs. OWL2

A new version of OWL, OWL2, is currently being standardized by the W3C:

OWL2 DL is a variant of SROIQ(D), which adds to OWL1 DL several
constructs, while still preserving decidability of reasoning.

Q stands for qualified number restrictions.
R stands for regular role hierarchies, where role chaining might be used in
the left-hand side of role inclusion assertions, with suitable acyclicity
conditions.

OWL2 defines also three profiles: OWL2 QL, OWL2 EL, OWL2 RL.

Each profile corresponds to a syntactic fragment (i.e., a sub-language) of
OWL2 DL that is targeted towards a specific use.
The restrictions in each profile guarantee better computational properties
than those of OWL2 DL.
The OWL2 QL profile is derived from the DLs of the DL-Lite family (see
later).
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DLs vs. UML Class Diagrams

There is a tight correspondence between variants of DLs and UML Class
Diagrams [Berardi et al., 2005].

We can devise two transformations:

one that associates to each UML Class Diagram D a DL TBox TD.
one that associates to each DL TBox T a UML Class Diagram DT .

The transformations are not model-preserving, but are based on a
correspondence between instantiations of the Class Diagram and models of
the associated ontology.

The transformations are satisfiability-preserving, i.e., a class C is
consistent in D iff the corresponding concept is satisfiable in T .
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Encoding UML Class Diagrams in DLs

The ideas behind the encoding of a UML Class Diagram D in terms of a DL
TBox TD are quite natural:

Each class is represented by an atomic concept.

Each attribute is represented by a role.

Each binary association is represented by a role.

Each non-binary association is reified, i.e., represented as a concept
connected to its components by roles.

Each part of the diagram is encoded by suitable assertions.

We illustrate the encoding by means of an example.
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Encoding UML Class Diagrams in DLs – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

Manager v AreaManager t
TopManager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

(funct manages)
(funct manages−)

manages v worksFor
· · ·

Note: Domain and range of associations are
expressed by means of concept inclusions.

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (110/288)



A quick overview of DLs Reasoning and query answering in DLs The DL-Lite family

DLs vs. other formalisms Part 2: Description Logics and the DL-Lite family

Encoding DL TBoxes in UML Class Diagrams

The encoding of an ALC TBox T in terms of a UML Class Diagram TD is
based on the following observations:

We can restrict the attention to ALC TBoxes, that are constituted by
concept inclusion assertions of a simplified form (single atomic concept on
the left, and a single concept constructor on the right).

For each such inclusion assertion, the encoding introduces a portion of
UML Class Diagram, that may refer to some common classes.

By means of the two encodings, one can relate reasoning in DLs to reasoning
on UML Class Diagrams.
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Logical implication

The fundamental reasoning service from which all other ones can be easily
derived is . . .

Def.: Logical implication

An ontology O logically implies an assertion α, written O |= α, if α is satisfied
by all models of O.

We can provide an analogous definition for a TBox T instead of an ontology O.
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TBox reasoning

Concept Satisfiability: C is satisfiable wrt T , if there is a model I of T
such that CI is not empty, i.e., T 6|= C ≡ ⊥.

Subsumption: C1 is subsumed by C2 wrt T , if for every model I of T we
have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I of T
we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of T we
have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥.

Functionality implication: A functionality assertion (funct R) is logically
implied by T if for every model I of T , we have that (o, o1) ∈ RI and
(o, o2) ∈ RI implies o1 = o2, i.e., T |= (funct R).

Analogous definitions hold for role satisfiability, subsumption, equivalence, and
disjointness.
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Reasoning over an ontology

Ontology Satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

Concept Instance Checking: Verify whether an individual c is an
instance of a concept C in every model of O, i.e., whether O |= C(c).

Role Instance Checking: Verify whether a pair (c1, c2) of individuals is
an instance of a role R in every model of O, i.e., whether O |= R(c1, c2).

Query Answering: see later . . .
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Reasoning in Description Logics – Example

TBox:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant), (functional hasFather)

The above TBox logically implies: HappyAncestor v Father.

Membership assertions:
Teacher(mary), hasFather(mary, john), HappyAnc(john)

The above TBox and ABox logically imply: HappyPerson(mary)
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Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than reasoning over
concept expressions:

Bad news:

without restrictions on the form of TBox assertions, reasoning over DL
ontologies is already ExpTime-hard, even for very simple DLs (see, e.g.,
[Donini, 2003]).

Good news:

We can add a lot of expressivity (i.e., essentially all DL constructs seen so
far), while still staying within the ExpTime upper bound.

There are DL reasoners that perform reasonably well in practice for such
DLs (e.g, Racer, Pellet, Fact++, . . . ) [Möller and Haarslev, 2003].
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Reasoning on UML Class Diagrams using DLs

The two encodings seen previously show that DL TBoxes and UML Class
Diagrams essentially have the same expressive power.

Since the encodings are polynomial (actually LogSpace), we also get that
reasoning over UML Class Diagrams has the same complexity as reasoning
over ontologies in expressive DLs, i.e., it is ExpTime-complete.

The high complexity is caused by:
1 the possibility to use disjunction (covering constraints)
2 the interaction between role inclusions and functionality constraints

(maximum 1 cardinality)

Without (1) and restricting (2), reasoning becomes simpler [Artale et al., 2007]:

NLogSpace-complete in combined complexity

in LogSpace in data complexity (see later)
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Efficient reasoning on UML Class Diagrams

We are interested in using UML Class Diagrams to specify ontologies in the
context of ontology-based data access.

Questions

Which is the right combination of constructs to allow in UML Class
Diagrams to be used for OBDA?

Are there techniques for query answering in this case that can be derived
from Description Logics?

Can query answering be done efficiently in the size of the data?

If yes, can we leverage relational database technology for query answering?
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Queries over Description Logics ontologies

Traditionally, simple concept (or role) expressions have been considered as
queries over DL ontologies.

We have seen that we need more complex forms of queries, such as those used
in databases.

Def.: A conjunctive query q(~x) over an ontology O = 〈T ,A〉
is a conjunctive query ∃~y. conj (~x, ~y)

whose predicate symbols are atomic concept and roles of T , and

that may contain constants that are individuals of A.

Remember: a CQ corresponds to a select-project-join SQL query.
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Queries over Description Logics ontologies – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Conjunctive query over the above ontology:

q(x, y) ← ∃p. Employee(x),Employee(y),Project(p),
boss(x, y),worksFor(x, p),worksFor(y, p)
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Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x) = ∃~y. conj (~x, ~y) a CQ.

Def.: The answer to q(~x) over I, denoted qI

is the set of tuples ~c of constants of A such that the formula ∃~y. conj (~c, ~y)
evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(~x) over O = 〈T ,A〉, denoted cert(q,O)

are the tuples ~c of constants of A such that ~c ∈ qI , for every model I of O.
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Query answering in ontologies

Def.: Query answering over an ontology O
Is the problem of computing the certain answers to a query over O.

Computing certain answers is a form of logical implication:

~c ∈ cert(q,O) iff O |= q(~c)

Note: A special case of query answering is instance checking: it amounts to
answering the boolean query q()← A(c) (resp., q()← P (c1, c2)) over O (in
this case ~c is the empty tuple).
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Query answering in ontologies – Example

 
Person

 

hasFather
1..* TBox T : ∃hasFather v Person

∃hasFather− v Person
Person v ∃hasFather

ABox A: Person(john), Person(nick), Person(toni)
hasFather(john,nick), hasFather(nick,toni)

Queries:
q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Certain answers: cert(q1, 〈T ,A〉) = { (john,nick), (nick,toni) }

{

cert(q2, 〈T ,A〉) = { john, nick, toni }

{

cert(q3, 〈T ,A〉) = { john, nick, toni }

{

cert(q4, 〈T ,A〉) = { }

{
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Unions of conjunctive queries

We consider also unions of CQs over an ontology.

A union of conjunctive queries (UCQ) has the form:

∃~y1. conj (~x, ~y1) ∨ · · · ∨ ∃ ~yk. conj (~x, ~yk)

where each ∃~yi. conj (~x, ~yi) is a CQ.

The (certain) answers to a UCQ are defined analogously to those for CQs.

Example

q(x)← (Manager(x) ∧ worksFor(x, tones)) ∨
(∃y. boss(x, y) ∧ worksFor(y, tones))

In datalog notation:
q(x) ← Manager(x),worksFor(x, tones)
q(x) ← ∃y. boss(x, y) ∧ worksFor(y, tones)
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Data and combined complexity

When measuring the complexity of answering a query q(~x) over an ontology
O = 〈T ,A〉, various parameters are of importance.

Depending on which parameters we consider, we get different complexity
measures:

Data complexity: only the size of the ABox (i.e., the data) matters.
TBox and query are considered fixed.

Query complexity: only the size of the query matters.
TBox and ABox are considered fixed.

Schema complexity: only the size of the TBox (i.e., the schema) matters.
ABox and query are considered fixed.

Combined complexity: no parameter is considered fixed.

In the OBDA setting, the size of the data largely dominates the size of the
conceptual layer (and of the query).
; Data complexity is the relevant complexity measure.
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Data complexity of query answering

When studying the complexity of query answering, we need to consider the
associated decision problem:

Def.: Recognition problem for query answering

Given an ontology O, a query q over O, and a tuple ~c of constants, check
whether ~c ∈ cert(q,O).

We look mainly at the data complexity of query answering, i.e., complexity of
the recognition problem computed w.r.t. the size of the ABox only.
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Complexity of query answering in DLs

Query answering has been studied extensively for (unions of) CQs and various
ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in AC0 (1)

OWL 2 (and less) 2ExpTime-complete (3) coNP-hard (2)

(1) This is what we need to scale with the data.
(2) Already for a TBox with a single disjunction

[Donini et al., 1994; Calvanese et al., 2006b].
But coNP-complete for very expressive DLs

[Levy and Rousset, 1998; Ortiz et al., 2006; Glimm et al., 2007].
(3) [Calvanese et al., 1998; Lutz, 2007]

Questions

Can we find interesting (description) logics for which query answering can
be done efficiently (i.e., in AC0)?

