
Query Processing in Data Integration Systems

Diego Calvanese

Free University of Bozen-Bolzano

BIT PhD Summer School – Bressanone
July 3–7, 2006

D. Calvanese Data Integration BIT PhD Summer School 1 / 190



Structure of the course

1 Introduction to data integration

Basic issues in data integration
Logical formalization

2 Query answering in the absence of constraints

Global-as-view (GAV) setting
Local-as-view (LAV) and GLAV setting

3 Query answering in the presence of constraints

The role of integrity constraints
Global-as-view (GAV) setting
Local-as-view (LAV) and GLAV setting

4 Concluding remarks

D. Calvanese Data Integration BIT PhD Summer School 2 / 190



Basic issues in data integration Data integration: Logical formalization

Part 1: Introduction to data integration

Part I

Introduction to data integration

D. Calvanese Data Integration BIT PhD Summer School 3 / 190



Basic issues in data integration Data integration: Logical formalization

Part 1: Introduction to data integration

Outline

1 Basic issues in data integration
The problem of data integration
Variants of data integration
Problems in data integration

2 Data integration: Logical formalization
Semantics of a data integration system
Relational calculus
Queries to a data integration system
Formalizing the mapping
Formalizing GAV data integration systems
Formalizing LAV data integration systems

D. Calvanese Data Integration BIT PhD Summer School 4 / 190



Basic issues in data integration Data integration: Logical formalization

Part 1: Introduction to data integration

Outline

1 Basic issues in data integration
The problem of data integration
Variants of data integration
Problems in data integration

2 Data integration: Logical formalization
Semantics of a data integration system
Relational calculus
Queries to a data integration system
Formalizing the mapping
Formalizing GAV data integration systems
Formalizing LAV data integration systems

D. Calvanese Data Integration BIT PhD Summer School 5 / 190



Basic issues in data integration Data integration: Logical formalization

The problem of data integration Part 1: Introduction to data integration

What is data integration?

Data integration is the problem of providing unified and transparent
access to a collection of data stored in multiple, autonomous, and
heterogeneous data sources

Answer(Q) Query

Global Schema

Sources

D. Calvanese Data Integration BIT PhD Summer School 7 / 190



Basic issues in data integration Data integration: Logical formalization

The problem of data integration Part 1: Introduction to data integration

Conceptual architecture of a data integration system

Query

Source 2Source 1

Global Schema

SC

A R B

D T E

Source

Schema 1

Source

Schema 2

Mapping

U V W
u1 v1 w1
u2 v2 w2

D. Calvanese Data Integration BIT PhD Summer School 8 / 190



Basic issues in data integration Data integration: Logical formalization

The problem of data integration Part 1: Introduction to data integration

Relevance of data integration

Growing market

One of the major challenges for the future of IT

At least two contexts

Intra-organization data integration (e.g., EIS)
Inter-organization data integration (e.g., integration on the Web)

D. Calvanese Data Integration BIT PhD Summer School 9 / 190



Basic issues in data integration Data integration: Logical formalization

The problem of data integration Part 1: Introduction to data integration

Data integration: Available industrial efforts

Distributed database systems

Information on demand

Tools for source wrapping

Tools based on database federation, e.g., DB2 Information
Integrator

Distributed query optimization

D. Calvanese Data Integration BIT PhD Summer School 10 / 190



Basic issues in data integration Data integration: Logical formalization

Variants of data integration Part 1: Introduction to data integration

Architectures for integrated access to distributed data

Distributed databases
data sources are homogeneous databases under the control of the
distributed database management system

Multidatabase or federated databases
data sources are autonomous, heterogeneous databases; procedural
specification

(Mediator-based) data integration
access through a global schema mapped to autonomous and
heterogeneous data sources; declarative specification

Peer-to-peer data integration
network of autonomous systems mapped one to each other,
without a global schema; declarative specification

D. Calvanese Data Integration BIT PhD Summer School 12 / 190



Basic issues in data integration Data integration: Logical formalization

Variants of data integration Part 1: Introduction to data integration

Database federation tools: Characteristics

Physical transparency, i.e., masking from the user the physical
characteristics of the sources

Heterogeinity, i.e., federating highly diverse types of sources

Extensibility

Autonomy of data sources

Performance, through distributed query optimization

However, current tools do not (directly) support logical (or conceptual)
transparency

D. Calvanese Data Integration BIT PhD Summer School 13 / 190



Basic issues in data integration Data integration: Logical formalization

Variants of data integration Part 1: Introduction to data integration

Logical transparency

Basic ingredients for achieving logical transparency:

The global schema (ontology) provides a conceptual view that is
independent from the sources

The global schema is described with a semantically rich formalism

The mappings are the crucial tools for realizing the independence
of the global schema from the sources

Obviously, the formalism for specifying the mapping is also a
crucial point

All the above aspects are not appropriately dealt with by current tools.
This means that data integration cannot be simply addressed on a tool
basis

D. Calvanese Data Integration BIT PhD Summer School 14 / 190



Basic issues in data integration Data integration: Logical formalization

Variants of data integration Part 1: Introduction to data integration

Approaches to data integration

(Mediator-based) data integration . . . is the topic of this course

Data exchange [Fagin& al. TCS’05, Kolaitis PODS’05]

materialization of the global view
allows for query answering without accessing the sources

P2P data integration [Halevy & al. ICDE’03, —& al. PODS’04,
— & al. DBPL’05]

several peers
each peer with local and external sources
queries over one peer

D. Calvanese Data Integration BIT PhD Summer School 15 / 190



Basic issues in data integration Data integration: Logical formalization

Variants of data integration Part 1: Introduction to data integration

Mediator based data integration

Queries are expressed over a global schema (a.k.a. mediated
schema, enterprise model, . . . )

Data are stored in a set of sources

Wrappers access the sources (provide a view in a uniform data
model of the data stored in the sources)

Mediators combine answers coming from wrappers and/or other
mediators

Answer(Q) Query

Global Schema

Sources

D. Calvanese Data Integration BIT PhD Summer School 16 / 190



Basic issues in data integration Data integration: Logical formalization

Variants of data integration Part 1: Introduction to data integration

Data exchange

Materialization of the global schema

Materialize

Global Schema

Sources

D. Calvanese Data Integration BIT PhD Summer School 17 / 190



Basic issues in data integration Data integration: Logical formalization

Variants of data integration Part 1: Introduction to data integration

Peer-to-peer data integration

P2P mapping

1

Peer

4P

P

Peer schema

Local source

P3

P5

External source

Local mapping

2P

Operations: – Answer(Q,Pi) – Materialize(Pi)

D. Calvanese Data Integration BIT PhD Summer School 18 / 190



Basic issues in data integration Data integration: Logical formalization

Problems in data integration Part 1: Introduction to data integration

Main problems in data integration

1 How to construct the global schema

2 (Automatic) source wrapping

3 How to discover mappings between sources and global schema

4 Limitations in mechanisms for accessing sources

5 Data extraction, cleaning, and reconciliation

6 How to process updates expressed on the global schema and/or the
sources (“read/write” vs. “read-only” data integration)

7 How to model the global schema, the sources, and the mappings
between the two

8 How to answer queries expressed on the global schema

9 How to optimize query answering

D. Calvanese Data Integration BIT PhD Summer School 20 / 190



Basic issues in data integration Data integration: Logical formalization

Problems in data integration Part 1: Introduction to data integration

The modeling problem

Basic questions:

How to model the global schema

data model
constraints

How to model the sources

data model (conceptual and logical level)
access limitations
data values (common vs. different domains)

How to model the mapping between global schemas and sources

How to verify the quality of the modeling process

A word of caution: Data modeling (in data integration) is an art.
Theoretical frameworks can help humans, not replace them

D. Calvanese Data Integration BIT PhD Summer School 21 / 190



Basic issues in data integration Data integration: Logical formalization

Problems in data integration Part 1: Introduction to data integration

The querying problem

A query expressed in terms of the global schema must be
reformulated in terms of (a set of) queries over the sources and/or
materialized views

The computed sub-queries are shipped to the sources, and the
results are collected and assembled into the final answer

The computed query plan should guarantee

completeness of the obtained answers wrt the semantics
efficiency of the whole query answering process
efficiency in accessing sources

This process heavily depends on the approach adopted for modeling
the data integration system

This is the problem that we want to address in this course

D. Calvanese Data Integration BIT PhD Summer School 22 / 190



Basic issues in data integration Data integration: Logical formalization

Part 1: Introduction to data integration

Outline

1 Basic issues in data integration
The problem of data integration
Variants of data integration
Problems in data integration

2 Data integration: Logical formalization
Semantics of a data integration system
Relational calculus
Queries to a data integration system
Formalizing the mapping
Formalizing GAV data integration systems
Formalizing LAV data integration systems

D. Calvanese Data Integration BIT PhD Summer School 23 / 190



Basic issues in data integration Data integration: Logical formalization

Semantics of a data integration system Part 1: Introduction to data integration

Formal framework for data integration

Definition

A data integration system I is a triple 〈G,S,M〉, where

G is the global schema
i.e., a logical theory over a relational alphabet AG

S is the source schema
i.e., simply a relational alphabet AS disjoint from AG

M is the mapping between S and G
We consider different approaches to the specification of mappings

D. Calvanese Data Integration BIT PhD Summer School 25 / 190



Basic issues in data integration Data integration: Logical formalization

Semantics of a data integration system Part 1: Introduction to data integration

Semantics of a data integration system

Which are the dbs that satisfy I, i.e., the logical models of I?

