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Structure of the tutorial

1 Introduction to Ontology-Based Data Access
1 Introduction to ontologies
2 Ontology languages

2 Description Logics and the DL-Lite family
1 A gentle introduction to DLs
2 DLs as a formal language to specify ontologies
3 Queries in Description Logics
4 The DL-Lite family of tractable DLs

3 Reasoning in the DL-Lite family
1 TBox reasoning
2 TBox & ABox reasoning
3 Complexity of reasoning in Description Logics

4 Linking data to ontologies
1 The Description Logic DL-LiteA
2 Connecting ontologies to relational data

5 Hands-on session
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Introduction to ontologies Ontology languages

Ontologies in information systems Part 1: Introduction to Ontology-Based Data Access

Different meanings of “Semantics”

1 Part of linguistics that studies the meaning of words and phrases.

2 Meaning of a set of symbols in some representation scheme.
Provides a means to specify and communicate the intended
meaning of a set of “syntactic” objects.

3 Formal semantics of a language (e.g., an artificial language).
(Meta-mathematical) mechanism to associate to each sentence in a
language an element of a symbolic domain that is “outside the
language”.

In information systems meanings 2 and 3 are the relevant ones:

In order to talk about semantics we need a representation scheme,
i.e., an ontology.

. . . but 2 makes no sense without 3.
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Introduction to ontologies Ontology languages

Ontologies in information systems Part 1: Introduction to Ontology-Based Data Access

Ontologies

Definition

An ontology is a representation scheme that describes a formal
conceptualization of a domain of interest.

The specification of an ontology comprises several levels:

Meta-level: specifies a set of modeling categories.

Intensional level: specifies a set of conceptual elements (instances
of categories) and of rules to describe the conceptual structures of
the domain.

Extensional level: specifies a set of instances of the conceptual
elements described at the intensional level.
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Introduction to ontologies Ontology languages

Ontologies in information systems Part 1: Introduction to Ontology-Based Data Access

Ontologies at the core of information systems

C1

C2

C3
Ontology

Resource
1

Resource
2

Resource
3

Mapping

Resources

The usage of all system resources (data and services) is done through
the domain conceptualization.
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Introduction to ontologies Ontology languages

Ontologies in information systems Part 1: Introduction to Ontology-Based Data Access

Ontology mediated data access

Desiderata: achieve logical transparency in access to data:

Hide to the user where and how data are stored.

Present to the user a conceptual view of the data.

Use a semantically rich formalism for the conceptual view.

Similar to Data Integration, but with a rich conceptual description as
the global view.
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Introduction to ontologies Ontology languages

Ontologies in information systems Part 1: Introduction to Ontology-Based Data Access

Ontologies at the core of cooperation

C1' C2'
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The cooperation between systems is done at the level of the
conceptualization.
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Introduction to ontologies Ontology languages

Challenges related to ontologies Part 1: Introduction to Ontology-Based Data Access

Three novel challenges

1 Languages

2 Methodologies

3 Tools

. . . for specifying, building, and managing ontologies to be used in
information systems.
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Introduction to ontologies Ontology languages

Challenges related to ontologies Part 1: Introduction to Ontology-Based Data Access

The first challenge: ontology languages

Several proposals for ontology languages have been made.

Tradeoff between expressive power of the language and
computational complexity of dealing with (i.e., performing inference
over) ontologies specified in that language.

Usability needs to be addressed.

In this tutorial:

We propose variants of ontology languages suited for managing
ontologies in information systems.

We discuss in depth the above mentioned tradeoff . . .

. . . paying particular attention to the aspects related to data
management.
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Introduction to ontologies Ontology languages

Challenges related to ontologies Part 1: Introduction to Ontology-Based Data Access

The second challenge: methodologies

Building and dealing with ontologies is a complex and challenging
task.

Building good ontologies is even more challenging.

It requires to master the technologies based on semantics, which in
turn requires good knowledge about the languages, their semantics,
and the implications it has w.r.t. reasoning over the ontology.

In this tutorial:

We study in depth the semantics of ontologies, with an emphasis
on their relationship to data in information sources.

We thus lay the foundations for the development of methodologies,
though we do not present specific methodologies here.
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Introduction to ontologies Ontology languages

Challenges related to ontologies Part 1: Introduction to Ontology-Based Data Access

The third challenge: tools

According to the principle that “there is no meaning without a
language with a formal semantics”, the formal semantics becomes
the solid basis for dealing with ontologies.

Hence every kind of access to an ontology (to extract information,
to modify it, etc.), requires to fully take into account its semantics.

We need to resort to tools that provide capabilities to perform
automated reasoning over the ontology, and the kind of reasoning
should be sound and complete w.r.t. the formal semantics.

In this tutorial:

We discuss the requirements for such ontology management tools.

We present a tool that has been specifically designed for optimized
access to information sources through ontologies.
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Introduction to ontologies Ontology languages

Challenges related to ontologies Part 1: Introduction to Ontology-Based Data Access

A challenge across the three challenges: scalability

When we want to use ontologies to access information sources, we have
to address the three challenges of languages, methodologies, and tools
by taking into account scalability w.r.t.:

the size of (the intensional level of) the ontology

the number of ontologies

the size of the information sources that are accessed through the
ontology/ontologies.

In this tutorial we pay particular attention to the third aspect, since we
work under the realistic assumption that the extensional level (i.e., the
data) largely dominates in size the intensional level of an ontology.
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Introduction to ontologies Ontology languages

Part 1: Introduction to Ontology-Based Data Access
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Introduction to ontologies Ontology languages

Elements of an ontology language Part 1: Introduction to Ontology-Based Data Access

Elements of an ontology language

Syntax

Alphabet
Languages constructs
Sentences to assert knowledge

Semantics

Formal meaning

Pragmatics

Intended meaning
Usage
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Introduction to ontologies Ontology languages

Elements of an ontology language Part 1: Introduction to Ontology-Based Data Access

Static vs. dynamic aspects

The aspects of the domain of interest that can be modeled by an
ontology language can be classified into:

Static aspects

Are related to the structuring of the domain of interest.
Supported by virtually all languages.

Dynamic aspects

Are related to how the elements of the domain of interest evolve
over time.
Supported only by some languages, and only partially (cf. services).

Before delving into the dynamic aspects, we need a good understanding
of the static ones.

In this tutorial we concentrate essentially on the static aspects.
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Introduction to ontologies Ontology languages

Intensional level of an ontology language Part 1: Introduction to Ontology-Based Data Access

Intensional level of an ontology language

An ontology language for expressing the intensional level usually
includes:

Concepts

Properties of concepts

Relationships between concepts, and their properties

Axioms

Individuals and facts about individuals

Queries

Ontologies are typically rendered as diagrams (e.g., Semantic Networks,
Entity-Relationship schemas, UML Class Diagrams).
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Introduction to ontologies Ontology languages

Intensional level of an ontology language Part 1: Introduction to Ontology-Based Data Access

Example: ontology rendered as UML Class Diagram

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..1

1..*

boss

 
projectName: String

Project
3..*

1..1

1..1

worksFor

manages

1..*

{disjoint, complete}
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Introduction to ontologies Ontology languages

Intensional level of an ontology language Part 1: Introduction to Ontology-Based Data Access

Concepts

Concept

Is an element of the ontology that denotes a collection of instances
(e.g., the set of “employees”).

We distinguish between:

Intensional definition:
specification of name, properties, relations, . . .

Extensional definition:
specification of the instances

Concepts are also called classes, entity types, frames.
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Introduction to ontologies Ontology languages

Intensional level of an ontology language Part 1: Introduction to Ontology-Based Data Access

Properties

Property

Qualifies an element (e.g., a concept) of an ontology.

Property definition (intensional and extensional):

Name

Type:

Atomic (integer, real, string, enumerated, . . . )
e.g., eye-color → { blu, brown, green, grey }
Structured (date, sets, lists, . . . )
e.g., date → day/month/year

Default value

Properties are also called attributes, features, slots.
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Introduction to ontologies Ontology languages

Intensional level of an ontology language Part 1: Introduction to Ontology-Based Data Access

Relationships

Relationship

Expresses an association among concepts.

We distinguish between:

Intensional definition:
specification of involved concepts
e.g., worksFor is defined on Employee and Project

Extensional definition:
specification of the instances of the relationship, called facts
e.g., worksFor(domenico, TONES)

Relationships are also called associations, relationship types, roles.
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Introduction to ontologies Ontology languages

Intensional level of an ontology language Part 1: Introduction to Ontology-Based Data Access

Axioms

Axiom

Is a logical formula that expresses at the intensional level a condition
that must be satisified by the elements at the extensional level.

Different kinds of axioms/conditions:

subclass relationships, e.g., Manager v Employee

equivalences, e.g., Manager ≡ AreaManager t TopManager

disjointness, e.g., AreaManager u TopManager ≡ ⊥
(cardinality) restrictions,
e.g., each Employee worksFor at least 3 Project

. . .

Axioms are also called assertions.
A special kind of axioms are definitions.
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Introduction to ontologies Ontology languages

Extensional level of an ontology language Part 1: Introduction to Ontology-Based Data Access

Extensional level of an ontology language

At the extensional level we have individuals and facts:

An instance represents an individual (or object) in the extension of
a concept.
e.g., instanceOf(domenico, Employee)

A fact represents a relationship holding between instances.
e.g., worksFor(domenico, TONES)
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Introduction to ontologies Ontology languages

Extensional level of an ontology language Part 1: Introduction to Ontology-Based Data Access

The three levels of an ontology
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Introduction to ontologies Ontology languages

Ontologies and other formalisms Part 1: Introduction to Ontology-Based Data Access

Comparison with other formalisms

Ontology languages vs. knowledge representation languages:

Ontologies are knowledge representation schemas.

Ontology vs. logic:

Logic is a the tool for assigning semantics to ontology languages.

Ontology languages vs. conceptual data models:

Conceptual schema are special ontologies, suited for conceptualizing
a single logical model (database).

Ontology languages vs. programming languages:

Class definitions are special ontologies, suited for conceptualizing a
single structure for computation.
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Introduction to ontologies Ontology languages

Ontologies and other formalisms Part 1: Introduction to Ontology-Based Data Access

Classification of ontology languages

Graph-based

Semantic networks
Conceptual graphs
UML

Frame based

Frame Systems
OKBC, XOL

Logic based

Description Logics (e.g., SHOIQ, DLR, DL-Lite, OWL, . . . )
Rules (e.g., RuleML, LP/Prolog, F-Logic)
First Order Logic (e.g., KIF)
Non-classical logics (e.g., Nonmonotonic, probabilistic)
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Queries

An ontology language may also include constructs for expressing queries.

Query

In an expression at the intensional level denoting a (possibly structured)
collection of individuals satisfying a given condition.

Meta-Query

In an expression at the meta level denoting a collection of ontology
elements satisfying a given condition.

Note: One may also conceive queries that span across levels
(object-meta queries), cf. [RDF, Cal̀ı&Kifer VLDB’06]
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Ontology languages vs. query languages

Ontology languages:

Tailored for capturing intensional relationships.

Are quite poor as query languages:

Cannot refer to same object via multiple navigation paths in the
ontology,
i.e., allow only for a limited form of join, namely chaining.

Instead, when querying a data source (either directly, or via the
ontology), to retrieve the data of interest, general forms of joins are
required.