If yes, can we leverage relational database technology for query answering?
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Inference in query answering

cert(q, 〈T ,A〉)
Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the contribution of
A from the contribution of q and T .

; Query answering by query rewriting.
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Query rewriting

rq,TPerfect

(under OWA)
Query

(under CWA)

evaluation

reformulation
q

T

A cert(q, 〈T ,A〉)

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query rq,T
(called the perfect rewriting of q w.r.t. T ).

2 Query evaluation: evaluate rq,T over the ABox A seen as a complete
database (and without considering the TBox T ).
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .
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Q-rewritability

Let Q be a query language and L be an ontology language.

Def.: Q-rewritability

For an ontology language L, query answering is Q-rewritable if for every TBox
T of L and for every query q, the perfect reformulation rq,T of q w.r.t. T can
be expressed in the query language Q.

Notice that the complexity of computing rq,T or the size of rq,T do not affect
data complexity.

Hence, Q-rewritability is tightly related to data complexity, i.e.:

complexity of computing cert(q, 〈T ,A〉) measured in the size of the ABox
A only,

which corresponds to the complexity of evaluating rq,T over A.
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Language of the rewriting

The expressiveness of the ontology language affects the rewriting
language, i.e., the language into which we are able to rewrite UCQs:

When we can rewrite into FOL/SQL (i.e., the ontology language enjoys
FOL-rewritability).
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in AC0).

When we can rewrite into an NLogSpace-hard language.
; Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
; Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
; Query evaluation requires (at least) power of Disjunctive Datalog.
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The DL-Lite family

A family of DLs optimized according to the tradeoff between expressive
power and complexity of query answering, with emphasis on data.

Carefully designed to have nice computational properties for answering
UCQs (i.e., computing certain answers):

The same data complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally expressive
ontology languages enjoying these nice computational properties.

Captures conceptual modeling formalism.

The DL-Lite family provides new foundations for Ontology-Based Data Access.
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Basic features of DL-LiteA

DL-LiteA is an expressive member of the DL-Lite family.

Takes into account the distinction between objects and values:

Objects are elements of an abstract interpretation domain.
Values are elements of concrete data types, such as integers, strings, ecc.
Values are connected to objects through attributes (rather than roles).

Is equipped with identification constraints.

Captures most of UML class diagrams and Extended ER diagrams.

Enjoys FOL-rewritability, and hence is AC0 in data complexity.
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Syntax of the DL-LiteA description language

Concept expressions: atomic concept A

B −→ A | ∃Q | δ(U)
C −→ >C | B | ¬B

Role expressions: atomic role P

Q −→ P | P−
R −→ Q | ¬Q

Value-domain expressions: each Ti is one of the RDF datatypes

E −→ ρ(U)
F −→ >D | T1 | · · · | Tn

Attribute expressions: atomic attribute U

V −→ U | ¬U
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Semantics of DL-LiteA – Objects vs. values

Objects Values

Interpretation domain ∆I Domain of objects ∆ I
O Domain of values ∆ I

V

Alphabet Γ of constants Object constants ΓO Value constants ΓV

cI ∈ ∆ I
O dI = val(d) given a priori

Unary predicates Concept C RDF datatype Ti

CI ∈ ∆ I
O T Ii ∈ ∆ I

V is given a priori

Binary predicates Role R Attribute V

RI ∈ ∆ I
O ×∆ I

O V I ∈ ∆ I
O ×∆ I

V
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Semantics of the DL-LiteA constructs

Construct Syntax Example Semantics

top concept >C >IC = ∆ I
O

atomic concept A Doctor AI ⊆ ∆ I
O

existential restriction ∃Q ∃child− {o | ∃o′. (o, o′) ∈ QI}
concept negation ¬B ¬∃child ∆I \BI
attribute domain δ(U) δ(salary) {o | ∃v. (o, v) ∈ UI}
atomic role P child P I ⊆ ∆ I

O ×∆ I
O

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆ I

O ×∆ I
O ) \QI

top domain >D >ID = ∆ I
V

datatype Ti xsd:int val(Ti) ⊆ ∆ I
V

attribute range ρ(U) ρ(salary) {v | ∃o. (o, v) ∈ UI}
atomic attribute U salary UI ⊆ ∆ I

O ×∆ I
V

attribute negation ¬U ¬salary (∆ I
O ×∆ I

V ) \ UI
object constant c john cI ∈ ∆ I

O

value constant d ’john’ val(d) ∈ ∆ I
V
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DL-LiteA assertions

TBox assertions can have the following forms:

Inclusion assertions:

B v C concept inclusion

Q v R role inclusion

E v F value-domain inclusion

U v V attribute inclusion

Functionality assertions:

(funct Q) role functionality (funct U) attribute functionality

Identification constraints: (id B I1, . . . , In)
where each Ij is a role, an inverse role, or an attribute

ABox assertions: A(c), P (c, c′), U(c, d),
where c, c′ are object constants and d is a value constant
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Semantics of the DL-LiteA assertions

Assertion Syntax Example Semantics

conc. incl. B v C Father v ∃child BI ⊆ CI

role incl. Q v R father v anc QI ⊆ RI

v.dom. incl. E v F ρ(age) v xsd:int EI ⊆ F I

attr. incl. U v V offPhone v phone UI ⊆ V I

role funct. (funct Q) (funct father) ∀o, o1, o2.(o, o1) ∈ QI ∧
(o, o2) ∈ QI → o1 = o2

att. funct. (funct U) (funct ssn) ∀o, v, v′.(o, v) ∈ UI ∧
(o, v′) ∈ UI → v = v′

id const. (id B I1, . . . , In) (id Person name, dob) I1, . . . , In identify
instances of B

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2 ) ∈ P I

mem. asser. U(c, d) phone(bob, ’2345’) (cI , val(d)) ∈ UI
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DL-LiteA – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 

TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

1..*

{disjoint}

Manager v Employee
AreaManager v Manager
TopManager v Manager

AreaManager v ¬TopManager

Employee v δ(empCode)
δ(empCode) v Employee
ρ(empCode) v xsd:int

(funct empCode)
(id Employee empCode)

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v ∃worksFor−

(funct manages)
(funct manages−)

manages v worksFor
...

Note: DL-LiteA cannot capture completeness of a
hierarchy. This would require disjunction (i.e., OR).
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Identification assertions – Example

LeaguePlayedMatch NationReferee

Match

UmpiredBy

Team
HostTeam

HomeTeam

Of

Round

BelongsTo

PlayedIn

HomeGoals PlayedOn

HostGoals

Year

Code

What we would like to additionally capture:

1 No two leagues with the same year and the same nation exist

2 Within a certain league, the code associated to a round is unique

3 Every match is identified by its code within its round

4 Every referee can umpire at most one match in the same round

5 No team can be the home team of more than one match per round

6 No team can be the host team of more than one match per round
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Identification assertions – Example (cont’d)

League v ∃of PlayedMatch v Match
∃of v League Match v δ(code)
∃of− v Nation Round v δ(code)
Round v ∃belongsTo PlayedMatch v δ(playedOn)
∃belongsTo v Round . . .
∃belongsTo− v League ρ(playedOn) v xsd:date

Match v ∃playedIn ρ(code) v xsd:int

. . . . . .

LeaguePlayedMatch NationReferee

Match

UmpiredBy

Team
HostTeam

HomeTeam

Of

Round

BelongsTo

PlayedIn

HomeGoals PlayedOn

HostGoals

Year

Code

(funct of) (funct home) (funct playedOn)
(funct belongsTo) (funct umpiredBy) (funct homeGoals)
(funct playedIn) (funct code) (funct hostGoals)
(funct host) (funct year)
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Identification assertions – Example (cont’d)

LeaguePlayedMatch NationReferee

Match

UmpiredBy

Team
HostTeam

HomeTeam

Of

Round

BelongsTo

PlayedIn

HomeGoals PlayedOn

HostGoals

Year

Code

1 No two leagues with the same year and the same nation exist

2 Within a certain league, the code associated to a round is unique

3 Every match is identified by its code within its round

4 Every referee can umpire at most one match in the same round

5 No team can be the home team of more than one match per round

6 No team can be the host team of more than one match per round

(id League of, year) (id Match umpiredBy, playedIn)
(id Round belongsTo, code) (id Match home, playedIn)
(id Match playedIn, code) (id Match host, playedIn)
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Restriction on TBox assertions in DL-LiteA ontologies

We will see that, to ensure FOL-rewritability, we have to impose a restriction
on the use of functionality and role/attribute inclusions.

Restriction on DL-LiteA TBoxes

No functional or identifying role or attribute can be specialized
by using it in the right-hand side of a role or attribute inclusion assertion.

Formally:

If Q v P , or Q v P−, or (id B . . . , P, . . .), or (id B . . . , P−, . . .) is in T ,
then (funct P ) and (funct P−) are not in T .

If U ′ v U or (id B . . . , U, . . .) is in T ,
then (funct U) is not in T .

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (150/288)



A quick overview of DLs Reasoning and query answering in DLs The DL-Lite family

The DL-Lite family Part 2: Description Logics and the DL-Lite family

DL-LiteF and DL-LiteR

We consider also two sub-languages of DL-LiteA (that trivially obey the
previous restriction):

DL-LiteF : Allows for functionality assertions, but does not allow for role
inclusion assertions.

DL-LiteR: Allows for role inclusion assertions, but does not allow for
functionality assertions.

In both DL-LiteF and DL-LiteR we do not consider data values (and hence
drop value domains and attributes).