We refer only to dbs over a fixed infinite domain ∆ of elements

We start from the data present in the sources: these are modeled
through a source database C over ∆ (also called source model),
fixing the extension of the predicates of AS
The dbs for I are logical interpretations for AG , called global dbs

Definition

The set of databases for AG that satisfy I relative to C is:
semC(I) = { B | B is a global database that is legal wrt G

and that satisfies M wrt C }

What it means to satisfy M wrt C depends on the nature ofM
D. Calvanese Data Integration BIT PhD Summer School 26 / 190



Basic issues in data integration Data integration: Logical formalization

Relational calculus Part 1: Introduction to data integration

Relational calculus: the basics

Basic idea: we use the language of first-order logic to express which
tuples should be in the result to a query

We assume to have a domain ∆ and a set Σ of constants, one for
each element of ∆
Let A be a relational alphabet, i.e., a set of predicates, each with
an associated arity (we assume a positional notation)

A database D over A and ∆ is a set of relations, one for each
predicate in A, over the constants in Σ (in turn interpreted as
elements of ∆)
Let LA be the first-order language over

the constants in Σ
the predicates of A plus the built-in predicates of relational algebra
(e.g., <, >, . . . )
no function symbols

D. Calvanese Data Integration BIT PhD Summer School 28 / 190



Basic issues in data integration Data integration: Logical formalization

Relational calculus Part 1: Introduction to data integration

Relational calculus: Syntax

Definition

An (domain) relational calculus query over alphabet A has the form
{ (x1, . . . , xn) | ϕ },

where

n ≥ 0 is the arity of the query

x1, . . . , xn are (not necessarily distinct) variables

ϕ is the body of the query, i.e., a formula of LA whose free
variables are exactly x1, . . . , xn

(x1, . . . , xn) is called the target list of the query

If r is a predicate of arity k, an atom with predicate r has the form
r(y1, . . . , yk), where y1, . . . , yk are variables or constants

D. Calvanese Data Integration BIT PhD Summer School 29 / 190



Basic issues in data integration Data integration: Logical formalization

Relational calculus Part 1: Introduction to data integration

Relational calculus: Semantics

Relational calculus queries are evaluated on particular interpretations

Definition

A correct interpretation for relational calculus queries over A is a pair
I = 〈∆,D〉, where ∆ is a domain, and D is a database over A and ∆

Definition

The value of a relational calculus query q = {(x1, . . . , xn) | ϕ} in an
interpretation I = 〈∆,D〉 is the set of tuples (c1, . . . , cn) of constants
in Σ such that 〈I,V〉 |= ϕ, where V is the variable assignment that
assigns ci to xi

When the domain ∆ is clear, we can omit it, and write directly
〈D,V〉 |= ϕ, instead of 〈〈∆,D〉,V〉 |= ϕ

D. Calvanese Data Integration BIT PhD Summer School 30 / 190



Basic issues in data integration Data integration: Logical formalization

Relational calculus Part 1: Introduction to data integration

Result of relational calculus queries

Definition

The result of the evaluation of a relational calculus query
q = {(x1, . . . , xn) | ϕ} on a database D over A and ∆ is the relation
qD such that

the arity of qD is n

the extension of qD is the set of constants that constitute the value
of the query q in the interpretation 〈∆,D〉

D. Calvanese Data Integration BIT PhD Summer School 31 / 190



Basic issues in data integration Data integration: Logical formalization

Relational calculus Part 1: Introduction to data integration

Conjunctive queries

are the most common kind of relational calculus queries

also known as select-project-join SQL queries

allow for easy optimization in relational DBMSs

Definition

A conjunctive query (CQ) is a relational calculus query of the form

{ (~x) | ∃~y. r1(~x1, ~y1) ∧ · · · ∧ rm(~xm, ~ym) }

where

~x is the union of the ~xi’s, and ~y is the union of the ~yi’s

r1, . . . , rm are relation symbols (not built-in predicates)

We use the following abbreviation: { (~x) | r1(~x1, ~y1), . . . , rm(~xm, ~ym) }
D. Calvanese Data Integration BIT PhD Summer School 32 / 190



Basic issues in data integration Data integration: Logical formalization

Relational calculus Part 1: Introduction to data integration

Complexity of relational calculus

We consider the complexity of the recognition problem, i.e., checking
whether a tuple of constants is in the answer to a query:

measured wrt the size of the database ; data complexity

measured wrt the size of the query and the database ;

combined complexity

Complexity of relational calculus

data complexity: polynomial, actually in LogSpace

combined complexity: PSpace-complete

Complexity of conjunctive queries

data complexity: in LogSpace

combined complexity: NP-complete

D. Calvanese Data Integration BIT PhD Summer School 33 / 190



Basic issues in data integration Data integration: Logical formalization

Queries to a data integration system Part 1: Introduction to data integration

Queries to a data integration system I

The domain ∆ is fixed, and we do not distinguish an element of ∆
from the constant denoting it ; standard names

Queries to I are relational calculus queries over the alphabet AG of
the global schema

When “evaluating” q over I, we have to consider that for a given
source database C, there may be many global databases B in
semC(I)
We consider those answers to q that hold for all global databases in
semC(I)
; certain answers

D. Calvanese Data Integration BIT PhD Summer School 35 / 190



Basic issues in data integration Data integration: Logical formalization

Queries to a data integration system Part 1: Introduction to data integration

Semantics of queries to I

Definition

Given q, I, and C, the set of certain answers to q wrt I and C is

cert(q, I, C) = { (c1, . . . , cn) ∈ qB | for all B ∈ semC(I) }

Query answering is logical implication

Complexity is measured mainly wrt the size of the source db C,
i.e., we consider data complexity

We consider the problem of deciding whether ~c ∈ cert(q, I, C), for
a given ~c

D. Calvanese Data Integration BIT PhD Summer School 36 / 190



Basic issues in data integration Data integration: Logical formalization

Queries to a data integration system Part 1: Introduction to data integration

Databases with incomplete information, or knowledge bases

Traditional database: one model of a first-order theory
Query answering means evaluating a formula in the model

Database with incomplete information, or knowledge base: set of
models (specified, for example, as a restricted first-order theory)
Query answering means computing the tuples that satisfy the query
in all the models in the set

There is a strong connection between query answering in data
integration and query answering in databases with incomplete
information under constraints (or, query answering in knowledge bases)

D. Calvanese Data Integration BIT PhD Summer School 37 / 190



Basic issues in data integration Data integration: Logical formalization

Queries to a data integration system Part 1: Introduction to data integration

Query answering with incomplete information

[Reiter ’84]: relational setting, databases with incomplete
information modeled as a first order theory

[Vardi ’86]: relational setting, complexity of reasoning in closed
world databases with unknown values

Several approaches both from the DB and the KR community

[van der Meyden ’98]: survey on logical approaches to incomplete
information in databases

D. Calvanese Data Integration BIT PhD Summer School 38 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing the mapping Part 1: Introduction to data integration

The mapping

How is the mapping M between S and G specified?

Are the sources defined in terms of the global schema?
Approach called source-centric, or local-as-view, or LAV

Is the global schema defined in terms of the sources?
Approach called global-schema-centric, or global-as-view, or GAV

A mixed approach?
Approach called GLAV

D. Calvanese Data Integration BIT PhD Summer School 40 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing the mapping Part 1: Introduction to data integration

GAV vs. LAV – Example

Global schema:
movie(Title,Year ,Director)
european(Director)
review(Title,Critique)

Source 1:
r1(Title,Year ,Director) since 1960, european directors

Source 2:
r2(Title,Critique) since 1990

Query: Title and critique of movies in 1998
{ (t, r) | ∃d. movie(t, 1998, d) ∧ review(t, r) }, abbreviated
{ (t, r) | movie(t, 1998, d), review(t, r) }

D. Calvanese Data Integration BIT PhD Summer School 41 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing GAV data integration systems Part 1: Introduction to data integration

Formalization of GAV

In GAV (with sound sources), the mappingM is a set of assertions:
φS ; g

one for each element g in AG , with φS a query over S of the arity of g

Given a source db C, a db B for G satisfies M wrt C if for each g ∈ G:
φCS ⊆ gB

In other words, the assertion means ∀~x. φS(~x)→ g(~x)

Given a source database,M provides direct information about which
data satisfy the elements of the global schema

Relations in G are views, and queries are expressed over the views.
Thus, it seems that we can simply evaluate the query over the data
satisfying the global relations (as if we had a single database at hand)

D. Calvanese Data Integration BIT PhD Summer School 43 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing GAV data integration systems Part 1: Introduction to data integration

GAV – Example

Global schema: movie(Title,Year ,Director)
european(Director)
review(Title,Critique)

GAV: to each relation in the global schema,M associates a view over
the sources:

{ (t, y, d) | r1(t, y, d) } ; movie(t, y, d)
{ (d) | r1(t, y, d) } ; european(d)
{ (t, r) | r2(t, r) } ; review(t, r)

Logical formalization:

∀t, y, d. r1(t, y, d)→ movie(t, y, d)
∀d. (∃t, y. r1(t, y, d))→ european(d)
∀t, r. r2(t, r)→ review(t, r)

D. Calvanese Data Integration BIT PhD Summer School 44 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing GAV data integration systems Part 1: Introduction to data integration