It follows that the constructs for queries may be quite different from the
constructs used in the ontology to form concepts and relationships.
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Example of query

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..1

1..*

boss

 
projectName: String

Project
3..*

1..1

1..1

worksFor

manages

1..*

{disjoint, complete}

q(ce, cm, se, sm) ← worksFor(e, p) ∧manages(m, p) ∧ boss(m, e) ∧
empCode(e, ce) ∧ empCode(m, cm) ∧
salary(e, se) ∧ salary(m, sm) ∧ se ≥ sm
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Query answering under different assumptions

There are fundamentally different assumptions when addressing query
answering in different settings:

traditional database assumption

knowledge representation assumption
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Query answering under the database assumption

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and
therefore the schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

; Query answering amounts to query evaluation, which is
computationally easy.
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Query answering under the database assumption (cont’d)

Data
Source

Logical
Schema

Schema /
Ontology

ResultQuery

Data
Source

Logical
Schema

Schema /
Ontology

Reasoning

ResultQuery

Data
Source

Logical
Schema

Schema /
Ontology
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Query answering under the database assumption – Example

  
Manager

ProjectworksFor
 

Employee

For each concept/relationship we have a (complete) table in the DB.
DB: Employee = { john, mary, nick }

Manager = { john, nick }
Project = { prA, prB }
worksFor = { (john,prA), (mary,prB) }

Query: q(x) ← Manager(x),Project(p),worksFor(x, p)

Answer: { john }

{

D. Calvanese, D. Lembo Ontology-Based Data Access ISWC’07 – Nov. 12, 2007 (35/217)



Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Query answering under the KR assumption

An ontology (or conceptual schema, or knowledge base) imposes
constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such
constraints.

The system has to take into account intensional information during
query answering, and overcome incompleteness or inconsistency.

Size of the data is not considered critical (comparable to the size of
the intensional information).

Queries are typically simple, i.e., atomic (the name of a concept).

; Query answering amounts to logical inference, which is
computationally more costly.
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Query answering under the KR assumption (cont’d)

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology

Reasoning

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology

Reasoning

Rewritten 
Query

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Query answering under the KR assumption – Example

  
Manager

ProjectworksFor
 

Employee

Partial DB assumption: we have a (complete) table in the database only
for some concepts/relationships.
DB: Manager = { john, nick }

Project = { prA, prB }
worksFor = { (john,prA), (mary,prB) }

Query: q(x) ← Employee(x)
Answer: { john, nick, mary }

{

Rewritten query: q(x) ← Employee(x) ∨Manager(x) ∨ worksFor(x, )

)
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Query answering under the KR assumption – Example 2

 
Person

 

hasFather
1..* Each person has a father, who is a person

Tables in the DB may be incompletely specified.

DB: Person = { john, nick, toni }
hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← hasFather(x, y)
q3(x) ← hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{

Rewritten queries: see later
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

QA under the KR assumption – Andrea’s Example

 
Employee

 

  
Manager

  
AreaManager

  
TopManager

supervisedBy 

{disjoint, complete}

officeMate Tables may be incompletely specified.

Employee = { andrea, nick, mary, john }
Manager = { andrea, nick, mary }

AreaManager ⊇ { nick }
TopManager ⊇ { mary }
supervisedBy = { (john,andrea), (john,mary) }

officeMate = { (mary,andrea), (andrea,nick) }

john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate

D. Calvanese, D. Lembo Ontology-Based Data Access ISWC’07 – Nov. 12, 2007 (40/217)



Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

QA under the KR assumption – Andrea’s Example (cont’d)

 
Employee

 

  
Manager

  
AreaManager

  
TopManager

supervisedBy 

{disjoint, complete}

officeMate john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate

q(x) ← supervisedBy(x, y), TopManager(y),
officeMate(y, z), AreaManager(z)

Answer: { john }

To determine this answer, we need to resort to
reasoning by cases.

Rewritten query? ???There is none (at least not in SQL).
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Introduction to ontologies Ontology languages

Queries Part 1: Introduction to Ontology-Based Data Access

Query answering in Ontology-Based Data Access

In OBDA, we have to face the difficulties of both assumptions:

The actual data is stored in external information sources (i.e.,
databases), and thus its size is typically very large.

The ontology introduces incompleteness of information, and we
have to do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints expressed
in the ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus
face also the problems that are typical of data integration.

Researchers are starting only now to tackle this difficult and challenging
problem. In the rest of this tutorial we provide an insight in
state-of-the-art technology in this area.
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A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Part 2: Description Logics and the DL-Lite family

Part II

Description Logics and the DL-Lite family
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A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Part 2: Description Logics and the DL-Lite family

Outline

3 A gentle introduction to Description Logics

4 DLs as a formal language to specify ontologies

5 Queries in Description Logics

6 The DL-Lite family of tractable Description Logics
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A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Part 2: Description Logics and the DL-Lite family

Outline

3 A gentle introduction to Description Logics
Ingredients of Description Logics
Description language
Description Logics ontologies
Reasoning in Description Logics

4 DLs as a formal language to specify ontologies

5 Queries in Description Logics

6 The DL-Lite family of tractable Description Logics
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A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Ingredients of Description Logics Part 2: Description Logics and the DL-Lite family

What are Description Logics?

Description Logics [BCM+03] are logics specifically designed to
represent and reason on structured knowledge:

The domain is composed of objects and is structured into:

concepts, which correspond to classes, and denote sets of objects

roles, which correspond to (binary) relationships, and denote binary
relations on objects

The knowledge is asserted through so-called assertions, i.e., logical
axioms.
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A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Ingredients of Description Logics Part 2: Description Logics and the DL-Lite family

Origins of Description Logics

Description Logics stem from early days Knowledge Representation
formalisms (late ’70s, early ’80s):

Semantic Networks: graph-based formalism, used to represent the
meaning of sentences

Frame Systems: frames used to represent prototypical situations,
antecedents of object-oriented formalisms

Problems: no clear semantics, reasoning not well understood

Description Logics (a.k.a. Concept Languages, Terminological
Languages) developed starting in the mid ’80s, with the aim of providing
semantics and inference techniques to knowledge representation systems.
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A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Ingredients of Description Logics Part 2: Description Logics and the DL-Lite family

Current applications of Description Logics

DLs have evolved from being used “just” in KR.

Novel applications of DLs:

Databases:

schema design, schema evolution
query optimization
integration of heterogeneous data sources, data warehousing

Conceptual modeling

Foundation for the Semantic Web (variants of OWL correspond to
specific DLs)

· · ·
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A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Ingredients of Description Logics Part 2: Description Logics and the DL-Lite family

Ingredients of a Description Logic

A Description Logic is characterized by:

1 A description language: how to form concepts and roles
Human uMale u ∃hasChild u ∀hasChild.(Doctor t Lawyer)

2 A mechanism to specify knowledge about concepts and roles (i.e., a
TBox)
T = { Father ≡ Human uMale u ∃hasChild,

HappyFather v Father u ∀hasChild.(Doctor t Lawyer) }
3 A mechanism to specify properties of objects (i.e., an ABox)
A = { HappyFather(john), hasChild(john, mary) }

4 A set of inference services: how to reason on a given KB
T |= HappyFather v ∃hasChild.(Doctor t Lawyer)
T ∪ A |= (Doctor t Lawyer)(mary)
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Architecture of a Description Logic system
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Description language

A description language is characterized by a set of constructs for
building complex concepts and roles starting from atomic ones:

concepts correspond to classes: interpreted as sets of objects

roles corr. to relationships: interpreted as binary relations on objects

Formal semantics is given in terms of interpretations.

An interpretation I = (∆I , ·I) consists of:

a nonempty set ∆I , the domain of I
an interpretation function ·I , which maps

each individual a to an element aI of ∆I

each atomic concept A to a subset AI of ∆I

each atomic role P to a subset P I of ∆I ×∆I

The interpretation function is extended to complex concepts and roles
according to their syntactic structure.
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Concept constructors

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

atomic negation ¬A ¬Doctor ∆I \AI
conjunction C uD Hum uMale CI ∩DI
(unqual.) exist. res. ∃R ∃hasChild { a | ∃b. (a, b) ∈ RI }
value restriction ∀R.C ∀hasChild.Male {a | ∀b. (a, b) ∈ RI → b ∈ CI}
bottom ⊥ ∅

(C, D denote arbitrary concepts and R an arbitrary role)

The above constructs form the basic language AL of the family of AL
languages.
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Additional concept and role constructors

Construct AL· Syntax Semantics

disjunction U C tD CI ∪DI
top > ∆I

qual. exist. res. E ∃R.C { a | ∃b. (a, b) ∈ RI ∧ b ∈ CI }
(full) negation C ¬C ∆I \ CI
number N (≥ k R) { a | #{b | (a, b) ∈ RI} ≥ k }
restrictions (≤ k R) { a | #{b | (a, b) ∈ RI} ≤ k }
qual. number Q (≥ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≥ k }
restrictions (≤ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≤ k }
inverse role I R− { (a, b) | (b, a) ∈ RI }
role closure reg R∗ (RI)∗

Many different DL constructs and their combinations have been investigated.
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Further examples of DL constructs

Disjunction: ∀hasChild.(Doctor t Lawyer)

Qualified existential restriction: ∃hasChild.Doctor

Full negation: ¬(Doctor t Lawyer)

Number restrictions: (≥ 2 hasChild) u (≤ 1 sibling)

Qualified number restrictions: (≥ 2 hasChild. Doctor)

Inverse role: ∀hasChild−.Doctor

Reflexive-transitive role closure: ∃hasChild∗.Doctor
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Reasoning on concept expressions

An interpretation I is a model of a concept C if CI 6= ∅.
Basic reasoning tasks:

1 Concept satisfiability: does C admit a model?

2 Concept subsumption C v D: does CI ⊆ DI hold for all
interpretations I?

Subsumption used to build the concept hierarchy:

Human

Man Woman

Father

HappyFather

Note: (1) and (2) are mutually reducible if DL is propositionally closed.
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Complexity of reasoning on concept expressions

Complexity of concept satisfiability: [DLNN97]

AL, ALN PTIME

ALU , ALUN NP-complete

ALE coNP-complete

ALC, ALCN , ALCI, ALCQI PSPACE-complete

Observations:

Two sources of complexity:

union (U) of type NP,
existential quantification (E) of type coNP.

When they are combined, the complexity jumps to PSPACE.

Number restrictions (N ) do not add to the complexity.
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Structural properties vs. asserted properties

We have seen how to build complex concept and roles expressions,
which allow one to denote classes with a complex structure.

However, in order to represent real world domains, one needs the ability
to assert properties of classes and relationships between them (e.g., as
done in UML class diagrams).

The assertion of properties is done in DLs by means of an ontology (or
knowledge base).

D. Calvanese, D. Lembo Ontology-Based Data Access ISWC’07 – Nov. 12, 2007 (57/217)



A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Description Logics ontologies Part 2: Description Logics and the DL-Lite family

Description Logics ontology (or knowledge base)

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:

Description Logics TBox

Consists of a set of assertions on concepts and roles:

Inclusion assertions on concepts: C1 v C2

Inclusion assertions on roles: R1 v R2

Property assertions on (atomic) roles:
(transitive P ) (symmetric P ) (domain P C)
(functional P ) (reflexive P ) (range P C) · · ·

Description Logics ABox

Consists of a set of membership assertions on individuals:

for concepts: A(c)
for roles: P (c1, c2) (we use ci to denote individuals)
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Description Logics knowledge base – Example

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

TBox assertions:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant),
(functional hasFather)

ABox membership assertions:

Teacher(mary), hasFather(mary, john), HappyAnc(john)
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Semantics of a Description Logics knowledge base

The semantics is given by specifying when an interpretation I satisfies
an assertion:

C1 v C2 is satisfied by I if CI1 ⊆ CI2 .

R1 v R2 is satisfied by I if RI1 ⊆ RI2 .

A property assertion (prop P ) is satisfied by I if P I is a relation
that has the property prop.
(Note: domain and range assertions can be expressed by means of
concept inclusion assertions.)

A(c) is satisfied by I if cI ∈ AI .

P (c1, c2) is satisfied by I if (cI1 , c
I
2 ) ∈ P I .

We adopt the unique name assumption, i.e., cI1 6= cI2 , for c1 6= c2.
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Models of a Description Logics ontology

Model of a DL knowledge base

An interpretation I is a model of O = 〈T ,A〉 if it satisfies all assertions
in T and all assertions in A.

O is said to be satisfiable if it admits a model.

The fundamental reasoning service from which all other ones can be
easily derived is . . .

Logical implication

O logically implies and assertion α, written O |= α, if α is satisfied by
all models of O.
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TBox reasoning

Concept Satisfiability: C is satisfiable wrt T , if there is a model I
of T such that CI is not empty, i.e., T 6|= C ≡ ⊥.

Subsumption: C1 is subsumed by C2 wrt T , if for every model I of
T we have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I
of T we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of
T we have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥.