Note: We simply use DL-Lite to refer to any of the logics of the DL-Lite family.
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Capturing basic ontology constructs in DL-LiteA

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Mandatory participation to relations A1 v ∃P A2 v ∃P−

Domain and range of relations ∃P v A1 ∃P− v A2

Functionality of relations (funct P ) (funct P−)

ISA between relations Q1 v Q2

Disjointness between relations Q1 v ¬Q2

Domain and range of attributes δ(U) v A ρ(U) v Ti
Mandatory and functional attributes A v δ(U) (funct U)

Identification constraints (id A P, . . . , P ′−, . . . , U, . . .)
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Properties of DL-Lite

The TBox may contain cyclic dependencies (which typically increase the
computational complexity of reasoning).

Example: A v ∃P , ∃P− v A

In the syntax, we have not included u on the right hand-side of inclusion
assertions, but it can trivially be added, since

B v C1 u C2 is equivalent to
B v C1

B v C2

A domain assertion on role P has the form: ∃P v A1

A range assertion on role P has the form: ∃P− v A2
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Properties of DL-LiteF

DL-LiteF does not enjoy the finite model property.

Example

TBox T : Nat v ∃succ ∃succ− v Nat

Zero v Nat u ¬∃succ− (funct succ−)

ABox A: Zero(0)

O = 〈T ,A〉 admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

Hence, reasoning w.r.t. arbitrary models is different from reasoning w.r.t. finite
models only.
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Properties of DL-LiteR

DL-LiteR does enjoy the finite model property. Hence, reasoning w.r.t.
finite models is the same as reasoning w.r.t. arbitrary models.

With role inclusion assertions, we can simulate qualified existential
quantification in the rhs of an inclusion assertion A1 v ∃Q.A2.

To do so, we introduce a new role QA2 and:

the role inclusion assertion QA2 v Q
the concept inclusion assertions: A1 v ∃QA2

∃Q−A2
v A2

In this way, we can consider ∃Q.A in the right-hand side of an inclusion
assertion as an abbreviation.
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Observations on DL-LiteA

Captures all the basic constructs of UML Class Diagrams and of the ER
Model . . .

. . . except covering constraints in generalizations.

Extends (the DL fragment of) the ontology language RDFS.

Is completely symmetric w.r.t. direct and inverse properties.

Is at the basis of the OWL2 QL profile of OWL2.
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The OWL2 QL Profile

OWL2 defines three profiles: OWL2 QL, OWL2 EL, OWL2 RL.

Each profile corresponds to a syntactic fragment (i.e., a sub-language) of
OWL2 DL that is targeted towards a specific use.

The restrictions in each profile guarantee better computational properties
than those of OWL2 DL.

The OWL2 QL profile is derived from the DLs of the DL-Lite family:

“[It] includes most of the main features of conceptual models such as UML
class diagrams and ER diagrams.”

“[It] is aimed at applications that use very large volumes of instance data,
and where query answering is the most important reasoning task. In
OWL2 QL, conjunctive query answering can be implemented using
conventional relational database systems.”
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Properties of DL-Lite Part 2: Description Logics and the DL-Lite family

Complexity of reasoning in DL-LiteA

1 We have seen that DL-LiteA can capture the essential features of
prominent conceptual modeling formalisms.

2 In the following, we will analyze reasoning in DL-Lite, and establish the
following characterization of its computational properties:

Ontology satisfiability and all classical DL reasoning tasks are:
Efficiently tractable in the size of the TBox (i.e., PTime).
Very efficiently tractable in the size of the ABox (i.e., AC0).

Query answering for CQs and UCQs is:
PTime in the size of the TBox.
AC0 in the size of the ABox.
Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

3 We will also see that DL-Lite is essentially the maximal DL enjoying these
nice computational properties.

From (1), (2), and (3) we get that:

DL-Lite is a representation formalism that is very well suited to underlie
ontology-based data management systems.
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Part III

Reasoning in the DL-Lite family
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Remarks

In the following, we make some simplifying assumptions:

We ignore the distinction between objects and values, since it is not
relevant for reasoning. Hence we do not use value domains and attributes.

We do not consider identification constraints.

Notation:

When the distinction between DL-LiteR, DL-LiteF , or DL-LiteA is not
important, we use just the DL-Lite.

Q denotes a basic role, i.e., Q −→ P | P−.

R denotes a general role, i.e., R −→ Q | ¬Q.

C denotes a general concept, i.e., C −→ A | ¬A | ∃Q | ¬∃Q,
where A is an atomic concept.

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (164/288)



TBox reasoning TBox & ABox reasoning Beyond DL-Lite

Preliminaries Part 3: Reasoning in the DL-Lite family

TBox Reasoning services

Concept Satisfiability: C is satisfiable wrt T , if there is a model I of T
such that CI is not empty, i.e., T 6|= C ≡ ⊥

Subsumption: C1 is subsumed by C2 wrt T , if for every model I of T we
have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I of T
we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of T we
have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥

Functionality implication: A functionality assertion (funct Q) is logically
implied by T if for every model I of T , we have that (o, o1) ∈ QI and
(o, o2) ∈ QI implies o1 = o2, i.e., T |= (funct Q).

Analogous definitions hold for role satisfiability, subsumption, equivalence, and
disjointness.
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From TBox reasoning to ontology (un)satisfiability

Basic reasoning service:

Ontology satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

In the following, we show how to reduce TBox reasoning to ontology
unsatisfiability:

1 We show how to reduce TBox reasoning services to concept/role
subsumption.

2 We provide reductions from concept/role subsumption to ontology
unsatisfiability.
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Concept/role satisfiability, equivalence, and disjointness

Theorem

1 C is unsatisfiable wrt T iff T |= C v ¬C.

2 T |= C1 ≡ C2 iff T |= C1 v C2 and T |= C2 v C1.

3 C1 and C2 are disjoint iff T |= C1 v ¬C2.

Proof (sketch).

1 “⇐” if T |= C v ¬C, then CI ⊆ ∆I \ CI , for every model I = 〈∆I , ·I〉
of T ; but this holds iff CI = ∅.
“⇒” if C is unsatisfiable, then CI = ∅, for every model I of T . Therefore
CI ⊆ (¬C)I .

2 Trivial.

3 Trivial.

Analogous reductions for role satisfiability, equivalence and disjointness.
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From implication of functionalities to subsumption

Theorem

T |= (funct Q) iff either

(funct Q) ∈ T (only for DL-LiteF or DL-LiteA), or

T |= Q v ¬Q.

Proof (sketch).

“⇐” The case in which (funct Q) ∈ T is trivial.
Instead, if T |= Q v ¬Q, then QI = ∅ and hence I |= (funct Q), for every
model I of T .

“⇒” When neither (funct Q) ∈ T nor T |= Q v ¬Q, we can construct a
model of T that is not a model of (funct Q).
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From concept subsumption to ontology unsatisfiability

Theorem

T |= C1 v C2 iff the ontology OC1vC2 = 〈T ∪ {Â v C1, Â v ¬C2}, {Â(c)}〉
is unsatisfiable, where Â is an atomic concept not in T , and c is a constant.

Intuitively, C1 is subsumed by C2 iff the smallest ontology containing T and
implying both C1(c) and ¬C2(c) is unsatisfiable.

Proof (sketch).

“⇐” Let OC1vC2 be unsatisfiable, and suppose that T 6|= C1 v C2. Then there
exists a model I of T such that CI1 6⊆ CI2 . Hence CI1 \ CI2 6= ∅. We can
extend I to a model of OC1vC2 by taking cI = o, for some o ∈ CI1 \ CI2 , and

ÂI = {cI}. This contradicts OC1vC2 being unsatisfiable.

“⇒” Let T |= C1 v C2, and suppose that OC1vC2 is satisfiable. Then there
exists a model I be of OC1vC2 . Then I |= T , and I |= C1(c) and I |= ¬C2(c),
i.e., I 6|= C1 v C2. This contradicts T |= C1 v C2.
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From role subsumption to ont. unsatisfiability

Theorem

Let T be a DL-LiteR or DL-LiteA TBox and R1, R2 two general roles.
Then T |= R1 v R2 iff the ontology
OR1vR2 = 〈T ∪ {P̂ v R1, P̂ v ¬R2}, {P̂ (c1, c2)}〉 is unsatisfiable,

where P̂ is an atomic role not in T , and c1, c2 are two constants.

Intuitively, R1 is subsumed by R2 iff the smallest ontology containing T and
implying both R1(c1, c2) and ¬R2(c1, c2) is unsatisfiable.

Proof (sketch).

Analogous to the one for concept subsumption.

Notice that OR1vR2 is inherently a DL-LiteR ontology.
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From role subsumption to ont. unsatisfiability for DL-LiteF

Theorem

Let T be a DL-LiteF TBox, and Q1, Q2 two basic roles such that Q1 6= Q2.
Then,

1 T |= Q1 v Q2 iff Q1 is unsatisfiable iff
either ∃Q1 or ∃Q−1 is unsatisfiable wrt T ,
which can again be reduced to ontology unsatisfiability.

2 T |= ¬Q1 v Q2 iff T is unsatisfiable.

3 T |= Q1 v ¬Q2 iff
either ∃Q1 and ∃Q2 are disjoint, or ∃Q−1 and ∃Q−2 are disjoint, iff
either T |= ∃Q1 v ¬∃Q2, or T |= ∃Q−1 v ¬∃Q−2 ,
which can again be reduced to ontology unsatisfiability.

Notice that an inclusion of the form ¬Q1 v ¬Q2 is equivalent to Q2 v Q1, and
therefore is considered in the first item.
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Summary

The results above tell us that we can support TBox reasoning services by
relying on the ontology (un)satisfiability service.

Ontology satisfiability is a form of reasoning over both the TBox and the
ABox of the ontology.