GAV – Example of query processing

The query
{ (t, r) | movie(t, 1998, d), review(t, r) }

is processed by means of unfolding, i.e., by expanding each atom
according to its associated definition inM, so as to come up with
source relations

In this case:

{ (t, r) | movie(t, 1998, d), review(t, r) }

unfolding ↓ ↓

{ (t, r) | r1(t, 1998, d), r2(t, r) }

D. Calvanese Data Integration BIT PhD Summer School 45 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing GAV data integration systems Part 1: Introduction to data integration

GAV – Example of constraints

Global schema containing constraints:
movie(Title,Year ,Director)
european(Director)
review(Title,Critique)
european movie 60s(Title,Year ,Director)

∀t, y, d. european movie 60s(t, y, d) → movie(t, y, d)
∀d. ∃t, y. european movie 60s(t, y, d) → european(d)

GAV mappings:
{ (t, y, d) | r1(t, y, d) } ; european movie 60s(t, y, d)
{ (d) | r1(t, y, d) } ; european(d)
{ (t, r) | r2(t, r) } ; review(t, r)

D. Calvanese Data Integration BIT PhD Summer School 46 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing LAV data integration systems Part 1: Introduction to data integration

Formalization of LAV

In LAV (with sound sources), the mappingM is a set of assertions:
s ; φG

one for each source element s in AS , with φG a query over G

Given source db C, a db B for G satisfies M wrt C if for each s ∈ S:
sC ⊆ φBG

In other words, the assertion means ∀~x. s(~x)→ φG(~x)

The mappingM and the source database C do not provide direct
information about which data satisfy the global schema

Sources are views, and we have to answer queries on the basis of the
available data in the views

D. Calvanese Data Integration BIT PhD Summer School 48 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing LAV data integration systems Part 1: Introduction to data integration

LAV – Example

Global schema: movie(Title,Year ,Director)
european(Director)
review(Title,Critique)

LAV: to each source relation,M associates a view over the global
schema:

r1(t, y, d) ; { (t, y, d) | movie(t, y, d), european(d), y ≥ 1960 }
r2(t, r) ; { (t, r) | movie(t, y, d), review(t, r), y ≥ 1990 }

The query { (t, r) | movie(t, 1998, d), review(t, r) } is processed by
means of an inference mechanism that aims at re-expressing the atoms
of the global schema in terms of atoms at the sources.
In this case:

{ (t, r) | r2(t, r), r1(t, 1998, d) }

D. Calvanese Data Integration BIT PhD Summer School 49 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing LAV data integration systems Part 1: Introduction to data integration

GAV and LAV – Comparison

GAV: (e.g., Carnot, SIMS, Tsimmis, IBIS, Momis, DisAtDis, . . . )

Quality depends on how well we have compiled the sources into the
global schema through the mapping

Whenever a source changes or a new one is added, the global
schema needs to be reconsidered

Query processing can be based on some sort of unfolding (query
answering looks easier – without constraints)

LAV: (e.g., Information Manifold, DWQ, Picsel)

Quality depends on how well we have characterized the sources

High modularity and extensibility (if the global schema is well
designed, when a source changes, only its definition is affected)

Query processing needs reasoning (query answering complex)

D. Calvanese Data Integration BIT PhD Summer School 50 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing LAV data integration systems Part 1: Introduction to data integration

Beyond GAV and LAV: GLAV

In GLAV (with sound sources), the mappingM is a set of assertions:
φS ; φG

with φS a query over S, and φG a query over G of the same arity as φS

Given source db C, a db B for G satisfies M wrt C if for each φS ; φG
inM:

φCS ⊆ φBG
In other words, the assertion means ∀~x. φS(~x)→ φG(~x)

As for LAV, the mappingM does not provide direct information about
which data satisfy the global schema

To answer a query q over G, we have to infer how to use M in order to
access the source database C

D. Calvanese Data Integration BIT PhD Summer School 51 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing LAV data integration systems Part 1: Introduction to data integration

GLAV – Example

Global schema: work(Person,Project), area(Project ,Field)

Source 1: hasjob(Person,Field)
Source 2: teaches(Professor ,Course), in(Course,Field)
Source 3: get(Researcher ,Grant), for(Grant ,Project)

GLAV mapping:

{(r, f) | hasjob(r, f)} ; {(r, f) | work(r, p), area(p, f)}
{(r, f) | teaches(r, c), in(c, f)} ; {(r, f) | work(r, p), area(p, f)}
{(r, p) | get(r, g), for(g, p)} ; {(r, f) | work(r, p)}

D. Calvanese Data Integration BIT PhD Summer School 52 / 190



Basic issues in data integration Data integration: Logical formalization

Formalizing LAV data integration systems Part 1: Introduction to data integration

GLAV – A technical observation

In GLAV (with sound sources), the mappingM is constituted by a set
of assertions:

φS ; φG

Each such assertion can be rewritten wlog by introducing a new
predicate r (not to be used in the queries) of the same arity as the two
queries and replace the assertion with the following two:

φS ; r r ; φG

In other words, we replace ∀~x. φS(~x)→ φG(~x)
with ∀~x. φS(~x)→ r(~x) and ∀~x. r(~x)→ φG(~x)

D. Calvanese Data Integration BIT PhD Summer School 53 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 2: Query answering without constraints

Part II

Query answering in the absence of constraints

D. Calvanese Data Integration BIT PhD Summer School 54 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 2: Query answering without constraints

Outline

3 Query answering in GAV without constraints
Retrieved global database
Query answering via unfolding
Universal solutions

4 Query answering in (G)LAV without constraints
(G)LAV and incompleteness
Approaches to query answering in (G)LAV
(G)LAV: Direct methods (aka view-based query answering)
(G)LAV: Query answering by (view-based) query rewriting

D. Calvanese Data Integration BIT PhD Summer School 55 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 2: Query answering without constraints

Query answering in different approaches

The problem of query answering comes in different forms, depending on
several parameters:

Global schema

without constraints (i.e., empty theory)
with constraints

Mapping

GAV
LAV (or GLAV)

Queries

user queries
queries in the mapping

D. Calvanese Data Integration BIT PhD Summer School 56 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 2: Query answering without constraints

Conjunctive queries

We recall the definition of a conjunctive query:

Definition

A conjunctive query (CQ) is a relational calculus query of the form

{ (~x) | ∃~y. r1(~x1, ~y1) ∧ · · · ∧ rm(~xm, ~ym) }

where

~x is the union of the ~xi’s, and ~y is the union of the ~yi’s

r1, . . . , rm are relation symbols (not built-in predicates)

Unless otherwise specified, we consider conjunctive queries, both as user
queries and as queries in the mapping

D. Calvanese Data Integration BIT PhD Summer School 57 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 2: Query answering without constraints

Incompleteness and inconsistency

Query answering heavily depends upon whether
incompleteness/inconsistency shows up

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes / no no

no (G)LAV yes no

yes GAV yes yes

yes (G)LAV yes yes

D. Calvanese Data Integration BIT PhD Summer School 58 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 2: Query answering without constraints

Outline

3 Query answering in GAV without constraints
Retrieved global database
Query answering via unfolding
Universal solutions

4 Query answering in (G)LAV without constraints
(G)LAV and incompleteness
Approaches to query answering in (G)LAV
(G)LAV: Direct methods (aka view-based query answering)
(G)LAV: Query answering by (view-based) query rewriting

D. Calvanese Data Integration BIT PhD Summer School 59 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 2: Query answering without constraints

GAV data integration systems without constraints

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes / no no

no (G)LAV yes no

yes GAV yes yes

yes (G)LAV yes yes

D. Calvanese Data Integration BIT PhD Summer School 60 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Retrieved global database Part 2: Query answering without constraints

GAV – Retrieved global database

Definition

Given a source database C, we call retrieved global database, denoted
M(C), the global database obtained by “applying” the queries in the
mapping, and “transferring” to the elements of G the corresponding
retrieved tuples

D. Calvanese Data Integration BIT PhD Summer School 62 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Retrieved global database Part 2: Query answering without constraints

GAV – Example

Consider I = 〈G,S,M〉, with

Global schema G: student(Code,Name,City)
university(Code,Name)
enrolled(Scode,Ucode)

Source schema S: relations s1(Scode,Sname,City ,Age),
s2(Ucode,Uname), s3(Scode,Ucode)

Mapping M:

{ (c, n, ci) | s1(c, n, ci , a) } ; student(c, n, ci)
{ (c, n) | s2(c, n) } ; university(c, n)
{ (s, u) | s3(s, u) } ; enrolled(s, u)

D. Calvanese Data Integration BIT PhD Summer School 63 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Retrieved global database Part 2: Query answering without constraints

GAV – Example of retrieved global database

sC1
12 anne florence 21
15 bill oslo 24

sC2
AF bocconi
BN ucla

sC3
12 AF
16 BN

���
���

���*

PPPPPPPPPPPPPi

�
�
�
���

university
Code Name
AF bocconi
BN ucla

student
Code Name City
12 anne florence
15 bill oslo

enrolled
Scode Ucode
12 AF
16 BN

Example of source database C and corresponding retrieved global
database M(C)

D. Calvanese Data Integration BIT PhD Summer School 64 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Retrieved global database Part 2: Query answering without constraints

GAV – Minimal model

GAV mapping assertions φS ; g have the logical form:

∀~x. φS(~x)→ g(~x)

where φS is a conjunctive query over the source relations, and g is an
element of G.