Functionality implication: A functionality assertion (funct R) is
logically implied by T if for every model I of T , we have that
(o, o1) ∈ RI and (o, o2) ∈ RI implies o1 = o2, i.e., T |= (funct R).

Analogous definitions hold for role satisfiability, subsumption,
equivalence, and disjointness.
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Reasoning over an ontology

Ontology Satisfiability: Verify whether an ontology O is satisfiable,
i.e., whether O admits at least one model.

Concept Instance Checking: Verify whether an individual c is an
instance of a concept C in O, i.e., whether O |= C(c).

Role Instance Checking: Verify whether a pair (c1, c2) of individuals
is an instance of a role R in O, i.e., whether O |= R(c1, c2).

Query Answering: see later . . .
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Reasoning in Description Logics – Example

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant), (functional hasFather)

The above TBox logically implies: HappyAncestor v Father.

Membership assertions:
Teacher(mary), hasFather(mary, john), HappyAnc(john)

The above TBox and ABox logically imply: HappyPerson(mary)
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Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than reasoning
over concept expressions:

Bad news:

without restrictions on the form of TBox assertions, reasoning over
DL ontologies is already ExpTime-hard, even for very simple DLs
(see, e.g., [Don03]).

Good news:

We can add a lot of expressivity (i.e., essentially all DL constructs
seen so far), while still staying within the ExpTime upper bound.
There are DL reasoners that perform reasonably well in practice for
such DLs (e.g, Racer, Pellet, Fact++, . . . ) [MH03].
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Relationship between DLs and ontology formalisms

Description Logics are nowadays advocated to provide the
foundations for ontology languages.

Different versions of the Ontology Web Language (OWL) have
been defined as syntactic variants of certain Description Logics.

DLs are also ideally suited to capture the fundamental features of
conceptual modeling formalims used in information systems design:

Entity-Relationship diagrams, used in database conceptual modeling
UML Class Diagrams, used in the design phase of software
applications

We briefly overview these correspondences, highlighting essential DL
constructs, also in light of the tradeoff between expressive power and
computational complexity of reasoning.
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DLs vs. OWL

The Ontology Web Language (OWL) comes in different variants:

OWL-Lite is a variant of the DL SHIN (D), where:

S stands for ALC extended with transitive roles
H stands for role hierarchies (i.e., role inclusion assertions)
I stands for inverse roles
N stands for (unqualified) number restrictions
(D) stand for data types, which are necessary in any practical
knowledge representation language

OWL-DL is a variant of SHOIQ(D), where:

O stands for nominals, which means the possibility of using
individuals in the TBox (i.e., the intensional part of the ontology)
Q stands for qualified number restrictions
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DL constructs vs. OWL constructs

OWL contructor DL constructor Example

intersectionOf C1 u · · · u Cn Human uMale

unionOf C1 t · · · t Cn Doctor t Lawyer

complementOf ¬C ¬Male

oneOf {a1} t · · · t {an} {john} t {mary}
allValuesFrom ∀P .C ∀hasChild.Doctor

someValuesFrom ∃P .C ∃hasChild.Lawyer

maxCardinality (≤ nP ) (≤ 1 hasChild)

minCardinality (≥ nP ) (≥ 2 hasChild)
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DL axioms vs. OWL axioms

OWL axiom DL syntax Example

subClassOf C1 v C2 Human v Animal u Biped

equivalentClass C1 ≡ C2 Man ≡ Human uMale

disjointWith C1 v ¬C2 Man v ¬Female

sameIndividualAs {a1} ≡ {a2} {presBush} ≡ {G.W.Bush}
differentFrom {a1} v ¬{a2} {john} v ¬{peter}
subPropertyOf P1 v P2 hasDaughter v hasChild

equivalentProperty P1 ≡ P2 hasCost ≡ hasPrice

inverseOf P1 ≡ P−2 hasChild ≡ hasParent−

transitiveProperty P+ v P ancestor+ v ancestor

functionalProperty > v (≤ 1P ) > v (≤ 1 hasFather)
inverseFunctionalProperty > v (≤ 1P−) > v (≤ 1 hasSSN−)
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DLs vs. UML Class Diagrams

There is a tight correspondence between variants of DLs and UML Class
Diagrams [BCDG05].

We can devise two transformations:

one that associates to each UML Class Diagram D a DL TBox TD.
one that associates to each DL TBox T a UML Class Diagram DT .

The transformations are not model-preserving, but are based on a
correspondence between instantiations of the Class Diagram and
models of the associated ontology.

The transformations are satisfiability-preserving, i.e., a class C is
consistent in D iff the corresponding concept is satisfiable in T .
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Encoding UML Class Diagrams in DLs

The ideas behind the encoding of a UML Class Diagram D in terms of a
DL TBox TD are quite natural:

Each class is represented by an atomic concept.

Each attribute is represented by a role.

Each binary association is represented by a role.

Each non-binary association is reified, i.e., represented as a concept
connected to its components by roles.

Each part of the diagram is encoded by suitable assertions.

We illustrate the encoding by means of an example.
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Encoding UML Class Diagrams in DLs – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..1

1..*

boss

 
projectName: String

Project
3..*

1..1

1..1

worksFor

manages

1..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

Manager v AreaManager t
TopManager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

(funct manages)
(funct manages−)

manages v worksFor
· · ·

Note: Domain and range of associations are
expressed by means of concept inclusions.
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Encoding DL TBoxes in UML Class Diagrams

The encoding of an ALC TBox T in terms of a UML Class Diagram TD
is based on the following observations:

We can restrict the attention to ALC TBoxes, that are constituted
by concept inclusion assertions of a simplified form (single atomic
concept on the left, and a single concept constructor on the right).

For each such inclusion assertion, the encoding introduces a portion
of UML Class Diagram, that may refer to some common classes.

Reasoning in the encoded ALC-fragment is already ExpTime-hard.
From this, we obtain:

Theorem

Reasoning over UML Class Diagrams is ExpTime-hard.
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Reasoning on UML Class Diagrams using DLs

The two encodings show that DL TBoxes and UML Class Diagrams
essentially have the same expressive power.

Hence, reasoning over UML Class Diagrams has the same
complexity as reasoning over ontologies in expressive DLs, i.e.,
ExpTime-complete.

The high complexity is caused by:
1 the possibility to use disjunction (covering constraints)
2 the interaction between role inclusions and functionality constraints

(maximum 1 cardinality)

Without (1) and restricting (2), reasoning becomes simpler [ACK+07]:

NLogSpace-complete in combined complexity

in LogSpace in data complexity (see later)
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Efficient reasoning on UML Class Diagrams

We are interested in using UML Class Diagrams to specify ontologies in
the context of Ontology-Based Data Access.

Questions

Which is the right combination of constructs to allows in UML
Class Diagrams to be used for OBDA?

Are there techniques for query answering in this case that can be
derived from Description Logics?

Can query answering be done efficiently in the size of the data?

If yes, can we leverage relational database technology for query
answering?
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Queries over Description Logics ontologies

We need more complex queries than simple concept (or role) expressions.

A conjunctive query q(~x) over an ontology O = 〈T ,A〉 has the form:

q(~x) ← ∃~y. conj (~x, ~y)

where:

~x is a tuple of so-called distinguished variables.
The number of variables in ~x is called the arity of q.

~y is a tuple of so-called non-distinguished variables,

q(~x) is called the head of q.

conj (~x, ~y), called the body of q, is a conjunction of atoms, where
each atom:

has as predicate symbol an atomic concept or role of T ,
may use variables in ~x and ~y,
may use constants that are individuals of A.
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Queries over Description Logics ontologies (cont’d)

Note: we may also use for CQs a simplified notation
q(~x) ← body(~x, ~y)

where body(~x, ~y) is a sequence constituted by the atoms in conj (~x, ~y).

Example of conjunctive query

q(x, y)← ∃p. Employee(x) ∧ Employee(y) ∧ Project(p) ∧
boss(x, y) ∧ worksFor(x, p) ∧ worksFor(y, p)

In simplified notation:
q(x, y)← Employee(x),Employee(y),Project(p),

boss(x, y),worksFor(x, p),worksFor(y, p)

Note: a CQ corresponds to a select-project-join SQL query.
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Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x)← ∃~y. conj (~x, ~y) a CQ.

The answer to q(~x) over I, denoted qI , . . .

is the set of tuples ~c of constants of A such that the formula
∃~y. conj (~c, ~y) evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

The certain answers to q(~x) over O = 〈T ,A〉, denoted cert(q,O), . . .

are the tuples ~c of constants of A such that ~c ∈ qI , for every model I
of O.
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Query answering over ontologies

Query answering over an ontology O
Is the problem of computing the certain answers to a query over O.

Computing certain answers is a form of logical implication:

~c ∈ cert(q,O) iff O |= q(~c)

Note: instance checking is a special case of query answering: it amounts
to answering the boolean query q()← A(c) (resp., q()← P (c1, c2))
over O (in this case ~c is the empty tuple).
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Query answering over ontologies – Example

 
Person

 

hasFather
1..* TBox T : ∃hasFather v Person

∃hasFather− v Person
Person v ∃hasFather

ABox A: Person(john), Person(nick), Person(toni)
hasFather(john,nick), hasFather(nick,toni)

Queries:
q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Certain answers: cert(q1, 〈T ,A〉) = { (john,nick), (nick,toni) }

{

cert(q2, 〈T ,A〉) = { john, nick, toni }

{

cert(q3, 〈T ,A〉) = { john, nick, toni }

{

cert(q4, 〈T ,A〉) = { }

{
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Unions of conjunctive queries

We consider also unions of CQs.

A union of conjunctive queries (UCQ) has the form:

q(~x) ← ∃~y1. conj (~x, ~y1) ∨ · · · ∨ ∃ ~yk. conj (~x, ~yk)

where each ~yi. conj (~x, ~yi) is the body of a CQ.

Example

q(x)← (Manager(x) ∧ worksFor(x, tones)) ∨
(∃y. boss(x, y) ∧ worksFor(y, tones))

The (certain) answers to a UCQ are defined analogously to those for
CQs.
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Data and combined complexity

When measuring the complexity of answering a query q(~x) over an
ontology O = 〈T ,A〉, various parameters are of importance.

Depending on which parameters we consider, we get different
complexity measures:

Data complexity: TBox and query are considered fixed, and only
the size of the ABox (i.e., the data) matters.

Query complexity: TBox and ABox are considered fixed, and only
the size of the query matters.

Schema complexity: ABox and query are considered fixed, and only
the size of the TBox (i.e., the schema) matters.

Combined complexity: no parameter is considered fixed.

In the OBDA setting, the size of the data largely dominates the size of
the conceptual layer (and of the query).
; Data complexity is the relevant complexity measure.
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Complexity of query answering in DLs

Answering (U)CQs over DL ontologies has been studied extensively:

Combined complexity:
NP-complete for plain databases (i.e., with an empty TBox)
ExpTime-complete for ALC [CDGL98, Lut07]
2ExpTime-complete for very expressive DLs (with inverse roles)
[CDGL98, Lut07]

Data complexity:
in LogSpace for plain databases
coNP-hard with disjunction in the TBox [DLNS94, CDGL+06b]
coNP-complete for very expressive DLs [LR98, OCE06, GHLS07]

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently?

If yes, can we leverage relational database technology for query
answering?
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The DL-Lite family Part 2: Description Logics and the DL-Lite family

The DL-Lite family

Is a family of DLs optimized according to the tradeoff between
expressive power and data complexity of query answering.

We present now two incomparable languages of this family,
DL-LiteF , DL-LiteR (we use DL-Lite to refer to both).

We will see that DL-Lite has nice computational properties:

PTime in the size of the TBox (schema complexity)
LogSpace in the size of the ABox (data complexity)
enjoys FOL-rewritability

We will see that DL-LiteF and DL-LiteR are in some sense the
maximal DLs with these nice computational properties, which are
lost with minimal additions of constructs.