In the following, we first consider other TBox & ABox reasoning services, in
particular query answering, and then turn back to ontology satisfiability.
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TBox and ABox reasoning services

Ontology Satisfiability: Verify wether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

Concept Instance Checking: Verify wether an individual c is an instance
of a concept C in an ontology O, i.e., whether O |= C(c).

Role Instance Checking: Verify wether a pair (c1, c2) of individuals is an
instance of a role Q in an ontology O, i.e., whether O |= Q(c1, c2).

Query Answering Given a query q over an ontology O, find all tuples ~c of
constants such that O |= q(~c).
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Query answering and instance checking

For atomic concepts and roles, instance checking is a special case of query
answering, in which the query is boolean and constituted by a single atom in
the body.

O |= A(c) iff q()← A(c) evaluated over O is true.

O |= P (c1, c2) iff q()← P (c1, c2) evaluated over O is true.
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From instance checking to ontology unsatisfiability

Theorem

Let O = 〈T ,A〉 be a DL-Lite ontology, C a DL-Lite concept, and P an
atomic role. Then:

O |= C(c) iff OC(c) = 〈T ∪ {Â v ¬C}, A ∪ {Â(c)}〉 is unsatisfiable,

where Â is an atomic concept not in O.

O |= ¬P (c1, c2) iff O¬P (c1,c2) = 〈T , A ∪ {P (c1, c2)}〉 is unsatisfiable.

Theorem

Let O = 〈T ,A〉 be a DL-LiteF ontology and P an atomic role.
Then O |= P (c1, c2) iff O is unsatisfiable or P (c1, c2) ∈ A.

Theorem

Let O = 〈T ,A〉 be a DL-LiteR ontology and P an atomic role.
Then O |= P (c1, c2) iff OP (c1,c2) = 〈T ∪ {P̂ v ¬P}, A ∪ {P̂ (c1, c2)}〉 is

unsatisfiable, where P̂ is an atomic role not in O.
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Certain answers

We recall that

Query answering over an ontology O = 〈T ,A〉 is a form of logical implication:

find all tuples ~c of constants of A s.t. O |= q(~c)

A.k.a. certain answers in databases, i.e., the tuples that are answers to q in all
models of O = 〈T ,A〉:

cert(q,O) = { ~c | ~c ∈ qI , for every model I of O }

Note: We have assumed that the answer qI to a query q over an interpretation
I is constituted by a set of tuples of constants of A, rather than objects in ∆I .
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Q-rewritability for DL-Lite

We now study rewritability of query answering over DL-Lite ontologies.

In particular we will show that DL-LiteA (and hence DL-LiteF and
DL-LiteR) enjoy FOL-rewritability of answering union of conjunctive
queries.
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Query answering vs. ontology satisfiability

In the case in which an ontology is unsatisfiable, according to the “ex falso
quod libet” principle, reasoning is trivialized.

In particular, query answering is meaningless, since every tuple is in the
answer to every query.

We are not interested in encoding meaningless query answering into the
perfect reformulation of the input query. Therefore, before query
answering, we will always check ontology satisfiability to single out
meaningful cases.

Thus, we proceed as follows:

1 We show how to do query answering over satisfiable ontologies.

2 We show how we can exploit the query answering algorithm also to check
ontology satisfiability.
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Remark

We call positive inclusions (PIs) assertions of the form

Cl v A | ∃Q
Q1 v Q2

We call negative inclusions (NIs) assertions of the form

Cl v ¬A | ¬∃Q
Q1 v ¬Q2
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Query answering over satisfiable ontologies

Given a CQ q and a satisfiable ontology O = 〈T ,A〉, we compute cert(q,O) as
follows:

1 Using T , rewrite q into a UCQ rq,T (the perfect rewriting of q w.r.t. T ).

2 Encode rq,T into SQL and evaluate it over A managed in secondary
storage via a RDBMS, to return cert(q,O).

Correctness of this procedure shows FOL-rewritability of query answering in
DL-Lite.

; Query answering over DL-Lite ontologies can be done using RDMBS
technology.
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Query rewriting

Consider the query q(x) ← Professor(x)

Intuition: Use the PIs as basic rewriting rules:

AssistantProf v Professor
as a logic rule: Professor(z) ← AssistantProf(z)

Basic rewriting step:

when an atom in the query unifies with the head of the rule,

substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.

In the example, the PI AssistantProf v Professor applies to the atom
Professor(x). Towards the computation of the perfect rewriting, we add to the
input query above, the query

q(x) ← AssistantProf(x)
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Query rewriting (cont’d)

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI ∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

The PI applies to the atom Course(y), and we add to the perfect rewriting the
query

q(x) ← teaches(x, y), teaches(z1, y)

Consider now the query q(x) ← teaches(x, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI applies to the atom teaches(x, y), and we add to the perfect rewriting
the query

q(x) ← Professor(x)
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Query rewriting – Constants

Conversely, for the query q(x) ← teaches(x, databases)

and the same PI as before Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

teaches(x, databases) does not unify with teaches(z, f(z)), since the skolem
term f(z) in the head of the rule does not unify with the constant
databases.

In this case, the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished, since unifying
f(z) with y would correspond to returning a skolem term as answer to the
query:

q(x, y) ← teaches(x, y)
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Query rewriting – Join variables

An analogous behavior to the one with constants and with distinguished
variables holds when the atom contains join variables that would have to be
unified with skolem terms.

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI above does not apply to the atom teaches(x, y).
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Query rewriting – Reduce step

Consider now the query q(x) ← teaches(x, y), teaches(z, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

This PI does not apply to teaches(x, y) or teaches(z, y), since y is in join, and
we would again introduce the skolem term in the rewritten query.

However, we can transform the above query by unifying the atoms teaches(x, y)
and teaches(z, y). This rewriting step is called reduce, and produces the query

q(x) ← teaches(x, y)

Now, we can apply the PI above, and add to the rewriting the query

q(x) ← Professor(x)
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Query rewriting – Summary

Reformulate the CQ q into a set of queries: apply to q and the computed
queries in all possible ways the PIs in the TBox T :

A1 v A2 . . . , A2(x), . . . ; . . . , A1(x), . . .
∃P v A . . . , A(x), . . . ; . . . , P (x, ), . . .
∃P− v A . . . , A(x), . . . ; . . . , P ( , x), . . .
A v ∃P . . . , P (x, ), . . . ; . . . , A(x), . . .
A v ∃P− . . . , P ( , x), . . . ; . . . , A(x), . . .
∃P1 v ∃P2 . . . , P2(x, ), . . . ; . . . , P1(x, ), . . .
P1 v P2 . . . , P2(x, y), . . . ; . . . , P1(x, y), . . .
· · ·

( denotes an unbound variable, i.e., a variable that appears only once)

This corresponds to exploiting ISAs, role typing, and mandatory participation to
obtain new queries that could contribute to the answer.

Unifying atoms can make rules applicable that were not so before, and is
required for completeness of the method.

The UCQ resulting from this process is the perfect rewriting rq,T .
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Query rewriting algorithm

Algorithm PerfectRef(q, TP )
Input: conjunctive query q, set of DL-LiteR PIs TP

Output: union of conjunctive queries PR
PR := {q};
repeat

PR′ := PR;
for each q ∈ PR′ do

for each g in q do
for each PI I in TP do

if I is applicable to g
then PR := PR ∪ { q[g/(g, I)] }

for each g1, g2 in q do
if g1 and g2 unify
then PR := PR ∪ {τ(Reduce(q, g1, g2))};

until PR′ = PR;
return PR

Notice that NIs or functionality assertions do not play any role in the
rewriting of the query.
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Query answering in DL-Lite – An interesting example

TBox: Person v ∃hasFather
∃hasFather− v Person

ABox: Person(mary)

Query: q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, )
� Apply Person v ∃hasFather to the atom hasFather(y2, )

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2),Person(y2)
� Apply ∃hasFather− v Person to the atom Person(y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather( , y2)
� Unify atoms hasFather(y1, y2) and hasFather( , y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2)
�
· · ·

q(x)← Person(x), hasFather(x, )
� Apply Person v ∃hasFather to the atom hasFather(x, )

q(x)← Person(x)
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ABox storage

ABox A stored as a relational database in a standard RDBMS as follows:

For each atomic concept A used in the ABox:

define a unary relational table tabA

populate tabA with each 〈c〉 such that A(c) ∈ A

For each atomic role P used in the ABox,

define a binary relational table tabP

populate tabP with each 〈c1, c2〉 such that P (c1, c2) ∈ A

We denote with DB(A) the database obtained as above.
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Query evaluation

Let rq,T be the UCQ returned by the algorithm PerfectRef(q, T ).

We denote by SQL(rq,T ) the encoding of rq,T into an SQL query over
DB(A).

We indicate with Eval(SQL(rq,T ),DB(A)) the evaluation of SQL(rq,T )
over DB(A).
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Query answering in DL-Lite

Theorem

Let T be a DL-Lite TBox, TP the set of PIs in T , q a CQ over T , and let
rq,T = PerfectRef(q, TP ). Then, for each ABox A such that 〈T ,A〉 is
satisfiable, we have that

cert(q, 〈T ,A〉) = Eval(SQL(rq,T ),DB(A)).

In other words, query answering over a satisfiable DL-Lite ontology is
FOL-rewritable.

Notice that we did not mention NIs or functionality assertions of T in the result
above. Indeed, when the ontology is satisfiable, we can ignore NIs and
functionalities and answer queries as if they were not specified in T .
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Query answering in DL-Lite – Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x, y),Course(y)

Perfect Rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches( , y)
q(x)← teaches(x, )
q(x)← Professor(x)

ABox: teaches(john, databases)
Professor(mary)

It is easy to see that Eval(SQL(rq,T ),DB(A)) in this case produces as answer
{john, mary}.