In general, given a source database C, there are several databases legal
wrt G that satisfyM wrt C.

However, it is easy to see that M(C) is the intersection of all such
databases, and therefore, is the only “minimal” model of I.

D. Calvanese Data Integration BIT PhD Summer School 65 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Retrieved global database Part 2: Query answering without constraints

GAV without constraints

D. Calvanese Data Integration BIT PhD Summer School 66 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering via unfolding Part 2: Query answering without constraints

GAV – Query answering via unfolding

The unfolding wrt M of a query q over G: is the query obtained from q
by substituting every symbol g in q with the query φS that M
associates to g. We denote the unfolding of q wrt M with unfM(q)

Observations:

unfM(()q) is a query over S
Evaluating q overM(C) is equivalent to evaluating unfM(q) over C.
i.e., ~t ∈ qM(C) iff ~t ∈ unfM(q)C

If q is a conjunctive query, then ~t ∈ cert(q, I, C) iff ~t ∈ qM(C)

Hence, ~t ∈ cert(q, I, C) iff ~t ∈ qM(C) iff ~t ∈ unfM(q)C

; Unfolding suffices for query answering in GAV without constraints

Data complexity of query answering is polynomial (actually
LogSpace ): the query unfM(q) is first-order (in fact conjunctive)

D. Calvanese Data Integration BIT PhD Summer School 68 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering via unfolding Part 2: Query answering without constraints

GAV – Example of unfolding

sC2
AF bocconi
BN ucla

sC1
12 anne florence 21
15 bill oslo 24

student
Code Name City
12 anne florence
15 bill oslo

university
Code Name
AF bocconi
BN ucla

{ x | student(15, x, y) }

sC2
AF bocconi
BN ucla

sC1
12 anne florence 21
15 bill oslo 24

student
Code Name City
12 anne florence
15 bill oslo

university
Code Name
AF bocconi
BN ucla

{ x | s1(15, x, y, z) }

unfolding

{ x | student(15, x, y) }

sC2
AF bocconi
BN ucla

sC1
12 anne florence 21
15 bill oslo 24

student
Code Name City
12 anne florence
15 bill oslo

university
Code Name
AF bocconi
BN ucla

D. Calvanese Data Integration BIT PhD Summer School 69 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering via unfolding Part 2: Query answering without constraints

GAV – More expressive queries?

Do the results extend to the case of more expressive queries?

With more expressive queries in the mapping?

Same results hold if we use any computable query in the mapping

With more expressive user queries?

Same results hold if we use Datalog queries as user queries
Same results hold if we use union of conjunctive queries with
inequalities as user queries [van der Meyden TCS’93]

D. Calvanese Data Integration BIT PhD Summer School 70 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Universal solutions Part 2: Query answering without constraints

Homomorphisms

Let D1 and D2 be two databases with values in ∆ ∪ Var

Definition

A homomorphism h : D1 → D2 is a mapping from (∆ ∪ Var(D1)) to
(∆ ∪ Var(D2)) such that

1 h(c) = c, for every constant c ∈ ∆
2 each variable can be mapped to a constant or a variable

3 for every fact ri(~t) of D1, we have that ri(h(~t)) is a fact in D2

Definition

D1 is homomorphically equivalent to D2 if there is a homomorphism
h : D1 → D2 and a homomorphism h′ : D2 → D1

D. Calvanese Data Integration BIT PhD Summer School 72 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Universal solutions Part 2: Query answering without constraints

Conjunctive query answering and homomorphisms

Consider a conjunctive query

q(~x) = { (~x) | ∃~y. r1(~x1, ~y1) ∧ · · · ∧ rm(~xm, ~ym) }
For a tuple ~c of constants, let D~c

q be the set of facts (over constants and
variables in ~y) obtained by replacing in r1(~x1, ~y1), . . . , rm(~xm, ~ym) each
xi with ci.

Note that D~c
q can be viewed as a database with values in ∆ ∪ Var

Theorem (Chandra & Merlin ’77)

~c ∈ qD if and only if there exists a homomorphism h : D~c
q → D

Hence, homomorphisms preserve satisfaction of conjunctive queries:
if there exists a homomorphism h : D → D′, then ~t ∈ qD implies
~t ∈ qD

′
, for each conjunctive query q

D. Calvanese Data Integration BIT PhD Summer School 73 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Universal solutions Part 2: Query answering without constraints

GAV – Universal solutions

Let I = 〈G,S,M〉 be a data integration system, and C a source db

Definition

A universal solution for I relative to C is a global db B that satisfies I
relative to C such that, for every global db B′ that satisfies I relative to
C, there exists a homomorphism h : B → B′ (see [Fagin& al. TCS’05])

Theorem

If I is GAV without constraints in the global schema, thenM(C) is the
minimal universal solution for I relative to C

We derive again the following results

Theorem

If q is a conjunctive query, then ~t ∈ cert(q, I, C) iff ~t ∈ qM(C)

Complexity of query answering is polynomial

D. Calvanese Data Integration BIT PhD Summer School 74 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 2: Query answering without constraints

Outline

3 Query answering in GAV without constraints
Retrieved global database
Query answering via unfolding
Universal solutions

4 Query answering in (G)LAV without constraints
(G)LAV and incompleteness
Approaches to query answering in (G)LAV
(G)LAV: Direct methods (aka view-based query answering)
(G)LAV: Query answering by (view-based) query rewriting

D. Calvanese Data Integration BIT PhD Summer School 75 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 2: Query answering without constraints

(G)LAV data integration systems without constraints

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes / no no

no (G)LAV yes no

yes GAV yes yes

yes (G)LAV yes yes

D. Calvanese Data Integration BIT PhD Summer School 76 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV and incompleteness Part 2: Query answering without constraints

(G)LAV – Example

Consider I = 〈G,S,M〉, with

Global schema G: student(Code,Name,City)
enrolled(Scode,Ucode)

Source schema S: relation s1(Scode,Sname,City ,Age)

Mapping M:

{ (c, n, ci) | s1(c, n, ci , a) } ; { (c, n, ci) | student(c, n, ci),
enrolled(c, u) }

D. Calvanese Data Integration BIT PhD Summer School 78 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV and incompleteness Part 2: Query answering without constraints

(G)LAV – Example

{ (c, n, ci) | s1(c, n, ci , a) } ; { (c, n, ci) | student(c, n, ci),
enrolled(c, u) }

sC1
12 anne florence 21
15 bill oslo 24

6

����������:

student
Code Name City
12 anne florence
15 bill oslo

enrolled
Scode Ucode
12 x
15 y

A source db C and a corresponding possible retrieved global dbM(C)

D. Calvanese Data Integration BIT PhD Summer School 79 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV and incompleteness Part 2: Query answering without constraints

(G)LAV – Incompleteness

(G)LAV mapping assertions φS ; φG have the logical form:

∀~x. φS(~x)→ ∃~y. φG(~x, ~y)

where φS and φG are conjunctions of atoms

Given a source database C, in general there are several solutions for a
set of (G)LAV assertions (i.e., different databases that are legal wrt G
that satisfyM wrt C)
; Incompleteness comes from the mapping

This holds even for the case of very simple queries φG :

s1(x) ; { (x) | ∃y. g(x, y) }

D. Calvanese Data Integration BIT PhD Summer School 80 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV and incompleteness Part 2: Query answering without constraints

(G)LAV – Query answering is based on logical inference

I Logical inference

q

C cert(q, I, C)

D. Calvanese Data Integration BIT PhD Summer School 81 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Approaches to query answering in (G)LAV Part 2: Query answering without constraints

(G)LAV – Approaches to query answering

Exploit connection with query containment

Direct methods (aka view-based query answering):
Try to answer directly the query by means of an algorithm that
takes as input the user query q, the specification of I, and the
source database C

By (view-based) query rewriting:
1 Taking into account I, reformulate the user query q as a new query

(called a rewriting of q) over the source relations
2 Evaluate the rewriting over the source database C

Note: In (G)LAV data integration the views are the sources

D. Calvanese Data Integration BIT PhD Summer School 83 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Approaches to query answering in (G)LAV Part 2: Query answering without constraints

Connection between query answering and containment

Definition

Query containment (under constraints) is the problem of checking
whether qD1 is contained in qD2 for every database D (satisfying the
constraints), where q1, q2 are queries of the same arity

Query answering can be rephrased in terms of query containment:

A source database C can be represented as a conjunction qC of
ground literals over AS (e.g., if ~c ∈ sC , there is a literal s(~c))
If q is a query, and ~t is a tuple, then we denote by q~t the query
obtained by substituting the free variables of q with ~t

The problem of checking whether ~t ∈ cert(q, I, C) under sound
sources can be reduced to the problem of checking whether the
conjunctive query qC is contained in q~t under the constraints
expressed by G ∪M

D. Calvanese Data Integration BIT PhD Summer School 84 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Approaches to query answering in (G)LAV Part 2: Query answering without constraints

Query answering via query containment

Complexity of checking certain answers under sound sources:

The combined complexity is identical to the complexity of query
containment under constraints

The data complexity is the complexity of query containment under
constraints when the right-hand side query is considered fixed.
Hence, it is at most the complexity of query containment under
constraints

; Most results and techniques for query containment (under
constraints) are relevant also for query answering (under constraints)

Note: Also, query containment can be reduced to query answering.
However, (in the presence of constraints) we need to allow for constants
of the database to unify, i.e., to denote the same object.