Hence, DL-Lite provides a positive answer to our basic questions, and
sets the foundations for Ontology-Based Data Access.
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DL-LiteF ontologies

TBox assertions:

Concept inclusion assertions: Cl v Cr , with:

Cl −→ A | ∃Q
Cr −→ A | ∃Q | ¬A | ¬∃Q
Q −→ P | P−

Functionality assertions: (funct Q)
ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Observations:

Captures all the basic constructs of UML Class Diagrams and ER

Notable exception: covering constraints in generalizations.
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Syntax of DL-Lite F and DL-Lite R Part 2: Description Logics and the DL-Lite family

DL-LiteR ontologies

TBox assertions:

Concept inclusion assertions: Cl v Cr , with:

Cl −→ A | ∃Q
Cr −→ A | ∃Q | ¬A | ¬∃Q
Q −→ P | P−

Role inclusion assertions: Q v R, with:

R −→ Q | ¬Q

ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Observations:

Drops functional restrictions in favor of ISA between roles.

Extends (the DL fragment of) the ontology language RDFS.
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Semantics of DL-Lite Part 2: Description Logics and the DL-Lite family

Semantics of DL-Lite

Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d, e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \AI

conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child P I ⊆ ∆I ×∆I

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆ I

O ×∆ I
O ) \QI

conc. incl. Cl v Cr Father v ∃child ClI ⊆ CrI

role incl. Q v R hasFather v child− QI ⊆ RI

funct. asser. (funct Q) (funct succ) ∀d, e, e′.(d, e) ∈ QI ∧ (d, e′) ∈ QI → e = e′

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2 ) ∈ P I
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Capturing basic ontology constructs in DL-Lite

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of relations ∃P v A1 ∃P− v A2

Mandatory participation A1 v ∃P A2 v ∃P−

Functionality of relations (in DL-LiteF ) (funct P ) (funct P−)

ISA between relations (in DL-LiteR) Q1 v Q2

Disjointness between relations (in DL-LiteR) Q v ¬Q
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Semantics of DL-Lite Part 2: Description Logics and the DL-Lite family

DL-Lite – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..1

1..*

boss

 
projectName: String

Project
3..*

1..1

1..1

worksFor

manages

1..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v ∃worksFor−

...

Additionally, in DL-LiteF : (funct manages), (funct manages−), . . .
in DL-LiteR : manages v worksFor

Note: in DL-Lite we cannot capture: – completeness of the hierarchy,
– number restrictions
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Properties of DL-Lite

The TBox may contain cyclic dependencies (which typically
increase the computational complexity of reasoning).

Example: A v ∃P , ∃P− v A
We have not included in the syntax u on the right hand-side of
inclusion assertions, but it can trivially be added, since

Cl v Cr1 u Cr2 is equivalent to
Cl v Cr1

Cl v Cr2

A domain assertion on role P has the form: ∃P v A1

A range assertion on role P has the form: ∃P− v A2

D. Calvanese, D. Lembo Ontology-Based Data Access ISWC’07 – Nov. 12, 2007 (93/217)



A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Properties of DL-Lite Part 2: Description Logics and the DL-Lite family

Properties of DL-LiteF

DL-LiteF does not enjoy the finite model property.

Example

TBox T : Nat v ∃succ ∃succ− v Nat

Zero v Nat u ¬∃succ− (funct succ−)

ABox A: Zero(0)

O = 〈T ,A〉 admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

Hence, reasoning w.r.t. arbitrary models is different from reasoning
w.r.t. finite models only.
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Properties of DL-LiteR

The TBox may contain cyclic dependencies.

DL-LiteR does enjoy the finite model property. Hence, reasoning
w.r.t. finite models is the same as reasoning w.r.t. arbitrary models.

With role inclusion assertions, we can simulate qualified existential
quantification in the rhs of an inclusion assertion A1 v ∃Q.A2.

To do so, we introduce a new role QA2 and:

the role inclusion assertion QA2 v Q
the concept inclusion assertions: A1 v ∃QA2

∃Q−A2
v A2

In this way, we can consider ∃Q.A in the right-hand side of an
inclusion assertion as an abbreviation.
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Properties of DL-Lite Part 2: Description Logics and the DL-Lite family

Complexity results for DL-Lite

1 We have seen that DL-LiteF and DL-LiteR can capture the
essential features of prominent conceptual modeling formalisms.

2 In the next part, we will analyze reasoning in DL-Lite, and establish
the following characterization of its computational properties:

Ontology satisfiability is polynomial in the size of TBox and ABox.
Query answering is:

PTime in the size of the TBox.
LogSpace in the size of the ABox, and FOL-rewritable, which
means that we can leverage for it relational database technology.

3 We will also see that DL-Lite is essentially the maximal DL
enjoying these nice computational properties.

From (1), (2), and (3) we get the following claim:

DL-Lite is the representation formalism that is best suited to underly
Ontology-Based Data Management systems.
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Part III

Reasoning in the DL-Lite family
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Remark

In the following,

a TBox T that is either a DL-LiteR or a DL-LiteF TBox is simply
called TBox.

C, possibly with subscript, denotes a general concept, i.e.,

C −→ A | ¬A | ∃Q | ¬∃Q
Q −→ P | P−

where A is an atomic concept, P is an atomic role, and Q is a
basic role.

R, possibly with subscript, denotes a general role, i.e.,

R −→ Q | ¬Q
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Reasoning services

Concept Satisfiability: C is satisfiable wrt T , if there is a model I
of T such that CI is not empty, i.e., T 6|= C ≡ ⊥
Subsumption: C1 is subsumed by C2 wrt T , if for every model I of
T we have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I
of T we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of
T we have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥
Functionality implication: A functionality assertion (funct Q) is
logically implied by T if for every model I of T , we have that
(o, o1) ∈ QI and (o, o2) ∈ QI implies o1 = o2, i.e., T |= (funct Q).

Analogous definitions hold for role satisfiability, subsumption,
equivalence, and disjointness.
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From TBox reasoning to ontology satisfiability

In the following we will show how to reduce TBox reasoning to ontology
satisfiability.

Ontology Satisfiability: Verify whether an ontology O is satisfiable,
i.e., whether O admits at least one model.

- We first will show how to reduce TBox reasoning services to
concept/role subsumption.

- Then we will provide reductions from concept/role subsumption to
ontology satisfiability.
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Concept/role satisfiability, equivalence, and disjointness

Theorem

1 C is unsatisfiable wrt T iff T |= C v ¬C.

2 T |= C1 ≡ C2 iff T |= C1 v C2 and T |= C2 v C1.

3 C1 and C2 are disjoint iff T |= C1 v ¬C2.

Proof (sketch)

1 “⇐” if T |= C v ¬C, then CI ⊆ ∆I \ CI , for every model
I = 〈∆I , ·I〉 of T ; but this holds iff CI = ∅.
“⇒” if C is unsatisfiable, then CI = ∅, for every model I of T .
Therefore CI ⊆ (¬C)I .

2 Trivial.

3 Trivial.

Analogous reductions for role satisfiability, equivalence and disjointness.
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From implication of functionalities to subsumption

Theorem

T |= (funct Q) iff either (funct Q) ∈ T (only for DL-LiteF ontologies),
or T |= Q v ¬Q.

Proof (sketch)

“⇐” The case in which (funct Q) ∈ T is trivial. Instead, if
T |= Q v ¬Q, then QI = ∅ and hence I |= (funct Q), for every model
I of T .

“⇒” Starting from the assumption that neither (funct Q) ∈ T nor
T |= Q v ¬Q, we can construct a model of T that is not a model of
(funct Q).
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From concept subsumption to ontology satisfiability

Theorem

Let Â be an atomic concept not in T , and c a constant. T |= C1 v C2

iff the ontology OC1vC2 = 〈T ∪ {Â v C1, Â v ¬C2}, {Â(c)}〉 is
unsatisfiable.

Intuitively, C1 is subsumed by C2 iff the smallest ontology containing T
and implying both C1(c) and ¬C2(c) is unsatisfiable.

Proof (sketch)

“⇐” Suppose that OC1vC2 is unsatisfiable, but T 6|= C1 v C2, i.e.,
there exists a model I of T such that CI1 6⊆ CI2 . From I we construct a
model for OC1vC2 , thus getting a contradiction.

“⇒” Suppose that OC1vC2 is satisfiable, and let I be a model of
OC1vC2 . Then I |= T , and I |= C1(c) and I |= ¬C2(c), i.e.,
I 6|= C1 v C2, i.e., T 6|= C1 v C2.
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From role subsumption to ontology satisfiability

Theorem

Let T be a DL-LiteR TBox, Q1 and Q2 two general roles, P̂ an atomic
role not in T , and c1, c2 two constants. T |= R1 v R2 iff the ontology
OR1vR2 = 〈T ∪ {P̂ v R1, P̂ v ¬R2}, {P̂ (c1, c2)}〉 is unsatisfiable.

Intuitively, R1 is subsumed by R2 iff the smallest ontology containing T
and implying both R1(c1, c2) and ¬R2(c1, c2) is unsatisfiable.

Proof (sketch)

Analogous to above.

Notice that OQ1vQ2 is inherently a DL-LiteR ontology.
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From role subsumption to ontology satisfiability (cont’d)

Theorem

Let T be a DL-LiteF TBox, Q1 and Q2 two basic roles such that
Q1 6= Q2. Then,

1 T |= Q1 v Q2 iff Q1 is unsatisfiable.

2 T |= ¬Q1 v Q2 iff T is unsatisfiable.
3 T |= Q1 v ¬Q2 iff either

(a) ∃Q1 and ∃Q2 are disjoint, or
(b) ∃Q−1 and ∃Q−2 are disjoint.

Notice that an inclusion of the form ¬Q1 v ¬Q2 is equivalent to
Q2 v Q1, and therefore is considered in the first item.
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From role subsumption to ontology satisfiability (cont’d)

Theorem

Let T be a DL-LiteF TBox, Q1 and Q2 two basic roles such that
Q1 6= Q2, Â an atomic concept not in T , and c a constant. Then,

1 T |= Q1 v Q2 iff either

(a) the ontology O∃Q1v¬∃Q1 = 〈T ∪ {Â v ∃Q1}, {Â(c)}〉 is
unsatisfiable, or

(b) the ontology O∃Q−1 v¬∃Q−1 = 〈T ∪ {Â v ∃Q−1 }, {Â(c)}〉 is

unsatisfiable.

2 T |= ¬Q1 v Q2 iff T is unsatisfiable.
3 T |= Q1 v ¬Q2 iff either

(a) the ontology O∃Q1v¬∃Q2 = 〈T ∪ {Â v ∃Q1, Â v ∃Q2}, {Â(c)}〉 is
unsatisfiable, or

(b) the ontology O∃Q−1 v¬∃Q−2 = 〈T ∪ {Â v ∃Q−1 , Â v ∃Q−2 }, {Â(c)}〉
is unsatisfiable.
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The results above say us that we can support TBox reasoning
services relying on ontology satisfiability services.

Ontology satisfiability is a form of reasoning over both the TBox
and the ABox of the ontology.

In the following, we first consider other TBox & ABox reasoning
services, in particular query answering, and then turn back to
ontology satisfiability.
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Query answering and instance checking

Concept Instance Checking: Verify wether an individual c is an
instance of a concept C in an ontology O, i.e., whether O |= C(c).

Role Instance Checking: Verify wether a pair (c1, c2) of individuals
is an instance of a role Q in an ontology O, i.e., whether
O |= Q(c1, c2).

Query Answering Given a query q over an ontology O, find all
tuples ~c of constants such that O |= q(~c).

Notice that instance checking is a special case of query answering: it
amounts to answering the boolean query C(c) (resp., Q(c1, c2)) over O
(in this case ~c is the empty tuple).
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Certain answers

We recall that

Query answering over a ontology O = 〈T ,A〉 is a form of logical
implication:

find all tuples ~c of constants s.t. O |= q(~c)

A.k.a. certain answers in databases, i.e., the tuples that are answers to q
in all models of O = 〈T ,A〉:

cert(q,O) = { ~c | ~c ∈ qI , for every model I of 〈T ,A〉 }
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Data complexity of query answering

Recognition problem: Given an ontology O, a query q over O, a tuple of
constants ~c, check whether ~c ∈ cert(q,O).