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (198/288)



TBox reasoning TBox & ABox reasoning Beyond DL-Lite

Ontology satisfiability Part 3: Reasoning in the DL-Lite family

Outline of Part 3

8 TBox reasoning

9 TBox & ABox reasoning
TBox & ABox Reasoning services
Query answering
Query answering over satisfiable ontologies
Ontology satisfiability
Complexity of reasoning in DL-Lite

10 Beyond DL-Lite

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (199/288)



TBox reasoning TBox & ABox reasoning Beyond DL-Lite

Ontology satisfiability Part 3: Reasoning in the DL-Lite family

Satisfiability of ontologies with only PIs

Let us now consider the problem of establishing whether an ontology is
satisfiable.

A first notable result tells us that PIs alone cannot generate ontology
unsatisfiability.

Theorem

Let O = 〈T ,A〉 be a DL-Lite ontology where T contains only PIs.
Then, O is satisfiable.
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Satisfiability of DL-LiteR ontologies

Unsatisfiability in DL-LiteR ontology, however can be caused by NIs.

Example

TBox T : Professor v ¬Student
∃teaches v Professor

ABox A: teaches(john, databases)
Student(john)
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Checking satisfiability of DL-LiteR ontologies

Satisfiability of a DL-LiteR ontology O = 〈T ,A〉 is reduced to evaluating a
FOL-query (in fact a UCQ) over DB(A).

We proceed as follows: Let TP the set of PIs in T .

1 For each NI N between concepts (resp. roles) in T , we ask 〈TP ,A〉
whether there exists some individual (resp. pair of individuals) that
contradicts N , i.e., we construct over 〈TP ,A〉 a boolean CQ qN () such
that

〈TP ,A〉 |= qN () iff 〈TP ∪ {N},A〉 is unsatisfiable

2 We exploit PerfectRef to verify whether 〈TP ,A〉 |= qN (), i.e., we compute
PerfectRef(qN , TP ), and evaluate it (in fact, its SQL encoding) over
DB(A).
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Satisfiability of DL-LiteR ontologies – Example

PIs TP : ∃teaches v Professor

NI N : Professor v ¬Student

Query qN : qN ()← Student(x),Professor(x)

Perfect Rewriting: qN ()← Student(x),Professor(x)
qN ()← Student(x), teaches(x, )

ABox A: teaches(john, databases)
Student(john)

It is easy to see that 〈TP ,A〉 |= qN (), and that the ontology
〈TP ∪ {Professor v ¬Student}, A〉 is unsatisfiable.
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Queries for NIs

For each NI N in T we compute a boolean CQ qN () according to the following
rules:

A1 v ¬A2 ; qN ()← A1(x), A2(x)
∃P v ¬A or A v ¬∃P ; qN ()← P (x, y), A(x)
∃P− v ¬A or A v ¬∃P− ; qN ()← P (y, x), A(x)
∃P1 v ¬∃P2 ; qN ()← P1(x, y), P2(x, z)
∃P1 v ¬∃P−2 ; qN ()← P1(x, y), P2(z, x)
∃P−1 v ¬∃P2 ; qN ()← P1(x, y), P2(y, z)
∃P−1 v ¬∃P−2 ; qN ()← P1(x, y), P2(z, y)
P1 v ¬P2 or P−1 v ¬P−2 ; qN ()← P1(x, y), P2(x, y)
P−1 v ¬P2 or P1 v ¬P−2 ; qN ()← P1(x, y), P2(y, x)
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From satisfiability to query answering in DL-LiteR

Lemma (Separation for DL-LiteR)

Let O = 〈T ,A〉 be a DL-LiteR ontology, and TP the set of PIs in T . Then, O
is unsatisfiable iff there exists a NI N ∈ T such that 〈TP ,A〉 |= qN ().

The lemma relies on the following properties:

NIs do not interact with each other.

Interaction between NIs and PIs can be managed through PerfectRef .

Notably, each NI can be processed individually.
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FOL-rewritability of satisfiability in DL-LiteR

From the previous lemma and the theorem on query answering for satisfiable
DL-LiteR ontologies, we get the following result.

Theorem

Let O = 〈T ,A〉 be a DL-LiteR ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff there exists a NI N ∈ T such that
Eval(SQL(PerfectRef(qN , TP )),DB(A)) returns true.

In other words, satisfiability of a DL-LiteR ontology can be reduced to
FOL-query evaluation.
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Satisfiability of DL-LiteA ontologies

Unsatisfiability in DL-LiteA (and DL-LiteF ) ontologies can be caused by NIs or
by functionality assertions.

Example

TBox T : Professor v ¬Student
∃teaches v Professor
(funct teaches−)

ABox A: Student(john)
teaches(john, databases)
teaches(michael, databases)
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Checking satisfiability of DL-LiteA ontologies

Satisfiability of a DL-LiteA ontology O = 〈T ,A〉 is reduced to evaluating a
FOL-query over DB(A).

We deal with NIs exactly as done in DL-LiteR ontologies (indeed, limited
to NIs, DL-LiteA ontologies are just DL-LiteR ontologies).

To deal with functionality assertions, we proceed as follows:

1 For each functionality assertion F ∈ T , we ask if there exist two pairs of
individuals in A that contradict F , i.e., we pose over A a boolean FOL
query qF () such that

A |= qF () iff 〈{F},A〉 is unsatisfiable.

2 To verify if A |= qF (), we evaluate SQL(qF ) over DB(A).
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Queries for functionality assertions

For each functionality assertion F in T we compute a boolean FOL query
qF () according to the following rules:

(funct P ) ; qF ()← P (x, y), P (x, z), y 6= z
(funct P−) ; qF ()← P (x, y), P (z, y), x 6= z

Example

Functionality F : (funct teaches−)

Query qF : qF ()← teaches(x, y), teaches(z, y), x 6= z

ABox A: teaches(john, databases)
teaches(michael, databases)

It is easy to see that A |= qF (), and that 〈{(funct teaches−)},A〉, is
unsatisfiable.
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From satisfiability to query answering in DL-LiteA

Lemma (Separation for DL-LiteA)

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T such that 〈TP ,A〉 |= qN ().

(b) There exists a functionality assertion F ∈ T such that A |= qF ().

(a) relies on the properties that NIs do not interact with each other, and
interaction between NIs and PIs can be managed through PerfectRef .

(b) exploits the property that NIs and PIs do not interact with
functionalities: indeed, no functionality assertions are contradicted in a
DL-LiteA ontology O, beyond those explicitly contradicted by the ABox.

Notably, the lemma asserts that to check ontology satisfiability, each NI and
each functionality assertion can be processed individually.
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FOL-rewritability of satisfiability in DL-LiteA

From the previous lemma and the theorem on query answering for satisfiable
DL-LiteA ontologies, we get the following result.

Theorem

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T such that
Eval(SQL(PerfectRef(qN , TP )),DB(A)) returns true.

(b) There exists a functionality assertion F ∈ T such that
Eval(SQL(qF ),DB(A)) returns true.

In other words, satisfiability of a DL-LiteA ontology can be reduced to
FOL-query evaluation.

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (211/288)



TBox reasoning TBox & ABox reasoning Beyond DL-Lite

Complexity of reasoning in DL-Lite Part 3: Reasoning in the DL-Lite family

Outline of Part 3

8 TBox reasoning

9 TBox & ABox reasoning
TBox & ABox Reasoning services
Query answering
Query answering over satisfiable ontologies
Ontology satisfiability
Complexity of reasoning in DL-Lite

10 Beyond DL-Lite

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (212/288)



TBox reasoning TBox & ABox reasoning Beyond DL-Lite

Complexity of reasoning in DL-Lite Part 3: Reasoning in the DL-Lite family

Complexity of query answering over satisfiable ontologies

Theorem

Query answering over DL-LiteA ontologies is

1 NP-complete in the size of query and ontology (combined comp.).

2 PTime in the size of the ontology.

3 AC0 in the size of the ABox (data complexity).

Proof (sketch).

1 Guess together the derivation of one of the CQs of the perfect rewriting,
and an assignment to its existential variables. Checking the derivation and
evaluating the guessed CQ over the ABox is then polynomial in combined
complexity. NP-hardness follows from combined complexity of evaluating
CQs over a database.

2 The number of CQs in the perfect rewriting is polynomial in the size of the
TBox, and we can compute them in PTime.

3 Is the data complexity of evaluating FOL queries over a DB.
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Complexity of ontology satisfiability

Theorem

Checking satisfiability of DL-LiteA ontologies is

1 PTime in the size of the ontology (combined complexity).

2 LogSpace in the size of the ABox (data complexity).

Proof (sketch).

Follows directly from the algorithm for ontology satisfiability and the complexity
of query answering over satisfiable ontologies.
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Complexity of TBox reasoning

Theorem

TBox reasoning over DL-LiteA ontologies is PTime in the size of the TBox
(schema complexity).

Proof (sketch).

Follows from the previous theorem, and from the reduction of TBox reasoning
to ontology satisfiability. Indeed, the size of the ontology constructed in the
reduction is polynomial in the size of the input TBox.
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Beyond DL-Lite

We consider now DL languages that extend DL-Lite with additional DL
constructs or with combinations of constructs that are not legal in DL-Lite.

We show that (essentially) all such extensions of DL-Lite make it lose its nice
computational properties.

Specifically, we consider the following DL constructs:

Construct Syntax Example Semantics

conjunction C1 u C2 Doctor uMale CI1 ∩ CI2
disjunction C1 t C2 Doctor t Lawyer CI1 ∪ CI2
qual. exist. restr. ∃Q.C ∃child.Male {a | ∃b. (a, b) ∈ QI ∧ b ∈ CI }

qual. univ. restr. ∀Q.C ∀child.Male {a | ∀b. (a, b) ∈ QI → b ∈ CI }
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Beyond DL-LiteA: results on data complexity

Lhs Rhs funct.
Role
incl.