D. Calvanese Data Integration BIT PhD Summer School 85 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – Basic technique

From [Duschka & Genesereth PODS’97]:

r1(t) ; { (t) | movie(t, y, d) ∧ european(d) }
r2(t, v) ; { (t, v) | movie(t, y, d) ∧ review(t, v) }

∀t. r1(t)→ ∃y, d. movie(t, y, d) ∧ european(d)
∀t, v. r2(t, v)→ ∃y, d. movie(t, y, d) ∧ review(t, v)

movie(t, f1(t), f2(t)) ← r1(t)
european(f2(t)) ← r1(t)

movie(t, f4(t, v), f5(t, v)) ← r2(t, v)
review(t, v) ← r2(t, v)

Answering a query means evaluating a goal wrt to this nonrecursive
logic program (which can be transformed into a union of CQs)

; Data complexity is polynomial (actually LogSpace)

D. Calvanese Data Integration BIT PhD Summer School 87 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – Canonical retrieved global database

What is a retrieved global database in this case?

Definition

We build what we call the canonical retrieved global database for I
relative to C, denoted M(C)↓, as follows:

Let all predicates initially be empty inM(C)↓
For each mapping assertion φS ; φG inM

for each tuple ~t ∈ φCS such that ~t 6∈ φ
M(C)↓
G , add ~t to φ

M(C)↓
G by

inventing fresh variables (Skolem terms) in order to satisfy the
existentially quantified variables in φG

Properties ofM(C)↓ (also called canonical model of I relative to C)
It is unique up to variable renaming

It can be computed in polynomial time wrt the size of C
Since there are no constraints in G, it obviously satisfies G

D. Calvanese Data Integration BIT PhD Summer School 88 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – Example of canonical model

{ (c, n, ci) | s1(c, n, ci , a) } ; { (c, n, ci) | student(c, n, ci) ∧
enrolled(c, u) }

sC1
12 anne florence 21
15 bill oslo 24

6

����������:

student
Code Name City
12 anne florence
15 bill oslo

enrolled
Scode Ucode
12 x
15 y

Example of source db C and corresponding canonical modelM(C)↓

D. Calvanese Data Integration BIT PhD Summer School 89 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – Canonical model

D. Calvanese Data Integration BIT PhD Summer School 90 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – Universal solution

Let I = 〈G,S,M〉 be a (G)LAV data integration system without
constraints in the global schema, and C a source database

Theorem

ThenM(C)↓ is a universal solution for I relative to C (follows from
[Fagin&al. ICDT’03])

It follows that:

If q is a conjunctive query, then ~t ∈ cert(q, I, C) iff ~t ∈ qM(C)↓

Complexity of query answering is polynomial, actually LogSpace

D. Calvanese Data Integration BIT PhD Summer School 91 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – More expressive queries?

More expressive source queries in the mapping?

Same results hold if we use any computable query as source query in
the mapping assertions

More expressive queries over the global schema in the mapping?

Already positive queries lead to intractability

More expressive user queries?

Same results hold if we use Datalog queries as user queries
Even the simplest form of negation (inequalities) leads to
intractability

D. Calvanese Data Integration BIT PhD Summer School 92 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – Intractability for positive views

From [van der Meyden TCS’93], by reduction from 3-colorability

We define the following LAV data integration system I = 〈G,S,M〉:
G : edge(x, y), color(x, c) S : sE(x, y), sN (x)
M : sE(x, y) ; edge(x, y)

sN (x) ; color(x, RED) ∨ color(x, BLUE) ∨ color(x, GREEN)

Given a graph G = (N,E), we define the following source database C:
sE
C = { (a, b), (b, a) | (a, b) ∈ E } sN

C = { (a) | a ∈ N }

Consider the boolean query q: ∃x, y, c. edge(x, y) ∧ color(x, c) ∧ color(y, c)
describing mismatched edge pairs:

If G is 3-colorable, then ∃B s.t. qB = false, hence cert(q, I, C) = false

If G is not 3-colorable, then cert(q, I, C) = true

Theorem

Data complexity is coNP-hard for positive views and conjunctive queries

D. Calvanese Data Integration BIT PhD Summer School 93 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – In coNP for positive views and queries

~t 6∈ cert(q, I, C) if and only if there is a database B for I that
satisfies M wrt C, and such that ~t 6∈ qB

The mapping M has the form:

∀~x. φS(~x) → ∃~y1. α1(~x, ~y1) ∨ · · · ∨ ∃~yh αh(~x, ~yh))

Hence, each tuple in C forces the existence of k tuples in any
database that satisfies M wrt C, where k is the maximal length of
conjunctions αi(~x, ~yi) inM
If C has n tuples, then there is a db B′ ⊆ B for I that satisfiesM
wrt C with at most n · k tuples. Since q is monotone, ~t 6∈ qB

′

Checking whether B′ satisfies M wrt C, and checking whether
~t 6∈ qB

′
can be done in PTIME wrt the size of B′

Theorem

For positive views and queries, query answ. is coNP in data complexity

D. Calvanese Data Integration BIT PhD Summer School 94 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – Conjunctive user queries with inequalities

Consider I = 〈G,S,M〉, and source db C (see [Fagin & al. ICDT’03]):

G : g(x, y) S : s(x, y)
M : s(x, y) ; { (x, y) | g(x, z) ∧ g(z, y) }
C : { s(a, a) }

B1 = { g(a, a) } is a solution

If B is a universal solution, then both g(a, x) and g(x, a) are in B,
with x 6= a (otherwise g(a, a) would be true in every solution)

Let q = { () | g(x, y) ∧ x 6= y }
qB1 = false, hence cert(q, I, C) = false
But qB = true for every universal solution B for I relative to C

Hence, the notion of universal solution is not the right tool

D. Calvanese Data Integration BIT PhD Summer School 95 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Direct methods (aka view-based query answering) Part 2: Query answering without constraints

(G)LAV – Conjunctive user queries with inequalities

coNP algorithm: guess equalities on variables in the canonical
retrieved global database

coNP-hard already for a conjunctive user query with one inequality
(and conjunctive view definitions) [Abiteboul & Duschka
PODS’98]

Theorem

For conjunctive user queries with inequalities, (G)LAV query answering
is coNP-complete in data complexity

Note: inequalities in the view definitions do not affect expressive power
and complexity (in fact, they can be removed)

D. Calvanese Data Integration BIT PhD Summer School 96 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

(G)LAV – View-based query rewriting

Query answering is divided in two steps:

1 Re-express the query in terms of a given query language over the
alphabet of AS

2 Evaluate the rewriting over the source database C

D. Calvanese Data Integration BIT PhD Summer School 98 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

Query answering

I Logical inference

q

C cert(q, I, C)

D. Calvanese Data Integration BIT PhD Summer School 99 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

Query answering: reformulation + evaluation

(under OWA)
Query

(under CWA)

evaluation

cert [q,I]

cert(q, I, C)

I

C

Perfect
reformulation

q

The query cert [q,I] could be expressed in an arbitrary query language

D. Calvanese Data Integration BIT PhD Summer School 100 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

Query rewriting

(under OWA)
Query

(under CWA)

evaluation

rew(q, I)

ans(q, I, C)

I

C

Reformulationq

The language of rew(q, I) is chosen a priori!

D. Calvanese Data Integration BIT PhD Summer School 101 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

(G)LAV – Connection to rewriting

Query answering by rewriting:

1 Given I = 〈G,S,M〉 and a query q over G, rewrite q into a query,
called rew(q, I), over the alphabet AS of the sources

2 Evaluate the rewriting rew(q, I) over the source database C

We are interested in rewritings that are:

sound, i.e., compute only tuples in cert(q, I, C) for every C
expressed in a given query language L
maximal for the class of queries expressible in L

We may be interested in exact rewritings, i.e., rewritings that are
logically equivalent to the query, moduloM

Exact rewritings may not exist
D. Calvanese Data Integration BIT PhD Summer School 102 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

(G)LAV – Example of maximal rewriting

G: nonstop(Airline,Num,From,To)

S: flightsByUnited(From,To)
flightsFromSFO(Airline,Num,To)

M: flightsByUnited(From,To) ;

nonstop(UA,Num,From,To)
flightsFromSFO(Airline,Num,To) ;

nonstop(Airline,Num, SFO,To)

q: { (airline,num) | nonstop(airline,num, LAX, PHX) }

A maximal (wrt positive queries) rewriting of q is:

{ (UA,num) | flightsByUnited(num, LAX, PHX) }

D. Calvanese Data Integration BIT PhD Summer School 103 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

Perfect rewriting

What is the relationship between answering by rewriting and certain
answers? [— & al. ICDT’05]:

When does the (maximal) rewriting compute all certain answers?

What do we gain or loose by focusing on a given class of queries?

Let’s try to consider the “best possible” rewriting

Define cert [q,I](·) to be the function that, with q and I fixed, given
source database C, computes the certain answers cert(q, I, C).

cert [q,I] can be seen as a query on the alphabet AS
cert [q,I] is a (sound) rewriting of q wrt I
No sound rewriting exists that is better than cert [q,I]

Hence, cert [q,I] is called the perfect rewriting of q wrt I

D. Calvanese Data Integration BIT PhD Summer School 104 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

Properties of the perfect rewriting

Can the perfect rewriting be expressed in a certain query language?