We consider a setting where the size of the data largely dominates the
size of the conceptual layer ; We look at data complexity of query
answering, i.e., complexity of the recognition problem computed w.r.t.
the size of the ABox only.

Basic questions:

1 For which ontology languages can we answer queries over an
ontology efficiently?

2 How complex becomes query answering over an ontology when we
consider more expressive ontology languages?
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Data complexity and Q-rewritability

T

q

A cert(q,<T,A>)

Logical inference

To study data complexity, we need to separate the contribution of A
from the contribution of q and T
; Study Q-rewritability for query language Q.

D. Calvanese, D. Lembo Ontology-Based Data Access ISWC’07 – Nov. 12, 2007 (114/217)



TBox reasoning TBox & ABox Reasoning Complexity of reasoning in DLs

Query answering Part 3: Reasoning in the DL-Lite family

Q-rewritability

Query 
Reformulation 
(under OWA)

Query Evaluation 
(under CWA)

T

q rq,T

A cert(q,<T,A>)

Query answering can always be thought as done in two phases:
1 Perfect reformulation: producing the query rq,T , namely the

function cert [q, T ](·)
2 Query evaluation: evaluating rq,T over the ABox A seen as a

complete database, and forgetting about the TBox T ;

Produces cert(q, 〈T ,A〉)
Let Q be a query language
Query answering for an ontology language is.Q-rewritable if rq,T is in Q.

D. Calvanese, D. Lembo Ontology-Based Data Access ISWC’07 – Nov. 12, 2007 (115/217)



TBox reasoning TBox & ABox Reasoning Complexity of reasoning in DLs

Query answering Part 3: Reasoning in the DL-Lite family

Q-rewritability: interesting cases

Consider an ontology language that enjoys Q-rewritability, for a query
language Q:

When Q is FOL (i.e., the language enjoys FOL-rewritability)
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LogSpace).

When Q is an NLogSpace-hard language
; Query evaluation requires (at least) linear recursion.

When Q is a PTime-hard language
; Query evaluation requires (at least) recursion (e.g., Datalog).

When Q is a coNP-hard language
; Query evaluation requires (at least) power of Disjunctive
Datalog.
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Query answering Part 3: Reasoning in the DL-Lite family

We now study Q-rewritability of query answering over DL-Lite
ontologies.

In particular we will show that both DL-LiteR and DL-LiteF enjoy
FOL-rewritability of conjunctive query answering.
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering over unsatisfiable ontologies

In the case in which an ontology is unsatisfiable, according to the
“ex falso quod libet” principle, reasoning is trivialized.

In particular, query answering is meaningless, since every tuple is in
the answer to every query.

We are not interested in encoding meaningless query answering into
the perfect reformulation of the input query. Therefore, before
query answering, we will always check ontology satisfiability to
single out meaningful cases.

Thus, in the following, we focus on query answering over satisfiable
ontologies.

We first consider satisfiable DL-LiteR ontologies.
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Query answering Part 3: Reasoning in the DL-Lite family

Remark

we call positive inclusions (PIs) assertions of the form

Cl v A | ∃Q
Q1 v Q2

whereas we call negative inclusions (NIs) assertions of the form

Cl v ¬A | ¬∃Q
Q1 v ¬Q2
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR

Given a CQ q and a satisfiable ontology O = 〈T ,A〉, we compute
cert(q,O) as follows

1 using T , reformulate q as a union rq,T of CQs

2 Evaluate rq,T directly over A managed in secondary storage via a
RDBMS

Correctness of this procedure shows FOL-rewritability of query
answering in DL-LiteR
; Query answering over DL-LiteR ontologies can be done using
RDMBS technology.

D. Calvanese, D. Lembo Ontology-Based Data Access ISWC’07 – Nov. 12, 2007 (120/217)



TBox reasoning TBox & ABox Reasoning Complexity of reasoning in DLs

Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: Query reformulation

Intuition: Use the PIs as basic rewriting rules

q(x) ← Professor(x)

AssistantProf v Professor
as a logic rule: Professor(z) ← AssistantProf(z)

Basic rewriting step:

when the atom unifies with the head of the rule.
substitute the atom with the body of the rule.

Towards the computation of the perfect reformulation, we add to the
input query above the following query

q(x) ← AssistantProf(x)

We say that the PI AssistantProf v Professor applies to the atom
Professor(x).
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: Query reformulation (cont’d)

Consider now the query

q(x) ← teaches(x, y)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

We add to the reformulation the query

q(x) ← Professor(x)
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: Query reformulation (cont’d)

Conversely, for the query

q(x) ← teaches(x, databases)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

teaches(x, databases) does not unify with teaches(z1, z2), since the
existentially quantified variable z2 in the head of the rule does not unify
with the constant databases.

In this case the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished

q(x, y) ← teaches(x, y)
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: Query reformulation (cont’d)

An analogous behavior with join variables

q(x) ← teaches(x, y),Course(y)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

The PI above does not apply to the atom teaches(x, y).

Conversely, the PI

∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

applies to the atom Course(y).

We add to the perfect reformulation the query

q(x) ← teaches(x, y), teaches(z, y)
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: Query reformulation (cont’d)

We now have the query

q(x) ← teaches(x, y), teaches(z, y)

The PI Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

does not apply to teaches(x, y) nor teaches(z, y), since y is in join.

However, we can transform the above query by unifying the atoms
teaches(x, y), teaches(z1, y). This rewriting step is called reduce, and
produces the following query

q(x) ← teaches(x, y)

We can now apply the PI above, and add to the reformulation the query

q(x) ← Professor(x)
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: Query reformulation
(cont’d)

Reformulate the CQ q into a set of queries: apply to q in all possible
ways the PIs in the TBox T :

A1 v A2 . . . , A2(x), . . . ; . . . , A1(x), . . .
∃P v A . . . , A(x), . . . ; . . . , P (x, ), . . .
∃P− v A . . . , A(x), . . . ; . . . , P ( , x), . . .
A v ∃P . . . , P (x, ), . . . ; . . . , A(x), . . .
A v ∃P− . . . , P ( , x), . . . ; . . . , A(x), . . .
∃P1 v ∃P2 . . . , P2(x, ), . . . ; . . . , P1(x, ), . . .

...( denotes an unbound variable, i.e., a variable that appears only once)

This corresponds to exploiting ISAs, role typing, and mandatory
participation to obtain new queries that could contribute to the answer.

Unifying atoms can make applicable rules that could not be applied
otherwise.
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: Query reformulation
(cont’d)

Algorithm PerfectRef (q, TP )
Input: conjunctive query q, set of DL-LiteR PIs TP

Output: union of conjunctive queries PR
PR := {q};
repeat

PR′ := PR;
for each q ∈ PR′ do
(a) for each g in q do

for each PI I in TP do
if I is applicable to g
then PR := PR ∪ { q[g/(g, I)] }

(b) for each g1, g2 in q do
if g1 and g2 unify
then PR := PR ∪ {τ(reduce(q, g1, g2))};

until PR′ = PR;
return PR

Notice that NIs do not play any role in the reformulation of the query.
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: ABox storage

ABox A stored as a relational database in a standard RDBMS as follows:

For each atomic concept A used in the ABox:

define a unary relational table tabA

populate tabA with each 〈d〉 such that A(c) ∈ A

For each atomic role P used in the ABox,

define a binary relational table tabP

populate tabP with each 〈a, b〉 such that P (c1, c2) ∈ A
We denote with DB(A) the database obtained as above.
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: Query evaluation

Let rq,T be the UCQ returned by the algorithm PerfectRef (q, T )

We denote by SQL(rq,T ) the encoding of rq,T into an SQL query
over DB(A).

We indicate with Eval(SQL(rq,T ),DB(A)) the evaluation of
SQL(rq,T ) over DB(A).
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR

Theorem

Let T be a DL-LiteR TBox, TP the set of PIs in T , q a CQ over T , and
let rq,T =PerfectRef (q, TP ). Then, for each ABox A such that 〈T ,A〉
is satisfiable, we have that cert(q, 〈T ,A〉) = Eval(SQL(rq,T ),DB(A)).

In other words, query answering over a satisfiable DL-LiteR ontology is
FOL-rewritable.

Notice that we did not mention NIs of T in the theorem above. Indeed,
when the ontology is satisfiable, we can ignore NIs and answer queries
as NIs were not specified in T .
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x, y),Course(y)

Perfect Reformulation: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches( , y)
q(x)← teaches(x, )
q(x)← Professor(x)

ABox: teaches(John, databases)
Professor(Mary)

It is easy to see that Eval(SQL(rq,T ),DB(A)) in this case produces the
set {John, Mary}.
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteR: An interesting case

TBox: Person v ∃hasFather
∃hasFather− v Person

ABox: Person(Mary)

Query: q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, )
� Apply Person v ∃hasFather to the atom hasFather(y2, )

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2),Person(y2)
� Apply ∃hasFather− v Person to the atom Person(y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather( , y2)
� Unify atoms hasFather(y1, y2) and hasFather( , y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2)
�
. . .

q(x)← Person(x), hasFather(x, )
� Apply Person v ∃hasFather to the atom hasFather(x, )

q(x)← Person(x)
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Query answering Part 3: Reasoning in the DL-Lite family

Query answering in DL-LiteF

If we limit our attention to PIs, we can say that DL-LiteF ontologies are
DL-LiteR ontologies of a special kind (i.e., with no PIs between roles).

As for NIs and functionality assertions, it is possible to show that they
can be disregarded in query answering over satisfiable DL-LiteF
ontologies.

The following result is therefore straightforward.

Theorem

Let T be a DL-LiteF TBox, TP the set of PIs in T , q a CQ over T , and
let rq,T =PerfectRef (q, TP ). Then, for each ABox A such that 〈T ,A〉
is satisfiable, we have that cert(q, 〈T ,A〉) = Eval(SQL(rq,T ),DB(A)).

In other words, query answering over a satisfiable DL-LiteF ontology is
FOL-rewritable.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

Satisfiability of ontologies with only PIs

Let us now attack the problem of establishing whether a ontology is
satisfiable.

Remember that solving this problem allow us to solve TBox reasoning
and identify cases in which query answering is meaningless.

A first notable result says us that PIs alone cannot generate ontology
unsatisfiability.

Theorem

Let O = 〈T ,A〉 be either a DL-LiteR or a DL-LiteF ontology, where T
contains only PIs. Then, O is satisfiable.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

DL-LiteR ontologies

Unsatisfiability in DL-LiteR ontologies can be however caused by NIs

Example: TBox T : Professor v ¬Student
∃teaches v Professor

ABox A: teaches(John, databases)
Student(John)

In what follows we provide a mechanism to establish, in an efficient way,
whether a DL-LiteR ontology is satisfiable.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

Checking satisfiability of DL-LiteR ontologies

Satisfiability of a DL-LiteR ontology O = 〈T ,A〉 is reduced to
evaluating a FOL-query (in fact a UCQ) over DB(A)

We proceed as follows:

1 Let TP the set of PIs in T
2 For each NI between concepts (resp. roles) in T , we ask 〈TP ,A〉 if

there exists some individual (resp. pair of individuals) that
contradicts N , i.e., we pose over 〈TP ,A〉 a boolean CQ qN such
that 〈TP ,A〉 |= qN iff 〈TP ∪ {N},A〉 is unsatisfiable

3 We exploit PerfectRef to verify if 〈TP ,A〉 |= qN , i.e., we compute
PerfectRef(qN , TP ), and evaluate it (in fact its SQL encoding) over
DB(A).
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

Example

PIs TP : ∃teaches v Professor

NI N : Professor v ¬Student

Query qN : q()← Student(x),Professor(x)

Perfect Reformulation: q()← Student(x),Professor(x)
q()← Student(x), teaches(x, )

ABox A: teaches(John, databases)
Student(John)

It is easy to see that 〈TP ,A〉 |= qN , and that
〈TP ∪ {Professor v ¬Student},A〉 is unsatisfiable.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

Queries for NIs

For each NI in T we compute a boolean CQ according to the following
rules:

A1 v ¬A2 ; q()← A1(x), A2(x)
∃P v ¬A or A v ¬∃P ; q()← P (x, y), A(x)
∃P− v ¬A or A v ¬∃P− ; q()← P (y, x), A(x)

∃P1 v ¬∃P2 ; q()←P1(x, y), P2(x, z)
∃P1 v ¬∃P−2 ; q()←P1(x, y), P2(z, x)
∃P−1 v ¬∃P2 ; q()← P1(x, y), P2(y, z)
∃P−1 v ¬∃P−2 ; q()← P1(x, y), P2(z, y)

P1 v ¬P2 or P−1 v ¬P−2 ; q()←P1(x, y), P2(x, y)
P−1 v ¬P2 or P1 v ¬P−2 ; q()←P1(x, y), P2(y, x)

Given a NI N ∈ T , we denote with qN the corresponding CQ.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

DL-LiteR: From satisfiability to query answering

Lemma [separation]

Let O = 〈T ,A〉 be a DL-LiteR ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff there exists a NI N ∈ T such that
〈TP ,A〉 |= qN .