Data complexity
of query answering

0 DL-LiteA
√

*
√

* in AC0

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

Notes:

* with the “proviso” of not specializing functional properties.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT tAF suffices! ; No hope of including covering constraints.
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Observations

DL-Lite-family is FOL-rewritable, hence LogSpace – holds also with
n-ary relations ; DLR-LiteF and DLR-LiteR.

RDFS is a subset of DL-LiteR ; is FOL-rewritable, hence LogSpace.

Horn-SHIQ [Hustadt et al., 2005] is PTime-hard even for instance
checking (line 8).

DLP [Grosof et al., 2003] is PTime-hard (line 6)

EL [Baader et al., 2005] is PTime-hard (line 6).

Although used in ER and UML, no hope of including covering
constraints, since we get coNP-hardness for trivial DLs (line 10)
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Qualified existential quantification in the lhs of inclusions

Adding qualified existential on the lhs of inclusions makes instance checking
(and hence query answering) NLogSpace-hard:

Cl Cr Lhs Rhs Data complexity

1 A | ∃P .A A − − NLogSpace-hard

Hardness proof is by a reduction from reachability in directed graphs:

TBox T : a single inclusion assertion ∃P .A v A
ABox A: encodes graph using P and asserts A(d)

NLOGSPACE-hard cases

Adding qualified existential on the lhs of inclusions makes instance checking (and
hence query answering) NLOGSPACE-hard:

Cl Cr F R Data complexity

5 A | ∃P .A A − − NLOGSPACE-hard

Hardness proof is by a reduction from reachability in directed graphs:

• Ontology O: a single inclusion assertion ∃P .A ⊑ A

• Database D: encodes graph using P and asserts A(d)

P

s

d

A

A

A

A

A

P

P
P

P
P

Result:
(O, D) |= A(s) iff d is reachable from s in the graph
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Result:
〈T ,A〉 |= A(s) iff d is reachable from s in the graph.
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NLogSpace-hard cases

Instance checking (and hence query answering) is NLogSpace-hard in data
complexity for:

Lhs Rhs F R Data complexity

1 A | ∃P .A A − − NLogSpace-hard

By reduction from reachability in directed graphs

2 A A | ∀P .A − − NLogSpace-hard

Follows from 1 by replacing ∃P .A1 v A2 with A1 v ∀P−.A2,
and by replacing each occurrence of P− with P ′, for a new role P ′.

3 A A | ∃P .A
√ − NLogSpace-hard

Proved by simulating in the reduction ∃P .A1 v A2

via A1 v ∃P−.A2 and (funct P−),
and by replacing again each occurrence of P− with P ′, for a new role P ′.
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Path System Accessibility

Instance of Path System Accessibility: PS = (N,E, S, t) with

N a set of nodes

E ⊆ N ×N ×N an accessibility relation

S ⊆ N a set of source nodes

t ∈ N a terminal node

Accessibility of nodes is defined inductively:

each n ∈ S is accessible

if (n, n1, n2) ∈ E and n1, n2 are accessible, then also n is accessible

Given PS , checking whether t is accessible, is PTime-complete.
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Reduction from Path System Accessibility

Given an instance PS = (N,E, S, t), we construct

TBox T consisting of the inclusion assertions

∃P1.A v B1

∃P2.A v B2

B1 uB2 v A
∃P3.A v A

ABox A encoding the accessibility relation using P1, P2, and P3, and
asserting A(s) for each source node s ∈ S

e1 = (n, . , . )
e2 = (n, s1, s2)
e3 = (n, . , . )

Reduction from Path System Accessibility

Given an instance PS = (N, E, S, t), we construct

• Ontology O consisting of the inclusion assertions

∃P1.A ⊑ B1

∃P2.A ⊑ B2

B1 ⊓ B2 ⊑ A

∃P3.A ⊑ A

• Database D encoding the accessibility relation using P1, P2, and P3, and
asserting A(s) for each source node s ∈ S

e1 = (n, . , . )

e2 = (n, s1, s2)

e3 = (n, . , . )

A
n

P1 P2

P3 P3 P3

A A
s1 s2

e3e2e1

A
B2B1A

Result:
(O, D) |= A(t) iff t is accessible in PS
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Result:
〈T ,A〉 |= A(t) iff t is accessible in PS .
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coNP-hard cases

Are obtained when we can use in the query two concepts that cover another
concept. This forces reasoning by cases on the data.

Query answering is coNP-hard in data complexity for:

Cl Cr F R Data complexity

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

All three cases are proved by adapting the proof of coNP-hardness of instance
checking for ALE by [Donini et al., 1994].
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2+2-SAT

2+2-SAT: satisfiability of a 2+2-CNF formula, i.e., a CNF formula where each
clause has exactly 2 positive and 2 negative literals.

Example: ϕ = c1 ∧ c2 ∧ c3, with
c1 = v1 ∨ v2 ∨ ¬v3 ∨ ¬v4
c2 = false ∨ false ∨ ¬v1 ∨ ¬v4
c3 = false ∨ v4 ∨ ¬true ∨ ¬v2

2+2-SAT is NP-complete [Donini et al., 1994].
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Reduction from 2+2-SAT

2+2-CNF formula ϕ = c1 ∧ · · · ∧ ck over variables v1, . . . , vn, true, false

Ontology is over concepts L, T , F , roles P1, P2, N1, N2 and individuals
v1, . . . , vn, true, false, c1, . . . ck
ABox Aϕ constructed from ϕ:

for each propositional variable vi: L(vi)
for each clause cj = vj1 ∨ vj2 ∨ ¬vj3 ∨ ¬vj4 :
P1(cj , vj1), P2(cj , vj2), N1(cj , vj3), N2(cj , vj4)

T (true), F (false)

TBox T = { L v T t F }
q()← P1(c, v1), P2(c, v2), N1(c, v3), N2(c, v4),

F (v1), F (v2), T (v3), T (v4)

Note: the TBox T and the query q do not depend on ϕ, hence this reduction
works for data complexity.
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Reduction from 2+2-SAT (cont’d)

Lemma

〈T , Aϕ〉 6|= q() iff ϕ is satisfiable.

Proof (sketch).

“⇒” If 〈T , Aϕ〉 6|= q(), then there is a model I of 〈T , Aϕ〉 s.t. I 6|= q(). We
define a truth assignment αI by setting αI(vi) = true iff vIi ∈ T I . Notice that,
since L v T t F , if vIi /∈ T I , then vIi ∈ F I .
It is easy to see that, since q() asks for a false clause and I 6|= q(), for each
clause cj , one of the literals in cj evaluates to true in αI .
“⇐” From a truth assignment α that satisfies ϕ, we construct an interpretation
Iα with ∆Iα = {c1, . . . , ck, v1, . . . , vn, t, f}, and:

cIαj = cj , vIαi = vi, trueIα = t, falseIα = f

T Iα = {vi | α(vi) = true} ∪ {t}, F Iα = {vi | α(vi) = false} ∪ {f}
It is easy to see that Iα is a model of 〈T , Aϕ〉 and that Iα 6|= q().
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Combining functionalities and role inclusions – Example

TBox T : A v ∃P P v S
∃P− v A (funct S)

ABox A: A(c1), S(c1, c2), S(c2, c3), . . . , S(cn−1, cn)

A(c1), A v ∃P |= P (c1, x), for some x
P (c1, x), P v S |= S(c1, x)

S(c1, x), S(c1, c2), (funct S) |= x = c2
P (c1, c2), ∃P− v A |= A(c2)

A(c2), A v ∃P . . .
|= A(cn)

Hence, we get:

If we add B(cn) and B v ¬A, the ontology becomes inconsistent.

Similarly, the answer to the following query over 〈T ,A〉 is true:

q() ← A(z1), S(z1, z2), S(z2, z3), . . . , S(zn−1, zn), A(zn)
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Interaction between functionalities and role inclusions

Note: The number of unification steps above depends on the data. Hence
this kind of deduction cannot be mimicked by a FOL (or SQL) query, since it
requires a form of recursion. As a consequence, we get:

Combining functionality and role inclusions is problematic.

It breaks separability, i.e., functionality assertions may force existentially
quantified objects to be unified with existing objects.

Note: the problems are caused by the interaction among:

an inclusion P v S between roles,

a functionality assertion (funct S) on the super-role, and

a cycle of concept inclusion assertions A v ∃P and ∃P− v A.

Since we do not want to limit cycles of ISA, we pose suitable restrictions on the
combination of functionality and role inclusions
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Interaction between funct. and role inclusions (cont.’d)

Theorem [Artale et al., 2009]

Checking the satisfiability of a DL-Lite TBox that allows for combining
functionality and role inclusions in an unrestricted way is ExpTime-complete.

Proof (idea).

By using functionality and role inclusions, we can simulate A1 uA2 v C

A1 v ∃R1 A2 v ∃R2

R1 v R12 R2 v R12 (funct R12)
∃R−1 v ∃R−3
∃R3 v C
R3 v R23 R2 v R23 (funct R−23)

A v ∃R.C is simulated by A v ∃RC , RC v R, ∃R−C v C.

A v ∀R.C can be simulated using reification.
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Complexity of DL-Lite with funct. and role inclusions

Let DL-LiteFR be the DL that is the union of DL-LiteF and DL-LiteR, i.e.,
the DL-Lite logic that allows for using both role functionality and role inclusions
without any restrictions.

Theorem [Artale et al., 2009]

For DL-LiteFR ontologies:

Checking satisfiability of the ontology is

ExpTime-complete in the size of the ontology (combined complexity).
PTime-complete in the size of the ABox (data complexity).

TBox reasoning is ExpTime-complete in the size of the TBox.

Query answering is

NP-complete in the size of the query and the ontology (comb. com.).
ExpTime-complete in the size of the ontology.
PTime-complete in the size of the ABox (data complexity).
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Combining functionalities and role inclusions

We have seen that:

By including in DL-Lite both functionality of roles and role inclusions
without restrictions on their interaction, query answering becomes
PTime-hard.