For a given class of queries, what is the relationship between a
maximal rewriting and the perfect rewriting?

From a semantical point of view
From a computational point of view

Which is the computational complexity of finding the perfect
rewriting, and how big is it?

Which is the computational complexity of evaluating the perfect
rewriting?

D. Calvanese Data Integration BIT PhD Summer School 105 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

(G)LAV – The case of conjunctive queries

Let q and the queries inM be conjunctive queries (CQs)
Let q′ be the union of all maximal rewritings of q for the class of CQs

Theorem (Levy & al. PODS’95, Abiteboul & Duschka PODS’98)

q′ is the maximal rewriting for the class of unions of conjunctive
queries (UCQs)

q′ is the perfect rewriting of q wrt I
q′ is a PTIME query

q′ is an exact rewriting (equivalent to q for each database B of I),
if an exact rewriting exists

Does this “ideal situation” carry on to cases where q andM allow for
union?

D. Calvanese Data Integration BIT PhD Summer School 106 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

(G)LAV – View-based query processing for UPQs

When queries over the global schema in the mapping contain union:

We have seen that view-based query answering is coNP-complete in
data complexity [van der Meyden TCS’93]

hence, cert(q, I, C), with q, I fixed, is a coNP-complete function

hence, the perfect rewriting cert [q,I] is a coNP-complete query

We do not have the ideal situation we had for conjunctive queries

Problem: Isolate those cases of view based query rewriting for UPQs q
and I for which the perfect rewriting cert [q,I] is a PTIME function
(assuming P6=NP) [— & al. LICS’00].

D. Calvanese Data Integration BIT PhD Summer School 107 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

(G)LAV – Data complexity of query answering

From [Abiteboul & Duschka PODS’98], for sound sources:

Global schema User queries
mapping query CQ CQ 6= PQ Datalog FOL

CQ PTIME coNP PTIME PTIME undec.
CQ 6= PTIME coNP PTIME PTIME undec.
PQ coNP coNP coNP coNP undec.

Datalog coNP undec. coNP undec. undec.
FOL undec. undec. undec. undec. undec.

D. Calvanese Data Integration BIT PhD Summer School 108 / 190



Query answering QA in GAV without constraints QA in (G)LAV without constraints

(G)LAV: Query answering by (view-based) query rewriting Part 2: Query answering without constraints

(G)LAV – Further references

Inverse rules [Duschka & Genesereth PODS’97]

Bucket algorithm for query rewriting [Levy & al. AAAI’96]

MiniCon algorithm for query rewriting [Pottinger & Levy VLDB’00]

Conjunctive queries using conjunctive views [Levy & al. PODS’95]

Recursive queries (Datalog programs) using conjunctive views
[Duschka & Genesereth PODS’97; Afrati & al. ICDT’99]

CQs with arithmetic comparison [Afrati & al. PODS’01]

Complexity analysis [Abiteboul & Duschka PODS’98; Grahne &
Mendelzon ICDT’99]

Variants of Regular Path Queries [— & al. ICDE’00, PODS’00,
DBPL’01; Deutsch & Tannen DBPL’01],

Relationship between view-based rewriting and answering
[— & al. LICS’00, PODS’03, ICDT’05]

D. Calvanese Data Integration BIT PhD Summer School 109 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Part III

Query answering in the presence of constraints

D. Calvanese Data Integration BIT PhD Summer School 110 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Outline

5 The role of global integrity constraints

6 Query answering in GAV with constraints
Incompleteness and inconsistency in GAV systems
Query answering in GAV under inclusion dependencies
Rewriting CQs under inclusion dependencies in GAV
Query answering in GAV under IDs and KDs
Query answering in GAV under IDs, KDs, and EDs

7 Query answering in LAV with constraints
LAV systems and integrity constraints
Query answering in (G)LAV under inclusion dependencies
Query answering in (G)LAV under IDs and EDs
LAV systems and key dependencies

D. Calvanese Data Integration BIT PhD Summer School 111 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Outline

5 The role of global integrity constraints

6 Query answering in GAV with constraints
Incompleteness and inconsistency in GAV systems
Query answering in GAV under inclusion dependencies
Rewriting CQs under inclusion dependencies in GAV
Query answering in GAV under IDs and KDs
Query answering in GAV under IDs, KDs, and EDs

7 Query answering in LAV with constraints
LAV systems and integrity constraints
Query answering in (G)LAV under inclusion dependencies
Query answering in (G)LAV under IDs and EDs
LAV systems and key dependencies

D. Calvanese Data Integration BIT PhD Summer School 112 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Global integrity constraints

Integrity constraints (ICs) are posed over the global schema

Specify intensional knowledge about the domain of interest

Add semantics to the information

But data in the sources can conflict with global ICs

The presence of global ICs raises semantic and computational
problems

Many open issues

D. Calvanese Data Integration BIT PhD Summer School 113 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Integrity constraints for relational schemas

Most important types of ICs for the relational model:

key dependencies (KDs)

functional dependencies (FDs)

foreign keys (FKs)

inclusion dependencies (IDs)

exclusion dependencies (EDs)

D. Calvanese Data Integration BIT PhD Summer School 114 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Inclusion dependencies (IDs)

An inclusion dependency (ID) states that the presence of a tuple ~t1 in a
relation implies the presence of a tuple ~t2 in another relation, where ~t2
contains a projection of the values contained in ~t1

Syntax of inclusion dependencies

r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
with i1, . . . , ik components of r, and j1, . . . , jk components of s

Example

For r of arity 3 and s of arity 2, the ID r[1] ⊆ s[2] corresponds to the
FOL sentence

∀x, y, w. r(x, y, w)→ ∃z. s(z, x)

Note: IDs are a special form of tuple-generating dependencies
D. Calvanese Data Integration BIT PhD Summer School 115 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Key dependencies (KDs)

A key dependency (KD) states that a set of attributes functionally
determines all the attributes of a relation

Syntax of key dependencies

key(r) = {i1, . . . , ik}
with i1, . . . , ik components of r

Example

For r of arity 3, the KD key(r) = {1} corresponds to the FOL sentence

∀x, y, y′, z, z′. r(x, y, z) ∧ r(x, y′, z′)→ y = y′ ∧ z = z′

Note: KDs are a special form of equality-generating dependencies

D. Calvanese Data Integration BIT PhD Summer School 116 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Exclusion dependencies (EDs)

An exclusion dependency (ED) states that the presence of a tuple ~t1 in
a relation implies the absence of a tuple ~t2 in another relation, where ~t2
contains a projection of the values contained in ~t1

Syntax of exclusion dependencies

r[i1, . . . , ik] ∩ s[j1, . . . , jk] = ∅
with i1, . . . , ik components of r, and j1, . . . , jk components of s

Example

For r of arity 3 and s of arity 2, the ED r[1] ∩ s[2] = ∅ corresponds to
the FOL sentence

∀x, y, w, z. r(x, y, w)→ ¬s(z, x)

Note: EDs are a special form of denial constraints
D. Calvanese Data Integration BIT PhD Summer School 117 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Outline

5 The role of global integrity constraints

6 Query answering in GAV with constraints
Incompleteness and inconsistency in GAV systems
Query answering in GAV under inclusion dependencies
Rewriting CQs under inclusion dependencies in GAV
Query answering in GAV under IDs and KDs
Query answering in GAV under IDs, KDs, and EDs

7 Query answering in LAV with constraints
LAV systems and integrity constraints
Query answering in (G)LAV under inclusion dependencies
Query answering in (G)LAV under IDs and EDs
LAV systems and key dependencies

D. Calvanese Data Integration BIT PhD Summer School 118 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV system with integrity constraints

We consider a data integration system I = 〈G,S,M〉 where

G is a global schema with constraints

M is a set of GAV mappings, whose assertions have the form
φS ; g and are interpreted as

∀~x. φS(~x)→ g(~x)

where φS is a conjunctive query over S, and g is an element of G

Basic observation: Since G does have constraints, the retrieved global
database M(C) may not be legal for G

D. Calvanese Data Integration BIT PhD Summer School 120 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

Semantics of GAV systems with integrity constraints

Given a source db C, a global db B (over ∆) satisfies I relative to C if

1 it is legal wrt the global schema, i.e., it satisfies the ICs

2 it satisfies the mapping, i.e., B is a superset of the retrieved global
database M(C) (sound mappings)

Recall:

M(C) is obtained by evaluating, for each relation in AG , the
corresponding mapping query over the source database C
We are interested in certain answers to a query, i.e., those that hold
for all global databases that satisfy I relative to C

D. Calvanese Data Integration BIT PhD Summer School 121 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Example

Consider I = 〈G,S,M〉, with

G: student(Code,Name,City) key(student) = {Code}
university(Code,Name) key(university) = {Code}
enrolled(Scode,Ucode)

enrolled[Scode] ⊆ student[Code]
enrolled[Ucode] ⊆ university[Code]

Source schema S: s1(Scode,Sname,City ,Age),
s2(Ucode,Uname), s3(Scode,Ucode)

Mapping M: { (c, n, ci) | s1(c, n, ci , a) } ; student(c, n, ci)
{ (c, n) | s2(c, n) } ; university(c, n)
{ (s, u) | s3(s, u) } ; enrolled(s, u)