The lemma relies on the properties that NIs do not interact with each
other, and interaction between NIs and PIs can be managed through
PerfectRef. Notably, each NI can be processed individually.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

DL-LiteR: FOL-rewritability of satisfiability

From the lemma above and the theorem on query answering for
satisfiable DL-LiteR, we get the following result

Theorem

Let O = 〈T ,A〉 be a DL-LiteR ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff there exists a NI N ∈ T such that
Eval(SQL(PerfectRef(qN , TP )),DB(A)) returns true.

In other words, satisfiability of DL-LiteR ontology can be reduced to
FOL-query evaluation.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

DL-LiteF ontologies

Unsatisfiability in DL-LiteF ontologies can be caused by NIs and
functionality assertions.

Example: TBox T : Professor v ¬Student
∃teaches v Professor
(funct teaches−)

ABox A: teaches(John, databases)
teaches(Michael, databases)

In what follows we extend to DL-LiteF ontologies the technique for
DL-LiteR ontology satisfiability given before.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

Checking satisfiability of DL-LiteF ontologies

Satisfiability of a DL-LiteF ontology O = 〈T ,A〉 is reduced to
evaluating a FOL-query over DB(A).

We deal with NIs exactly as done in DL-LiteR ontologies (indeed, limited
to NIs, DL-LiteF ontologies are DL-LiteR ontologies of a special kind).

As for functionality assertions we proceed as follows:

1 For each functionality assertion F ∈ T we ask if there exists two
pairs of individuals in A that contradict F , i.e., we pose over A a
boolean FOL query qF such that A |= qF iff 〈{F},A〉 is
unsatisfiable

2 To verify if A |= qF , we evaluate SQL(qF ) over DB(A).
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

Example

Functionality F : (funct teaches−)

Query qF : q()← TeachesTo(x, y),TeachesTo(z, y), x 6= z

ABox A: teaches(John, databases)
teaches(Michael, databases)

It is easy to see that A |= qF , and that 〈{(funct teaches−)},A〉, is
unsatisfiable.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

Queries for functionality assertions

For each functionality assertion in T we compute a FOL query
according to the following rules:

(funct P ) ; q()←P (x, y), P (x, z), y 6= z
(funct P−) ; q()←P (x, y), P (z, y), x 6= z

Given a functionality assertion F ∈ T , we denote with qF the
corresponding FOL query.
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Ontology satisfiability Part 3: Reasoning in the DL-Lite family

DL-LiteR: From satisfiability to query answering

Lemma

Let O = 〈T ,A〉 be a DL-LiteF ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds

(a) there exists a NI N ∈ T such that 〈TP ,A〉 |= qN

(b) there exists a functionality assertion F ∈ T such that A |= qF .

The lemma relies on the properties that NIs do not interact with each
other, and interaction between NIs and PIs can be managed through
PerfectRef.

It also exploits the properties that NIs and PIs do not interact with
functionalities: indeed, no functionality assertions are contradicted in a
DL-LiteF ontology O, beyond those explicitly contradicted by the ABox.

Notably, the lemma asserts that to check ontology satisfiability, each NI
and each functionality can be processed individually.

D. Calvanese, D. Lembo Ontology-Based Data Access ISWC’07 – Nov. 12, 2007 (145/217)



TBox reasoning TBox & ABox Reasoning Complexity of reasoning in DLs

Ontology satisfiability Part 3: Reasoning in the DL-Lite family

DL-LiteR: FOL-rewritability of satisfiability

By the lemma above and the theorem on query answering for satisfiable
DL-LiteF , the following result follows

Theorem

Let O = 〈T ,A〉 be a DL-LiteF ontology, and TP the set of PIs in O.
Then, O is unsatisfiable iff one of the following condition holds.

(a) there exists a NI N ∈ T such that
Eval(SQL(PerfectRef(qN , TP )),DB(A)) returns true

(b) there exists a functionality assertion F ∈ T such that
Eval(SQL(qF ),DB(A)) returns true.

In other words, satisfiability of a DL-LiteF ontology can be reduced to
FOL-query evaluation.
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Part 3: Reasoning in the DL-Lite family

Outline

7 TBox reasoning

8 TBox & ABox Reasoning

9 Complexity of reasoning in Description Logics
Complexity of reasoning in DL-Lite
Data complexity of query answering in DLs
NLOGSPACE-hard DLs
PTIME-hard DLs
coNP-hard DLs
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Complexity of reasoning in DL-Lite Part 3: Reasoning in the DL-Lite family

Complexity of query answering over satisfiable ontologies
Theorem

Query answering over both DL-LiteR and DL-LiteF ontologies is

1 NP-complete in the size of query and ontology (combined comp.).

2 PTime in the size of the ontology.

3 LogSpace in the size of the ABox (data complexity).

Proof (sketch)

1 We guess the derivation of one of the CQs of the perfect rewriting,
and an assignment to its existential variables. Checking the
derivation and evaluating the guessed CQ over the ABox is then
polynomial in combined complexity. NP-hardness follows from
combined complexity of evaluating CQs over a database.

2 The number of CQs in the perfect reformulation is polynomial in
the size of the TBox, and we can get them in PTime.

3 Is the data complexity of evaluating FOL queries over a database.
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Complexity of reasoning in DL-Lite Part 3: Reasoning in the DL-Lite family

Complexity of ontology satisfiability

Theorem

Checking satisfiability of both DL-LiteR and DL-LiteF ontologies is

1 PTime in the size of the ontology (combined complexity).

2 LogSpace in the size of the ABox (data complexity).

Proof (sketch)

Follows directly from the algorithm for ontology satisfiability and the
complexity of query answering over satisfiable ontologies.
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Complexity of reasoning in DL-Lite Part 3: Reasoning in the DL-Lite family

Complexity of TBox reasoning

Theorem

TBox reasoning over both DL-LiteR and DL-LiteF ontologies is PTime
in the size of the TBox (schema complexity).

Proof (sketch)

Follows from the previous theorem, and from the reduction of TBox
reasoning to ontology satisfiability. Indeed, the size of the ontology
constructed in the reduction is polynomial in the size of the input TBox.
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Can we further extend these results to more expressive ontology
languages?

Essentially NO!
(unless we take particular care)
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Beyond DL-Lite

We now consider DL languages that allow for constructs not present in
DL-Lite or for combinations of constructs that are not legal in DL-Lite.
We recall here syntax and semantics of constructs used in what follows.

Construct Syntax Example Semantics

conjunction C1 u C2 Doctor uMale CI1 ∩ CI2
disjunction C1 t C2 Doctor t Lawyer CI1 ∪ CI2
qual. exist. restr. ∃Q.C ∃child.Male {a | ∃b. (a, b) ∈ QI ∧ b ∈ CI }
qual. univ. restr. ∀Q.C ∀child.Male {a | ∀b. (a, b) ∈ QI → b ∈ CI }
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Summary of results on data complexity

Cl Cr F R Data complexity
of query answering

1 DL-LiteF
√

− in LogSpace
2 DL-LiteR −

√
in LogSpace

3 A | ∃P .A A − − NLogSpace-hard
4 A A | ∀P .A − − NLogSpace-hard
5 A A | ∃P .A

√
− NLogSpace-hard

6 A | ∃P .A | A1 uA2 A − − PTime-hard
7 A | A1 uA2 A | ∀P .A − − PTime-hard
8 A | A1 uA2 A | ∃P .A

√
− PTime-hard

9 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
10 A A | ∃P .A | ∃P−.A

√
− PTime-hard

11 A | ∃P .A A | ∃P .A
√

− PTime-hard
12 A | ¬A A − − coNP-hard
13 A A | A1 tA2 − − coNP-hard
14 A | ∀P .A A − − coNP-hard

All NLogSpace and PTime hardness results hold already for atomic queries.
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Observations

DL-Lite-family is FOL-rewritable, hence LogSpace – holds also
with n-ary relations ; DLR-LiteF and DLR-LiteR.

RDFS is a subset of DL-LiteR ; is FOL-rewritable, hence
LogSpace.

Horn-SHIQ [HMS05] is PTime-hard even for instance checking
(line 11).

DLP [GHVD03] is PTime-hard (line 6)

EL [BBL05] is PTime-hard (line 6).
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Qualified existential quantification in the lhs of inclusions

Adding qualified existential on the lhs of inclusions makes instance
checking (and hence query answering) NLogSpace-hard:

Cl Cr F R Data complexity

3 A | ∃P .A A − − NLogSpace-hard

Hardness proof is by a reduction from reachability in directed graphs:
Ontology O: a single inclusion assertion ∃P .A v A
Database D: encodes graph using P and asserts A(d)

NLOGSPACE-hard cases

Adding qualified existential on the lhs of inclusions makes instance checking (and
hence query answering) NLOGSPACE-hard:

Cl Cr F R Data complexity

5 A | ∃P .A A − − NLOGSPACE-hard

Hardness proof is by a reduction from reachability in directed graphs:

• Ontology O: a single inclusion assertion ∃P .A ⊑ A

• Database D: encodes graph using P and asserts A(d)

P

s

d

A

A

A

A

A

P

P
P

P
P

Result:
(O, D) |= A(s) iff d is reachable from s in the graph
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Result:
(O,D) |= A(s) iff d is reachable from s in the graph.
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NLogSpace-hard cases

Instance checking (and hence query answering) is NLogSpace-hard in
data complexity for:

Cl Cr F R Data complexity

3 A | ∃P .A A − − NLogSpace-hard

By reduction from reachability in directed graphs

4 A A | ∀P .A − − NLogSpace-hard

Follows from 3 by replacing ∃P .A1 v A2 with A1 v ∀P−.A2

5 A A | ∃P .A
√ − NLogSpace-hard

Proved by simulating in the reduction ∃P .A1 v A2

via A1 v ∃P−.A2 and (funct P−)
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Path System Accessibility

Instance of Path System Accessibility: PS = (N,E, S, t) with

N a set of nodes

E ⊆ N ×N ×N an accessibility relation

S ⊆ N a set of source nodes

t ∈ N a terminal node

Accessibility of nodes is defined inductively:

each n ∈ S is accessible

if (n, n1, n2) ∈ E and n1, n2 are accessible, then also n is accessible

Given PS , checking whether t is accessible, is PTime-complete.
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Reduction from Path System Accessibility

Given an instance PS = (N,E, S, t), we construct

TBox T consisting of the inclusion assertions

∃P1.A v B1

∃P2.A v B2

B1 uB2 v A
∃P3.A v A

ABox A encoding the accessibility relation using P1, P2, and P3,
and asserting A(s) for each source node s ∈ S

e1 = (n, . , . )
e2 = (n, s1, s2)
e3 = (n, . , . )

Reduction from Path System Accessibility

Given an instance PS = (N, E, S, t), we construct

• Ontology O consisting of the inclusion assertions

∃P1.A ⊑ B1

∃P2.A ⊑ B2

B1 ⊓ B2 ⊑ A

∃P3.A ⊑ A

• Database D encoding the accessibility relation using P1, P2, and P3, and
asserting A(s) for each source node s ∈ S

e1 = (n, . , . )

e2 = (n, s1, s2)

e3 = (n, . , . )

A
n

P1 P2

P3 P3 P3

A A
s1 s2

e3e2e1

A
B2B1A

Result:
(O, D) |= A(t) iff t is accessible in PS
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Result:
〈T ,A〉 |= A(t) iff t is accessible in PS .
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coNP-hard cases

Are obtained when we can use in the query two concepts that cover
another concept. This forces reasoning by cases on the data.