When the data complexity of query answering is NLogSpace or above,
the DL does not enjoy FOL-rewritability.

As a consequence of these results, we get:

To preserve FOL-rewritability, the restriction on the interaction of functionality
and role inclusions of DL-LiteA is necessary.
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Linking ontologies to relational data
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Managing ABoxes

In the traditional DL setting, it is assumed that the data is maintained in the
ABox of the ontology:

The ABox is perfectly compatible with the TBox:

the vocabulary of concepts, roles, and attributes is the one used in the
TBox.
The ABox “stores” abstract objects, and these objects and their properties
are those returned by queries over the ontology.

There may be different ways to manage the ABox from a physical point of
view:

Description Logics reasoners maintain the ABox is main-memory data
structures.
When an ABox becomes large, managing it in secondary storage may be
required, but this is again handled directly by the reasoner.
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Data in external sources

There are several situations where the assumptions of having the data in an
ABox managed directly by the ontology system (e.g., a Description Logics
reasoner) is not feasible or realistic:

When the ABox is very large, so that it requires relational database
technology.

When we have no direct control over the data since it belongs to some
external organization, which controls the access to it.

When multiple data sources need to be accessed, such as in Information
Integration.

We would like to deal with such a situation by keeping the data in the external
(relational) storage, and performing query answering by leveraging the
capabilities of the relational engine.
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The impedance mismatch problem

We have to deal with the impedance mismatch problem:

Sources store data, which is constituted by values taken from concrete
domains, such as strings, integers, codes, . . .

Instead, instances of concepts and relations in an ontology are (abstract)
objects.

Solution:

We need to specify how to construct from the data values in the relational
sources the (abstract) objects that populate the ABox of the ontology.

This specification is embedded in the mappings between the data sources
and the ontology.

Note: the ABox is only virtual, and the objects are not materialized.
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Solution to the impedance mismatch problem

We need to define a mapping language that allows for specifying how to
transform data into abstract objects:

Each mapping assertion maps:

a query that retrieves values from a data source to . . .
a set of atoms specified over the ontology.

Basic idea: use Skolem functions in the atoms over the ontology to
“generate” the objects from the data values.

Semantics of mappings:

Objects are denoted by terms (of exactly one level of nesting).
Different terms denote different objects (i.e., we make the unique name
assumption on terms).
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Impedance mismatch – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

Actual data is stored in a DB:
– An employee is identified by her SSN.
– A project is identified by its name.

D1[SSN: String,PrName: String]
Employees and projects they work for

D2[Code: String,Salary : Int]
Employee’s code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

Intuitively:

An employee should be created from her SSN: pers(SSN)

A project should be created from its name: proj(PrName)
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Creating object identifiers

We need to associate to the data in the tables objects in the ontology.

We introduce an alphabet Λ of function symbols, each with an associated
arity.

To denote values, we use value constants from an alphabet ΓV .

To denote objects, we use object terms instead of object constants.
An object term has the form f(d1, . . . , dn), with f ∈ Λ, and each di a value
constant in ΓV .

Example

If a person is identified by her SSN, we can introduce a function symbol
pers/1. If VRD56B25 is a SSN, then pers(VRD56B25) denotes a person.

If a person is identified by her name and dateOfBirth, we can introduce a
function symbol pers/2. Then pers(Vardi, 25/2/56) denotes a person.
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Mapping assertions

Mapping assertions are used to extract the data from the DB to populate the
ontology.

We make use of variable terms, which are like object terms, but with variables
instead of values as arguments of the functions.

Def.: Mapping assertion between a database and a TBox

A mapping assertion between a database D and a TBox T has the form

Φ ; Ψ

where

Φ is an arbitrary SQL query of arity n > 0 over D.

Ψ is a conjunctive query over T of arity n′ > 0 without
non-distinguished variables, possibly involving variable terms.
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Mapping assertions – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

D1[SSN: String,PrName: String]
Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s code with salary

D3[Code: String,SSN: String]
Employee’s code with SSN

. . .

m1: SELECT SSN, PrName
FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary
FROM D2, D3

WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)
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Ontology-Based Data Access System

The mapping assertions are a crucial part of an Ontology-Based Data Access
System.

Def.: Ontology-Based Data Access System

is a triple O = 〈T ,M,D〉, where

T is a TBox.

D is a relational database.

M is a set of mapping assertions between T and D.

We need to specify the syntax and semantics of mapping assertions.
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Mapping assertions

A mapping assertion in M has the form

Φ(~x) ; Ψ(~t, ~y)

where

Φ is an arbitrary SQL query of arity n > 0 over D;

Ψ is a conjunctive query over T of arity n′ > 0 without
non-distinguished variables;

~x, ~y are variables, with ~y ⊆ ~x;

~t are variable terms of the form f(~z), with f ∈ Λ and ~z ⊆ ~x.

Note: we could consider also mapping assertions between the datatypes of the
database and those of the ontology.
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Semantics of mappings

To define the semantics of an OBDA system O = 〈T ,M,D〉, we first need to
define the semantics of mappings.

Def.: Satisfaction of a mapping assertion with respect to a database

An interpretation I satisfies a mapping assertion Φ(~x) ; Ψ(~t, ~y) in M with
respect to a database D, if for each tuple of values ~v ∈ Eval(Φ,D), and for
each ground atom in Ψ[~x/~v], we have that:

if the ground atom is A(s), then sI ∈ AI .

if the ground atom is P (s1, s2), then (sI1 , s
I
2 ) ∈ P I .

Intuitively, I satisfies Φ ; Ψ w.r.t. D if all facts obtained by evaluating Φ
over D and then propagating the answers to Ψ, hold in I.

Note: Eval(Φ,D) denotes the result of evaluating Φ over the database D.
Ψ[~x/~v] denotes Ψ where each xi has been substituted with vi.
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Semantics of an OBDA system

Def.: Model of an OBDA system

An interpretation I is a model of O = 〈T ,M,D〉 if:

I is a model of T ;

I satisfies M w.r.t. D, i.e., I satisfies every assertion in M w.r.t. D.

An OBDA system O is satisfiable if it admits at least one model.
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Answering queries over an OBDA system

In an OBDA system O = 〈T ,M,D〉
Queries are posed over the TBox T .

The data needed to answer queries is stored in the database D.

The mapping M is used to bridge the gap between T and D.

Two approaches to exploit the mapping:

bottom-up approach: simpler, but less efficient

top-down approach: more sophisticated, but also more efficient

Note: Both approaches require to first split the TBox queries in the mapping
assertions into their constituent atoms.
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Splitting of mappings

A mapping assertion Φ ; Ψ, where the TBox query Ψ is constituted by the
atoms X1,. . . ,Xk, can be split into several mapping assertions:

Φ ; X1 · · · Φ ; Xk

This is possible, since Ψ does not contain non-distinguished variables.

Example

m1: SELECT SSN, PrName FROM D1 ; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

is split into
m1

1: SELECT SSN, PrName FROM D1 ; Employee(pers(SSN))
m2

1: SELECT SSN, PrName FROM D1 ; Project(proj(PrName))
m3

1: SELECT SSN, PrName FROM D1 ; projectName(proj(PrName), PrName)
m4

1: SELECT SSN, PrName FROM D1 ; worksFor(pers(SSN), proj(PrName))
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Bottom-up approach to query answering

Consists in a straightforward application of the mappings:

1 Propagate the data from D through M, materializing an ABox AM,D (the
constants in such an ABox are values and object terms).

2 Apply to AM,D and to the TBox T , the satisfiability and query answering
algorithms developed for DL-LiteA.

This approach has several drawbacks (hence is only theoretical):

The technique is no more LogSpace in the data, since the ABox AM,D
to materialize is in general polynomial in the size of the data.

AM,D may be very large, and thus it may be infeasible to actually
materialize it.

Freshness of AM,D with respect to the underlying data source(s) may be
an issue, and one would need to propagate source updates (cf. Data
Warehousing).
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Top-down approach to query answering

Consists of three steps:

1 Reformulation: Compute the perfect reformulation
qpr = PerfectRef(q, TP ) of the original query q, using the inclusion
assertions of the TBox T (see later).

2 Unfolding: Compute from qpr a new query qunf by unfolding qpr using
(the split version of) the mappings M.

Essentially, each atom in qpr that unifies with an atom in Ψ is substituted
with the corresponding query Φ over the database.
The unfolded query is such that Eval(qunf ,D) = Eval(qpr ,AM,D).

3 Evaluation: Delegate the evaluation of qunf to the relational DBMS
managing D.
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Unfolding

To unfold a query qpr with respect to a set of mapping assertions:

1 For each non-split mapping assertion Φi(~x) ; Ψi(~t, ~y):
1 Introduce a view symbol Auxi of arity equal to that of Φi.
2 Add a view definition Auxi(~x)← Φi(~x).

2 For each split version Φi(~x) ; Xj(~t, ~y) of a mapping assertion, introduce
a clause Xj(~t, ~y)← Auxi(~x).

3 Obtain from qpr in all possible ways queries qaux defined over the view
symbols Auxi as follows:

1 Find a most general unifier ϑ that unifies each atom X(~z) in the body of
qpr with the head of a clause X(~t, ~y)← Auxi(~x).

2 Substitute each atom X(~z) with ϑ(Auxi(~x)), i.e., with the body the unified
clause to which the unifier ϑ is applied.

4 The unfolded query qunf is the union of all queries qaux , together with the
view definitions for the predicates Auxi appearing in qaux .
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Unfolding – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

m1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3

WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)

We define a view Auxi for the source query of each mapping mi.