D. Calvanese Data Integration BIT PhD Summer School 122 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Example of retrieved global db

sC1
12 anne florence 21
15 bill oslo 24

sC2
AF bocconi
BN ucla

sC3
12 AF
16 BN

���
���

���*

PPPPPPPPPPPPPi

�
�
�
���

university
Code Name
AF bocconi
BN ucla

student
Code Name City
12 anne florence
15 bill oslo

enrolled
Scode Ucode
12 AF
16 BN

Example of source database C and corresponding retrieved global
database M(C)

D. Calvanese Data Integration BIT PhD Summer School 123 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Example of incompleteness

sC3
12 AF
16 BN

enrolledB

Scode Ucode
12 AF
16 BN

studentB

Code Name City
12 anne florence
15 bill oslo
16 x y

sC3(16, BN) and the mapping imply enrolledB(16, BN) for all B ∈ semC(I)

Due to the inclusion dependency enrolled[Scode] ⊆ student[Code] in G,
16 is the code of some student in all B ∈ semC(I)

Since C does not provide information about name and city of the
student with code 16, a global database that is legal for I wrt C may
contain arbitrary values for these

D. Calvanese Data Integration BIT PhD Summer School 124 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Unfolding is not sufficient

Mapping M: { (c, n, ci) | s1(c, n, ci , a) } ; student(c, n, ci)
{ (c, n) | s2(c, n) } ; university(c, n)
{ (s, u) | s3(s, u) } ; enrolled(s, u)

sC1
12 anne florence 21
15 bill oslo 24

sC2
AF bocconi
BN ucla

sC3
12 AF
16 BN

Consider the query: q = { (c) | student(c, n, ci) }
Unfolding of q wrt M: unfM(q) = { (c) | s1(c, n, ci , a) }

The query unfM(q) retrieves from C only the answer {12, 15}, while the
correct answer would be {12, 15, 16}

The simple unfolding strategy is not sufficient for GAV with constraints

D. Calvanese Data Integration BIT PhD Summer School 125 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Example of inconsistency

sC1
12 anne florence 21
12 bill oslo 24

studentB

Code Name City
12 anne florence
12 bill oslo

The tuples in sC1 and the mapping imply studentB(12, anne, florence)
and studentB(12, bill, oslo), for all B that satisfy the mapping

Due to the key dependency key(student) = {Code} in G, there is no
global database that satisfies the mapping and is legal wrt the global
schema, i.e., semI(C) = ∅

D. Calvanese Data Integration BIT PhD Summer School 126 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV data integration systems with constraints

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes / no no

no (G)LAV yes no

IDs GAV yes no

KDs GAV yes / no yes

IDs + KDs GAV yes yes

yes (G)LAV yes yes

D. Calvanese Data Integration BIT PhD Summer School 127 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Incompleteness and inconsistency

D. Calvanese Data Integration BIT PhD Summer School 128 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Inclusion dependencies – Example

Global schema G: player(Pname,YOB ,Pteam)
team(Tname,Tcity ,Tleader)

Constraints: team[Tleader ,Tname] ⊆ player[Pname,Pteam]

Sources S: s1 and s3 store players
s2 stores teams

Mapping M: { (x, y, z) | s1(x, y, z) ∨ s3(x, y, z) } ; player(x, y, z)
{ (x, y, z) | s2(x, y, z) } ; team(x, y, z)

D. Calvanese Data Integration BIT PhD Summer School 130 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Inclusion dependencies – Example retrieved global db

Source database C:

s1: Totti 1971 Roma s2: Juve Torino Del Piero

s3: Buffon 1978 Juve

Retrieved global database M(C):

player:
Totti 1971 Roma
Buffon 1978 Juve

team: Juve Torino Del Piero

D. Calvanese Data Integration BIT PhD Summer School 131 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Inclusion dependencies – Example retrieved global db

player:

Totti 1971 Roma
Buffon 1978 Juve

Del Piero α Juve

team:

Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All global databases satisfying I have at least the tuples shown above,
where α is some value of the domain ∆

Warnings

1 There may be an infinite number of databases satisfying I
2 In case of cyclic IDs, databases satisfying I may be of infinite size

D. Calvanese Data Integration BIT PhD Summer School 132 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Inclusion dependencies – Example retrieved global db

player:

Totti 1971 Roma
Buffon 1978 Juve

Del Piero α Juve

team:

Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All global databases satisfying I have at least the tuples shown above,
where α is some value of the domain ∆

Consider the query q = { (x, z) | player(x, y, z) }

cert(q, I, C) = { (Totti, Roma), (Buffon, Juve), (Del Piero, Juve) }

D. Calvanese Data Integration BIT PhD Summer School 133 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Chasing inclusion dependencies – Infinite construction

Intuitive strategy: Add new facts until IDs are satisfied

Problem: Infinite construction in the presence of cyclic IDs

Example

Let r be binary with
r[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add r(b, c1)
2 add r(c1, c2)
3 add r(c2, c3)
4 . . . (ad infinitum)

Example

Let r, s be binary with
r[1] ⊆ s[1], s[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add s(a, c1)
2 add r(c1, c2)
3 add s(c1, c3)
4 add r(c3, c4)
5 . . . (ad infinitum)

D. Calvanese Data Integration BIT PhD Summer School 134 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

The chase of a database

Definition

The chase of a database is the exhaustive application of a set of rules
that transform the database, in order to make it consistent with a set of
integrity constraints

Typically, there will be one or more chase rules for each different type of
constraint

D. Calvanese Data Integration BIT PhD Summer School 135 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

The ID-chase rule

The chase for IDs has only one rule, the ID-chase rule

Let D be a database:

if the schema contains the ID r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
and there is a fact in D of the form r(a1, . . . , an)
and there are no facts in D of the form s(b1, . . . , bm)

such that ai` = bj`
for each ` ∈ {1, . . . , k},

then add to D the fact s(c1, . . . , cm),
where for each h ∈ {1, . . . ,m},

if h = j` for some ` then ch = ai`

otherwise ch is a new constant symbol (not in D yet)

Notice: New existential symbols are introduced (skolem terms)

D. Calvanese Data Integration BIT PhD Summer School 136 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Properties of the chase

Bad news: the chase is in general infinite

Good news: the chase identifies a canonical model
A canonical model is a database that “represents” all the models of
the system

We can use the chase to prove soundness and completeness of a
query processing method

. . . but only for positive queries!

D. Calvanese Data Integration BIT PhD Summer School 137 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Limiting the chase

Why don’t we use a finite number of existential constants in the chase?

Example

Consider r[1] ⊆ s[1], and s[2] ⊆ r[1] and suppose M(C) = { r(a, b) }

Compute chase(M(C)) with only one new constant c1:
0) r(a, b); 1) add s(a, c1) 2) add r(c1, c1) 3) add s(c1, c1)

This database is not a canonical model for I wrt C
E.g., for query q = { (x) | r(x, y), s(y, y) }, we have a ∈ qchase(M(C))

while a 6∈ cert(q, I, C)

Arbitrarily limiting the chase is unsound, for any finite number of new
constants

D. Calvanese Data Integration BIT PhD Summer School 138 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Chasing the query

When chasing the data the termination condition would need to take
into account the query

We consider an alternative approach, based on the idea of a query chase

Instead of chasing the data, we chase the query

Is the dual notion of the database chase

IDs are applied from right to left to the query atoms

Advantage: much easier termination conditions, which imply:

decidability properties
efficiency

This technique provides an algorithm for rewriting UCQs under IDs

D. Calvanese Data Integration BIT PhD Summer School 140 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Query rewriting under inclusion dependencies

Given a query q over the global schema G, we look for a rewriting
rew of q expressed over S

A rewriting rew is perfect if rewC = cert(q, I, C), for every source
database C

With a perfect rewriting, we can do query answering by rewriting
; We avoid actually constructing the retrieved global database
M(C)

D. Calvanese Data Integration BIT PhD Summer School 141 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Rewriting rule for inclusion dependencies

Intuition: Use the IDs as basic rewriting rules

Example

Consider a query q = { (x, z) | player(x, y, z) }

and the constraint team[Tleader ,Tname] ⊆ player[Pname,Pteam]
as a logic rule: player(w3, w4, w1) ← team(w1, w2, w3)

We add to the rewriting the query q′ = { (x, z) | team(x, y, z) }

Definition

Basic rewriting step:

when an atom unifies with the head of the rule

substitute the atom with the body of the rule

D. Calvanese Data Integration BIT PhD Summer School 142 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Query Rewriting for IDs – Algorithm ID-rewrite

Iterative execution of:
1 Reduction:

Atoms that unify with other atoms are eliminated and the
unification is applied
Variables that appear only once are marked

2 Basic rewriting step

A rewriting step is applicable to an atom if it does not eliminate
variables that appear somewhere else
May introduce fresh variables

Note: The algorithm works directly for unions of conjunctive queries
(UCQs), and produces an UCQ as result

D. Calvanese Data Integration BIT PhD Summer School 143 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

The algorithm ID-rewrite

Input: relational schema G, set ΨID of IDs, UCQ Q
Output: perfect rewriting of Q
Q′ := Q;
repeat

Qaux := Q′;
for each q ∈ Qaux do
(a) for each g1, g2 ∈ body(q) do

if g1 and g2 unify then Q′ := Q′ ∪ {τ(reduce(q, g1, g2))};
(b) for each g ∈ body(q) do

for each ID ∈ ΨID do
if ID is applicable to g

then Q′ := Q′ ∪ { q[g/rewrite(g, ID)] }
until Qaux = Q′;
return Q′

D. Calvanese Data Integration BIT PhD Summer School 144 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Query answering in GAV under IDs

Properties of ID-rewrite

ID-rewrite terminates

ID-rewrite produces a perfect rewriting of the input query

More precisely, let unfM(q) be the unfolding of the query q wrt the GAV
mappingM

Theorem

unfM(ID-rewrite(q)) is a perfect rewriting of the query q

Theorem

Query answering in GAV systems under IDs is in PTime in data
complexity (actually in LogSpace)

D. Calvanese Data Integration BIT PhD Summer School 145 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Query answering under IDs and KDs

We have already seen that in GAV systems under sound mappings

Key dependencies may give rise to inconsistencies

WhenM(C) violates the KDs, no legal database exists and query
answering becomes trivial

How do KDs interact with IDs?