Query answering is coNP-hard in data complexity for:

Cl Cr F R Data complexity

14 A | ¬A A − − coNP-hard

15 A A | A1 tA2 − − coNP-hard

16 A | ∀P .A A − − coNP-hard

All three cases are proved by adapting the proof of coNP-hardness of
instance checking for ALE by [DLNS94].
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2+2-SAT

2+2-SAT: satisfiability of a 2+2-CNF formula, i.e., a CNF formula
where each clause has exactly 2 positive and 2 negative literals.

Example: ϕ = c1 ∧ c2 ∧ c3, with
c1 = `1 ∨ `2 ∨ ¬`3 ∨ ¬`4
c2 = false ∨ false ∨ ¬`1 ∨ ¬`4
c3 = false ∨ `4 ∨ ¬true ∨ ¬`2

2+2-SAT is NP-complete [DLNS94].
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Reduction from 2+2-SAT

2+2-CNF formula ϕ = c1 ∧ · · · ∧ ck over letters `1, . . . , `n, true, false

ABox Aϕ constructed from ϕ (concepts L, T , F , roles P1, P2, N1,
N2):

for each letter `i: L(`i)
for each clause c = `1 ∨ `2 ∨ ¬`3 ∨ ¬`4:
P1(c, `1), P2(c, `2), N1(c, `3), N2(c, `4)

T (true), F (false)

TBox T = { L v T t F }
q()← P1(c, `1), P2(c, `2), N1(c, `3), N2(c, `4),

F (`1), F (`2), T (`3), T (`4)

We have: 〈T , Aϕ〉 |= q iff ϕ is not satisfiable.
Intuition: each model of T partitions L into T and F , and corresponds
to a truth assignment to `1, . . . , `n. q asks for a false clause.
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Part IV

Linking data to ontologies
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What is missing in DL-Lite wrt popular data models?

Let us consider UML class diagrams that have the following features:

functionality of associations (i.e., roles)
inclusion (i.e., ISA) between associations
attributes of concepts and associations, possibly functional
covering constraints in hierarchies

What can we capture of these while maintaining FOL-rewritability?
1 We can forget about covering constraints, since they make query

answering coNP-hard in data complexity (see Part 3).
2 Attributes of concepts are “syntactic sugar” (they could be

modeled by means of roles), but their functionality is an issue.
3 We could also add attributes of roles (we won’t discuss this here).
4 Functionality and role inclusions are present separately (in DL-LiteF

and DL-LiteR), but were not allowed to be used together.

Let us first analyze this last point.
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Combining functionalities and role inclusions

We have seen till now that:

By including in DL-Lite both functionality of roles and qualified
existential quantification (i.e., ∃P .A), query answering becomes
NLogSpace-hard (and PTime-hard with also inverse roles) in
data complexity (see Part 3).
Qualified existential quantification can be simulated by using role
inclusion assertions (see Part 2).
When the data complexity of query answering is NLogSpace or
above, the DL does not enjoy FOL-rewritability.

As a consequence of these results, we get:

To preserve FOL-rewritability, we need to restrict the interaction of
functionality and role inclusions.

Let us analyze on an example the effect of an unrestricted interaction.
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Combining functionalities and role inclusions – Example

TBox T : A v ∃P P v S
∃P− v A (funct S)

ABox A: A(c1), S(c1, c2), S(c2, c3), . . . , S(cn−1, cn)

A(c1), A v ∃P |= P (c1, x), for some x
P (c1, x), P v S |= S(c1, x)

S(c1, x), S(c1, c2), (funct S) |= x = c2
P (c1, c2), ∃P− v A |= A(c2)

A(c2), A v ∃P . . .
|= A(cn)

Hence, we get:

If we add B(cn) and B v ¬A, the ontology becomes inconsistent.

Similarly, the answer to the following query over 〈T ,A〉 is true:

q() ← A(z1), S(z1, z2), S(z2, z3), . . . , S(zn−1, zn), A(zn)
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Restrictions on combining functionalities and role inclusions

Note: The number of unification steps above depends on the data.
Hence this kind of deduction cannot be mimicked by a FOL (or SQL)
query, since it requires a form of recursion. As a consequence, we get:

Combining functionality and role inclusions is problematic.

It breaks separability, i.e., functionality assertions may force existentially
quantified objects to be unified with existing objects.

Note: the problems are caused by the interaction among:

an inclusion P v S between roles,

a functionality assertion (funct S) on the super-role, and

a cycle of concept inclusion assertions A v ∃P and ∃P− v A.

Since we do not want to limit cycles of ISA, we pose suitable restrictions
on the combination of functionality and role inclusions
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Features of DL-LiteA

DL-LiteA is a Description Logic designed to capture as much features as
possible of conceptual data models, while preserving nice computational
properties for query answering.

Enjoys FOL-rewritability, and hence is LogSpace in data
complexity.

Allows for both functionality assertions and role inclusion
assertions, but restricts in a suitable way their interaction.

Takes into account the distinction between objects and values:

Objects are elements of an abstract interpretation domain.
Values are elements of concrete data types, such as integers, strings,
ecc.

Values are connected to objects through attributes, rather than
roles (we consider here only concept attributes and not role
attributes [CDGL+06a]).
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Syntax of the DL-LiteA description language

Concept expressions:

B −→ A | ∃Q | δ(U)
C −→ >C | B | ¬B | ∃Q.C

Role expressions:
Q −→ P | P−
R −→ Q | ¬Q

Value-domain expressions: (each Ti is one of the RDF datatypes)

E −→ ρ(U)
F −→ >D | T1 | · · · | Tn

Attribute expressions:

V −→ U | ¬U
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Semantics of DL-LiteA – Objects vs. values

We make use of an alphabet Γ of constants, partitioned into:

an alphabet ΓO of object constants.
an alphabet ΓV of value constants, in turn partitioned into
alphabets ΓVi , one for each RDF datatype Ti.

The interpretation domain ∆I is partitioned into:

a domain of objects ∆ I
O

a domain of values ∆ I
V

The semantics of DL-LiteA descriptions is determined as usual,
considering the following:

The interpretation CI of a concept C is a subset of ∆ I
O .

The interpretation RI of a role R is a subset of ∆ I
O ×∆ I

O .
The interpretation val(v) of each value constant v in ΓV and RDF
datatype Ti is given a priori (e.g., all strings for xsd:string).
The interpretation V I of an attribute V is a subset of ∆ I

O ×∆ I
V .
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Semantics of the DL-LiteA constructs

Construct Syntax Example Semantics

top concept >C >IC = ∆ I
O

atomic concept A Doctor AI ⊆ ∆ I
O

existential restriction ∃Q ∃child− {o | ∃o′. (o, o′) ∈ QI}
qualified exist. restriction ∃Q.C ∃child.Male {o | ∃o′. (o, o′) ∈ QI ∧ o′ ∈ CI}
concept negation ¬B ¬∃child ∆I \BI

attribute domain δ(U) δ(salary) {o | ∃v. (o, v) ∈ UI}
atomic role P child P I ⊆ ∆ I

O ×∆ I
O

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆ I

O ×∆ I
O ) \QI

top domain >D >ID = ∆ I
V

datatype Ti xsd:int val(Ti) ⊆ ∆ I
V

attribute range ρ(U) ρ(salary) {v | ∃o. (o, v) ∈ UI}
atomic attribute U salary UI ⊆ ∆ I

O ×∆ I
V

attribute negation ¬U ¬salary (∆ I
O ×∆ I

V ) \ UI

object constant c john cI ∈ ∆ I
O

value constant v ’john’ val(v) ∈ ∆ I
V
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DL-LiteA assertions

TBox assertions can have the following forms:

B v C concept inclusion assertion
Q v R role inclusion assertion
E v F value-domain inclusion assertion
U v V attribute inclusion assertion

(funct Q) role functionality assertion
(funct U) attribute functionality assertion

ABox assertions: A(c), P (c, c′), U(c, d),
where c, c′ are object constants

d is a value constant
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Semantics of the DL-LiteA assertions

Assertion Syntax Example Semantics

conc. incl. B v C Father v ∃child BI ⊆ CI

role incl. Q v R father v anc QI ⊆ RI

v.dom. incl. E v F ρ(age) v xsd:int EI ⊆ F I

attr. incl. U v V offPhone v phone UI ⊆ V I

role funct. (funct Q) (funct father) ∀o, o, o′′.(o, o′) ∈ QI ∧ (o, o′′) ∈ QI → o′ = o′′

att. funct. (funct U) (funct ssn) ∀o, v, v′.(o, v) ∈ UI ∧ (o, v′) ∈ UI → v = v′

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2 ) ∈ P I

mem. asser. U(c, d) phone(bob, ’2345’) (cI , val(d)) ∈ UI
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Restriction on TBox assertions in DL-LiteA ontologies

As shown, to ensure FOL-rewritability, we have to impose a restriction
on the use of functionality and role/attribute inclusions.

Restriction on DL-Lite TBoxes

No functional role or attribute can be specialized by using it in the
right-hand side of a role or attribute inclusion assertions.

Formally:

If ∃P .C or ∃P−.C appears in T , then (funct P ) and (funct P−)
are not in T .

If Q v P or Q v P− is in T , then (funct P ) and (funct P−) are
not in T .

If U1 v U2 is in T , then (funct U2) is not in T .
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DL-LiteA – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 

TopManager

1..1

1..*

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

1..*

{disjoint}

Manager v Employee
AreaManager v Manager
TopManager v Manager

AreaManager v ¬TopManager

Employee v δ(salary)
δ(salary) v Employee
ρ(salary) v xsd:int

(funct salary)

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v ∃worksFor−

(funct manages)
(funct manages−)

manages v worksFor
...

Note: in DL-LiteA we still cannot capture:
– completeness of the hierarchy
– number restrictions
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Reasoning in DL-LiteA – Separation

It is possible to show that, by virtue of the restriction on the use of role
inclusion and functionality assertions, all nice properties of DL-LiteF
and DL-LiteR continue to hold also for DL-LiteA.

In particular, w.r.t. satisfiability of a DL-LiteA ontology O, we have:

NIs do not interact with each other.

NIs and PIs do not interact with functionality assertions.

We obtain that for DL-LiteA a separation result holds:

Each NI and each functionality can be checked independently from
the others.

A functionality assertion is contradicted in an ontology O = 〈T ,A〉
only if it is explicitly contradicted by its ABox A.
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Ontology satisfiability in DL-LiteA

Due to the separation property, we can associate

to each NI N a boolean CQ qN , and

to each functionality assertion F a boolean CQ qF .

and check satisfiability of O by suitably evaluating qN and qF .

Theorem

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in O.
Then, O is unsatisfiable iff one of the following condition holds:

There exists a NI N ∈ T such that
Eval(SQL(PerfectRef(qN , TP )),DB(A)) returns true.

There exists a functionality assertion F ∈ T such that
Eval(SQL(qF ),DB(A)) returns true.
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Query answering in DL-LiteA

Queries over DL-LiteA ontologies are analogous to those over
DL-LiteR and DL-LiteF ontologies, except that they can also make
use of attribute and domain atoms.

Exploiting the previous result, the query answering algorithm of
DL-LiteR can be easily extended to deal with DL-LiteA ontologies:

Assertions involving attribute domain and range can be dealt with as
for role domain and range assertions.

∃Q.C in the right hand-side of concept inclusion assertions can be
eliminated by making use of role inclusion assertions.

Disjointness of roles and attributes can be checked similarly as for
disjointness of concepts, and does not interact further with the other
assertions.
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Complexity of reasoning in DL-LiteA

As for ontology satisfiability, DL-LiteA maintains the nice computational
properties of DL-LiteR and DL-LiteF also w.r.t. query answering.
Hence, we get the same characterization of computational complexity.

Theorem

For DL-LiteA ontologies:

Checking satisfiability of the ontology is

PTime in the size of the ontology (combined complexity).
LogSpace in the size of the ABox (data complexity).