For each (split) mapping assertion, we introduce a clause:

Employee(pers(SSN)) ← Aux1(SSN,PrName)
projectName(proj(PrName),PrName) ← Aux1(SSN,PrName)

Project(proj(PrName)) ← Aux1(SSN,PrName)
worksFor(pers(SSN), proj(PrName)) ← Aux1(SSN,PrName)

Employee(pers(SSN)) ← Aux2(SSN, Salary)
salary(pers(SSN),Salary) ← Aux2(SSN, Salary)
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Unfolding – Example (cont’d)

Query over ontology: employees who work for tones and their salary:
q(e, s)← Employee(e), salary(e, s),worksFor(e, p), projectName(p, tones)

A unifier between the atoms in q and the clause heads is:
ϑ(e) = pers(SSN) ϑ(s) = Salary
ϑ(PrName) = tones ϑ(p) = proj(tones)

After applying ϑ to q, we obtain:
q(pers(SSN),Salary)← Employee(pers(SSN)), salary(pers(SSN),Salary),

worksFor(pers(SSN),proj(tones)),
projectName(proj(tones), tones)

Substituting the atoms with the bodies of the unified clauses, we obtain:
q(pers(SSN),Salary)← Aux1(SSN, tones), Aux2(SSN,Salary),

Aux1(SSN, tones), Aux1(SSN, tones)
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Exponential blowup in the unfolding

When there are multiple mapping assertions for each atom, the unfolded query
may be exponential in the original one.

Consider a query: q(y)← A1(y), A2(y), . . . , An(y)

and the mappings: m1
i : Φ1

i (x) ; Ai(f(x))
m2
i : Φ2

i (x) ; Ai(f(x))
(for i ∈ {1, . . . , n})

We add the view definitions: Auxji (x)← Φji (x)
and introduce the clauses: Ai(f(x))← Auxji (x) (for i ∈ {1, . . . , n}, j ∈ {1, 2}).

There is a single unifier, namely ϑ(y) = f(x), but each atom Ai(y) in the query
unifies with the head of two clauses.

Hence, we obtain one unfolded query

q(f(x))← Auxj11 (x),Auxj22 (x), . . . ,Auxjnn (x)

for each possible combination of ji ∈ {1, 2}, for i ∈ {1, . . . , n}.
Hence, we obtain 2n unfolded queries.
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Computational complexity of query answering

From the top-down approach to query answering, and the complexity results for
DL-Lite, we obtain the following result.

Theorem

Query answering in a DL-Lite OBDM system O = 〈T ,M,D〉 is

1 NP-complete in the size of the query.

2 PTime in the size of the TBox T and the mappings M.

3 LogSpace in the size of the database D.

Note: The LogSpace result is a consequence of the fact that query answering
in such a setting can be reduced to evaluating an SQL query over the relational
database.
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Implementation of top-down approach to query answering

To implement the top-down approach, we need to generate an SQL query.

We can follow different strategies:
1 Substitute each view predicate in the unfolded queries with the

corresponding SQL query over the source:

+ joins are performed on the DB attributes;
+ does not generate doubly nested queries;
– the number of unfolded queries may be exponential.

2 Construct for each atom in the original query a new view. This view takes
the union of all SQL queries corresponding to the view predicates, and
constructs also the Skolem terms:

+ avoids exponential blow-up of the resulting query, since the union (of the
queries coming from multiple mappings) is done before the joins;

– joins are performed on Skolem terms;
– generates doubly nested queries.

Which method is better, depends on various parameters.
Experiments have shown that (1) behaves better in most cases.
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Towards answering arbitrary SQL queries

We have seen that answering full SQL (i.e., FOL) queries is undecidable.

However, we can treat the answers to an UCQ, as “knowledge”, and
perform further computations on that knowledge.

This corresponds to applying a knowledge operator to UCQs that are
embedded into an arbitrary SQL query (EQL queries) [Calvanese et al.,
2007a]

The UCQs are answered according to the certain answer semantics.
The SQL query is evaluated on the facts returned by the UCQs.

The approach can be implemented by rewriting the UCQs and embedding
the rewritten UCQs into SQL.

The user “sees” arbitrary SQL queries, but these SQL queries are evaluated
according to a weakened semantics.

D. Calvanese Ontologies and Databases Reasoning Web – Sep. 3–4, 2009 (265/288)



The impedance mismatch problem OBDA systems Query answering in OBDA systems The QuOnto system for OBDA

Part 4: Linking ontologies to relational data

Outline of Part 4

11 The impedance mismatch problem

12 Ontology-Based Data Access systems

13 Query answering in Ontology-Based Data Access systems

14 The QuOnto system for Ontology-Based Data Access
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The QuOnto system

QuOnto is a tool for representing and reasoning over ontologies of the
DL-Lite family.
The basic functionalities it offers are:

Ontology representation
Ontology satisfiability check
Intensional reasoning services: concept/property subsumption and
disjunction, concept/property satisfiability
Query Answering of UCQs

Includes also support for:
Identification path constraints
Denial constraints
Epistemic queries (EQL-Lite on UCQs)
Epistemic constraints (EQL-Lite constraints)

Reasoning services are highly optimized.

Can be used with internal and external DBMS (include drivers for Oracle,
DB2, IBM Information Integrator, SQL Server, MySQL, etc.).

Implemented in Java – APIs are available for selected projects upon
request.
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QuOnto wrapped versions

Several wrapped versions publicly available at:
http://www.dis.uniroma1.it/~quonto/ (or just google “quonto”)

ROWLkit: first implementation of the OWL2 QL Profile

QToolKit: simple graphical interface for using QuOnto to reason over
DL-Lite ontologies

DIG Server wrapper + OBDA Protégé plugin: for Ontology-based Data
Access and Integration through DL-Lite ontologies
by Mariano Rodriguez Muro, Univ. Bolzano
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ROWLkit

ROWLKit is a system with a simple GUI to reason over ontologies written in
OWL2 QL. At its core it uses QuOnto services enriched with additional features
to deal with OWL2 QL ontologies.

It takes as input OWL2 QL ontologies through OWL API.

The main services of ROWLKit are:

Ontology satisfiability check
Intensional reasoning services: concept/property subsumption and
disjunction, concept/property satisfiability
Query Answering of UCQs – expressed in SPARQL

ROWLKit is written in JAVA and embeds the H2 JAVA relational DBMS for the
storage (in main memory) of ABoxes and their querying (support to storage in
mass memory is also provided).
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QToolKit

QToolKit is a simple graphical interface for representing and reasoning over
DL-Lite ontologies relying on the QuOnto reasoner.

It takes as input DL-Lite ontologies specified in the standard OWL
functional-style syntax, suitably restricted for DL-Lite.

QToolKit allows for using all QuOnto reasoning capabilities. In particular, it
allows for answering UCQs (expressed in Datalog or SPARQL) and epistemic
queries (EQL-Lite on UCQs) (expressed in SparSQL) over DL-LiteA ontologies
possibly equipped with identification path constraints, denial and epistemic
constraints.

QToolKit stores the ABox in an internal database (no connection to external
DBs).
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DIG Server wrapper + OBDA Protégé plugin

QuOnto offers a DIG 1.1 interface through which it is possible to exploit the
mapping capabilities provided by the QuOnto technology and specify mappings
between DL-LiteA ontologies and data managed by external systems (e.g.,
Oracle, DB2, IBM Information Integrator, etc.).

An open source plugin for Protégé that extends the ontology editor with facilities
to design Mappings towards those external DBMS is available.

The plugin can be used as a client for QuOnto DIG interface and allows for
specifying and querying DL-LiteA ontologies with mappings.

Available for Protégé 3.3 and Protégé 4.
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Query rewriting for more expressive ontology languages

The result presented in this tutorial have recently been extended to more
expressive ontology languages, using different techniques:

In [Artale et al., 2009] various DL-Lite extensions are considered, providing a
comprehensive treatment of the expressiveness/complexity trade-off for the
DL-Lite family and related logics:

number restrictions besides functionality;
conjunction on the left-hand side of inclusions (horn logics);
boolean constructs;
constraints on roles, such as (ir)reflexivity, (a)symmetry, transitivity;
presence and absence of the unique name assumption.

Alternative query rewriting techniques based on resolution, and applicable
also to more expressive logics (leading to recursive rewritings)
[Pérez-Urbina et al., 2009].

Query rewriting techniques for database inspired constraint languages
[Cal̀ı et al., 2009a; Cal̀ı et al., 2009b].
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Further theoretical work

The result presented in this tutorial have also inspired additional work relevant
for ontology-based data access:

We have considered mainly query answering. However, several other
ontology-based services are of importance:

write-also access: updating a data source through an ontology
[De Giacomo et al., 2009];
modularity and minimal module extraction
[Kontchakov et al., 2008; Kontchakov et al., 2009];
privacy aware data access [Calvanese et al., 2008];
meta-level reasoning and query answering, a la RDFS
[De Giacomo et al., 2008]

provenance and explanation [Borgida et al., 2008]

Reasoning with respect to finite models only [Rosati, 2008].

We have dealt only with the static aspects of information systems. However
a crucial issue is how to deal with dynamic aspects. Preliminary results
are in [Calvanese et al., 2007c]. The general problem is largely unexplored.

Work on most of these issues is still ongoing.
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Further practical and experimental work

The theoretical results indicate a good computational behaviour in the size of
the data. However, performance is a critical issue in practice:

The rewriting consists of a large number of CQs. Query containment can
be used to prune the rewriting. This is already implemented in the
QuOnto system, but requires further optimizations.

The SQL queries generated by the mapping unfolding are not easy to
process by the DBMS engine (e.g., they may contain complex joins on
skolem terms computed on the fly).
Different mapping unfolding strategies have a strong impact on
computational complexity. Experimentation is ongoing to assess the
tradeoff.

Further extensive experimentations are ongoing:

on artificially generated data;
on real-world use cases.
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Conclusions

Ontology-based data access is ready for prime time.

QuOnto provides serious proof of concept of this.

We are successfully applying QuOnto in various full-fledged case
studies.

We are currently looking for projects where to apply such technology
further!
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