TBox reasoning is PTime in the size of the TBox.

Query answering is

NP-complete in the size of the query and the ontology (comb. com.).
PTime in the size of the ontology.
LogSpace in the size of the ABox (data complexity).
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Managing ABoxes

In all the previous discussion, we have assumed that the data is
maintained in the ABox of the ontology:

The ABox is perfectly compatible with the TBox:

the vocabulary of concepts, roles, and attributes is the one used in
the TBox.
An ABox “stores” abstract objects, and these objects and their
properties are those returned by queries over the ontology.

There may be different ways to manage the ABox from a physical
point of view:

Description Logics reasoners maintain the ABox is main-memory
data structures.
When ABoxes become large, managing them in secondary storage
may be required, but this is again handled directly by the reasoner.
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Data in external sources

There are several situations where the assumptions of having the data in
an ABox managed directly by the ontology system (e.g., a Description
Logics reasoner) is not feasible or realistic:

When the ABox is very large, so that it requires relational database
technology.

When have no direct control over the data since it belongs to some
external organization, which controls the access to it.

When multiple data sources need to be accessed, such as in
Information Integration.

We would like to deal with such situation by keeping the data in the
external (relational) storage, and performing query answering by
leveraging the capabilities of the relational engine.
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The impedance mismatch problem

We have to deal with the impedance mismatch problem:

Sources store data, which is constituted by values taken from
concrete domains, such as strings, integers, codes, . . .

Instead, instances of concepts and relations in an ontology are
(abstract) objects.

The solution is to define a mapping language that allows for specifying
how to transform data into objects:

Basic idea: use Skolem functions in the head of the mapping to
“generate” the objects.

Semantics: objects are denoted by terms (of exactly one level of
nesting), and different terms denote different objects (unique name
assumption on terms).
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Impedance mismatch – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

Actual data is stored in a DB:
– An Employee is identified by her SSN.
– A Project is identified by its name.

D1[SSN: String,PrName: String]
Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s Code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

Intuitively:

An employee should be created from her SSN: pers(SSN)

A project should be created from its Name: proj(PrName)
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Creating object identifiers

We need to associate to the data in the tables objects in the ontology.

We introduce an alphabet Λ of function symbols, each with an
associated arity.

To denote values, we use value constants in ΓV as before.

To denote objects, we use object terms instead of object constants.
An object term has the form f(d1, . . . , dn), with f ∈ Λ, and each di
a value constant in ΓV .

Example

If a person is identified by its SSN, we can introduce a function symbol
pers/1. If VRD56B25 is a SSN, then pers(VRD56B25) denotes a person.

If a person is identified by its name and dateOfBirth, we can introduce a
function symbol pers/2. Then pers(Vardi, 25/2/56) denotes a person.
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Mapping assertions

Mapping assertions are used to extract the data from the DB to
populate the ontology.

We make use of variable terms, which are as object terms, but with
variables instead of values as arguments of the functions.

A mapping assertion between a database D and a TBox T has the form

Φ ; Ψ

where

Φ is an arbitrary SQL query of arity n > 0 over D.

Ψ is a conjunctive query over T of arity n′ > 0 without
non-distinguished variables, possibly involving variable terms.
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Mapping assertions – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

D1[SSN: String,PrName: String]
Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s Code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

M1: SELECT SSN, PrName
FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
workFor(pers(SSN), proj(PrName))

M2: SELECT SSN, Salary
FROM D2, D3

WHERE D2.CODE = D3.CODE

; Employee(pers(SSN)),
salary(pers(SSN), Salary)

D. Calvanese, D. Lembo Ontology-Based Data Access ISWC’07 – Nov. 12, 2007 (188/217)



The Description Logic DL-LiteA Connecting ontologies to relational data

Ontology-Based Data Access System Part 4: Linking data to ontologies

Ontology-Based Data Access System

The mapping assertions are a crucial part of an Ontology-Based Data
Access System.

Ontology-Based Data Access System

is a triple O = 〈T ,M,D〉, where

T is a TBox.

D is a relational database.

M is a set of mapping assertions between T and D.

Note: we could consider also mapping assertions between the datatypes
of the database and those of the ontology.
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Semantics of mappings

We first need to define the semantics of mappings.

Definition

An interpretation I satisfies a mapping assertion Φ(~x) ; Ψ(~t, ~y) in M
with respect to a database D, if for each tuple of values ~v ∈ Eval(Φ,D),
and for each ground atom in Ψ[~x/~v], we have that:

if the ground atom is A(s), then sI ∈ AI .

if the ground atom is T (s), then sI ∈ T I .

if the ground atom is P (s1, s2), then (sI1 , s
I
2 ) ∈ P I .

if the ground atom is U(s1, s2), then (sI1 , s
I
2 ) ∈ UI .

Intuitively, I satisfies Φ ; Ψ w.r.t. D if all facts obtained by evaluating
Φ over D and then propagating the answers to Ψ, hold in I.

Note: Ψ[~x/~v] denotes Ψ where each xi has been substituted with vi.
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Semantics of an OBDA system

Model of an OBDA system

An interpretation I is a model of O = 〈T ,M,D〉 if:

I is a model of T ;

I satisfies M w.r.t. D, i.e., satisfies every assertion in M w.r.t. D.

An OBDA system O is satisfiable if it admits at least one model.
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Answering queries over an OBDA system

In an OBDA system O = 〈T ,M,D〉
Queries are posed over the TBox T .

The data needed to answer queries is stored in the database D.

The mapping M is used to bridge the gap between T and D.

Two approaches to exploit the mapping:

bottom-up approach: simpler, but less efficient

top-down approach: more sophisticated, but also more efficient

Note: Both approaches require to first split the TBox queries in the
mapping assertions into their constituent atoms. This is possible, since
all variables in such queries are distinguished.
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Bottom-up approach to query answering

Consists in a straightforward application of the mappings:

1 Propagate the data from D through M, materializing an ABox
AM,D (the constants in such an ABox are values and object terms).

2 Apply to AM,D and to the TBox T , the satisfiability and query
answering algorithms developed for DL-LiteA.

This approach has several drawbacks (hence is only theoretical):

The technique is no more LogSpace in the data, since the ABox
AM,D to materialize is in general polynomial in the size of the data.

AM,D may be very large, and thus it may be infeasible to actually
materialize it.

Freshness of AM,D with respect to the underlying data source(s)
may be an issue, and one would need to propagate updates
(cf. Data Warehousing).
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Top-down approach to query answering

Consists of three steps:

1 Reformulation: Compute the perfect reformulation
q′ = PerfectRef(q, TP ) of the original query q, using the PIs TP of
the TBox T .

2 Unfolding: Compute from q′ a new query q′′ by unfolding q′ using
(the split version of) the mappings M.

Essentially, each atom in q′ that unifies with an atom in Ψ is
substituted with the corresponding query Φ over the database.
The unfolded query q′′ is such that Eval(q′′,D) = Eval(q′,AM,D).

3 Evaluation: Delegate the evaluation of q′′ to the relational DBMS
managing D.

For details, see [PLC+07].
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Computational complexity of query answering

Theorem

Query answering in a DL-LiteA OBDM system O = 〈T ,M,D〉 is

1 NP-complete in the size of the query.

2 PTime in the size of the TBox T and the mappings M.

3 LogSpace in the size of the database D.

Moreover, the LogSpace result is actually a consequence of the fact
that query answering in such a setting can be reduced to evaluating an
SQL query over the relational database.
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The system Mastro

Mastro is a Java-based tool for Ontology-based Data Access.

It allows for the specification of Ontologies in the DL DL-LiteA.

In Mastro, DL-LiteA TBoxes are connected to an external
RDBMS trough suitable mappings.

In each mapping a generic SQL query over the external RDBMS is
put in correspondence with a CQ without existential variables
expressed over the DL-LiteA TBox.
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Mastro vs QuOnto

At its core, Mastro uses QuOnto
(http://www.dis.uniroma1.it/∼quonto/) a reasoner for DL-LiteA,
which provides query reformulation services (QuOnto implements
the algorithm PerfectRef).

Notice that QuOnto is not designed to support ontology-based
data access, and therefore it is not able to deal with mappings to
external RDBMs ; Mastro provides this support.
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Reasoning in Mastro

The basic services provided by Mastro are

Specification of a DL-LiteA OBDA System
Query answering, for computing certain answer for (unions of)
conjunctive queries over DL-LiteA OBDA Systems
Consistency check, for verifying satisfiability of DL-LiteA OBDA
Systems

These are the only services supported by the version of Mastro
demonstrated at the tutorial.

However, the full version of Mastro also allows for TBox
reasoning, meta-level reasoning, and ontology updates.

We are currently working also on query answering of complex (i.e.,
FOL) queries, introduction on new DL-Lite constructs (e.g.,
identification assertions).
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Input formats

Mastro has its own Java-based interface, and accepts inputs in a
proprietary XML format.

That is, to give as input a TBox, an ABox, i.e., a set of mapping
assertions to an external RDBMS, and a query, we must specify
them into XML, according to a specific DTD.

Nonetheless, the XML syntax to be used is very simple.
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XML TBox: alphabet

<alphabet>
<atomicC>professor</atomicC>
<atomicC>assistantProf</atomicC>

.....
<atomicCA>name</atomicCA>

....
<atomicR>WORKS_FOR</atomicR>

....
<atomicRA>date</atomicRA>

</alphabet>
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XML TBox: inclusion assertions

assistantProfessor v ¬fullProf

<inclusionAssertion>

<basicC>

<atomicC>assistantProf</atomicC>

</basicC>

<generalC>

<signedC sign="negative">

<basicC>

<atomicC>fullProf</atomicC>

</basicC>

</signedC>

</generalC>

</inclusionAssertion>

∃TAKES COURSE− v course

<inclusionAssertion>

<basicC>

<exists>

<basicR dir="inverse">

<atomicR>TAKES_COURSE</atomicR>

</basicR>

</exists>

</basicC>

<generalC>

<signedC sign="positive">

<basicC>

<atomicC>course</atomicC>

</basicC>

</signedC>

</generalC>

</inclusionAssertion>
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XML TBox: functionality assertions

(funct ENROLLED)

<funct>

<basicR dir="direct">

<atomicR>ENROLLED</atomicR>

</basicR>

</funct>

(funct term)

<funct>

<atomicCA>term</atomicCA>

</funct>
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XML ABox: mapping specification

SELECT C Name, Term,

Prof Id

FROM Course Tab

; course(course(C Name)),
name(course(C Name), C Name),
term(course(C Name), Term),
professor(prof(Prof Id)),
TEACHES(prof(Prof Id), course(C Name))

It is probably better to see the mapping as follows

SELECT C Name, Term,

Prof Id

FROM Course Tab

; course(X), X = course(C Name),
name(X,Y ), Y = C Name,
term(X,Z), Z = Term,
professor(W ),W = prof(Prof Id),
TEACHES(W,X)
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XML ABox: mapping specification
SELECT C Name, Term,

Prof Id

FROM Course Tab

; course(X), X = course(C Name),
name(X,Y ), Y = C Name,
term(X,Z), Z = Term,
professor(W ),W = prof(Prof Id),TEACHES(W,X)

<mapping>

<head>

<CQBody>

........

<atom>

<AtomicConceptAttribute name="term">

<term>

<var name="X"/>

</term>

<term>

<var name="Z"/>

</term>

</AtomicConceptAttribute>

</atom>

........

</CQBody>

</head>

........
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XML ABox: mapping specification
SELECT C Name, Term,

Prof Id

FROM Course Tab

; course(X), X = course(C Name),
name(X,Y ), Y = C Name,
term(X,Z), Z = Term,
professor(W ),W = prof(Prof Id),TEACHES(W,X)

<mapping>

........

<map>

<objMap>

<dtVar>X</dtVar>

<sqlObjVar funct="course">C_Name</sqlObjVar>

</objMap>

</map>

........

<map>

<valueMap>

<dtVar>Z</dtVar>

<sqlValueVar type="xs:integer">Term</sqlValueVar>

</valueMap>

</map>

<body>SELECT C_Name, Term, Prof_Id FROM Course_Tab</body>

........

</mapping>
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