Theorem

Query answering under IDs and KDs is undecidable

Proof: By reduction from implication of IDs and KDs

We need to look for syntactic restrictions on the form of the
dependencies that ensures decidability

D. Calvanese Data Integration BIT PhD Summer School 147 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Non-key-conflicting IDs

Definition

Non-key-conflicting IDs (NKCIDs) are of the form r1[~x1] ⊆ r2[~x2]
where ~x2 is not a strict superset of key(r2)

Example

Let r be of arity 3 and s of arity 4 with key(s) = {1, 2}
The following are NKCIDs

r[2] ⊆ s[2], since {2} is a strict subset of key(s)
r[2, 3] ⊆ s[1, 2], since {1, 2} coincides with key(s)
r[1, 2] ⊆ s[2, 3], since 1 ∈ key(s) but 1 6∈ {2, 3}

The following is not a NKCID: r[1, 2, 3] ⊆ s[1, 2, 4]

Note: Foreign keys (FKs) are a special case of NKCIDs

D. Calvanese Data Integration BIT PhD Summer School 148 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Separation for IDs and KDs

Theorem (IDs-KDs separation)

Under KDs and NKCIDs, ifM(C) satisfies the KDs, then the KDs can
be ignored wrt certain answers of a user query q

Intuition: For NKCIDs, when applying the ID-chase rule to a tuple
~t1 ∈ rB1 , we can choose the tuple ~t2 to introduce in rB2 so that it does
not violate key(r2):

When key(r2) 6⊆ ~x2, fresh constants in ~t2 are chosen for key
attributes, and so there is no other tuple in rB2 coinciding with ~t2
on all key attributes
When key(r2) = ~x2, if there is already a tuple ~t in rB2 such that
~t1[~x1] = ~t[~x2], we choose ~t for ~t2

Query answering becomes undecidable as soon as we extend the
language of the IDs

D. Calvanese Data Integration BIT PhD Summer School 149 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Query processing under separable KDs and IDs

Global algorithm:

1 Verify consistency ofM(C) with respect to KDs

2 Compute ID-rewrite of the input query

3 Unfold wrtM the query computed at previous step

4 Evaluate the unfolded query over the sources

Note:

The KD consistency check can be done by suitable CQs with
inequality

The computation ofM(C) can be avoided (by unfolding the
queries for the KD consistency check)

D. Calvanese Data Integration BIT PhD Summer School 150 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Checking KD consistency – Example

Relation: player[Pname,Pteam]
Key dependency: key(player) = {Pname}

Query to check (in)consistency of the KD:
q = { () | player(x, y), player(x, z), y 6= z }

is true iff the instance of player violates the KD

Mapping M: { (x, y) | s1(x, y) ∨ s2(x, y) } ; player(x, y)

Unfolding of q wrt M: { () | s1(x, y), s1(x, z), y 6= z ∨
s1(x, y), s2(x, z), y 6= z ∨
s2(x, y), s1(x, z), y 6= z ∨
s2(x, y), s2(x, z), y 6= z }

D. Calvanese Data Integration BIT PhD Summer School 151 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Query answering in GAV under separable IDs+KDs

Theorem (Cal̀ı, Lembo & Rosati, PODS’03)

Answering conjunctive queries in GAV systems under KDs and NKCIDs
is in PTime in data complexity (actually in LogSpace )

Can we extend these results to more expressive user queries?

The rewriting technique extends immediately to unions of CQs
ID-rewrite(q1 ∨ · · · ∨ qn) = ID-rewrite(q1) ∨ · · · ∨ ID-rewrite(qn)

This is not the case for recursive queries

Theorem (— & Rosati KRDB’03)

Answering recursive queries under KDs and FKs is undecidable
Answering recursive queries under IDs is undecidable

D. Calvanese Data Integration BIT PhD Summer School 152 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Query answering under IDs and EDs

Under EDs:

Possibility of inconsistencies

WhenM(C) violates the EDs, no legal database exists and query
answering becomes trivial

Under IDs and EDs:

How do EDs and IDs interact?

Is query answering separable?

Is query answering decidable?

D. Calvanese Data Integration BIT PhD Summer School 154 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Exclusion dependencies – Example

Global schema G: player(Pname,YOB ,Pteam)
team(Tname,Tcity ,Tleader)
coach(Cname,Cteam)

Constraints: team[Tleader ,Tname] ⊆ player[Pname,Pteam]
coach[Cname] ∩ player[Pname] = ∅

Sources S: s1 and s3 store players
s2 stores teams
s4 stores coaches

Mapping M: { (x, y, z) | s1(x, y, z) ∨ s3(x, y, z) } ; player(x, y, z)
{ (x, y, z) | s2(x, y, z) } ; team(x, y, z)
{ (x, y) | s4(x, y, z) } ; coach(x, y)

D. Calvanese Data Integration BIT PhD Summer School 155 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Retrieved global db under EDs – Example

Source database C:

s1: Totti 1971 Roma s2: Juve Torino Del Piero

s3: Buffon 1978 Juve s4: Del Piero Viterbese

Retrieved global database M(C):

player :
Totti 1971 Roma
Buffon 1978 Juve

team :
Juve Torino Del Piero

coach :
Del Piero Viterbese

D. Calvanese Data Integration BIT PhD Summer School 156 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

“Repair” of retrieved global db under EDs – Example

Retrieved global database M(C):

player :
Totti 1971 Roma
Buffon 1978 Juve

Del Piero α Juve

team :
Juve Torino Del Piero

coach :
Del Piero Viterbese

“Repair”of team[Tleader ,Tname] ⊆ player[Pname,Pteam]

Violation of coach[Cname] ∩ player[Pname] = ∅

Can we detect such situations without actually constructingM(C)?

D. Calvanese Data Integration BIT PhD Summer School 157 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Deductive closure of EDs under IDs – Example

Can we saturate (close) the EDs by adding all the EDs that are logical
consequences of the EDs and IDs?

Example

From
team[Tleader ,Tname] ⊆ player[Pname,Pteam]
coach[Cname] ∩ player[Pname] = ∅

it follows that

coach[Cname] ∩ team[Tleader ] = ∅

This constraint is violated by the retrieved global database M(C)

D. Calvanese Data Integration BIT PhD Summer School 158 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Deductive closure of EDs under IDs

Definition

Derivation rule of EDs under EDs and IDs:

From the ED r[i1, . . . , ik] ∩ s[j1, . . . , jk] = ∅
and the ID t[`1, . . . , `k] ⊆ s[j1, . . . , jk]
derive the ED r[i1, . . . , ik] ∩ t[`1, . . . , `k] = ∅

Corresponds to a simple application of resolution on the FOL sentences
corresponding to EDs and IDs

Theorem

If the set of EDs is closed with respect to the above rule, it contains all
EDs that are logical consequences of the initial EDs and IDs

D. Calvanese Data Integration BIT PhD Summer School 159 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Query answering in GAV under IDs and EDs

Theorem (ID-ED Separation)

Under IDs and EDs,
ifM(C) satisfies all EDs derived from the IDs and the original EDs
then the EDs can be ignored wrt certain answers of a query

We obtain a method for query answering in GAV under EDs and IDs:

1 Close the set of EDs with respect to the IDs

2 Verify consistency ofM(C) with respect to EDs

3 Compute ID-rewrite of the input query

4 Unfold the query computed at the previous step

5 Evaluate the query over the sources

The ED consistency check can be done by suitable CQs

D. Calvanese Data Integration BIT PhD Summer School 160 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Query answering in GAV under IDs, KDs and EDs

Theorem (ID-KD-ED Separation)

Under KDs, NKCIDs, and EDs,
ifM(C) satisfies all the KDs
and satisfies all EDs derived from the IDs and the original EDs
then the KDs and EDs can be ignored wrt certain answers of a query

We obtain a method for query answering in GAV under KDs, NKCIDs,
and EDs:

1 Close the set of EDs with respect to the IDs

2 Verify consistency ofM(C) with respect to KDs and EDs

3 Compute ID-rewrite of the input query

4 Unfold the query computed at the previous step

5 Evaluate the query over the sources

D. Calvanese Data Integration BIT PhD Summer School 161 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Query answ. in GAV under IDs, KDs and EDs – Complexity

Note:

1 Closing the set of EDs wrt the IDs is independent of the data

2 Consistency ofM(C) wrt KDs and EDs can be verified through
suitable queries over the source database C

Theorem (Lembo & Rosati, 2004)

Answering conjunctive queries in GAV systems under KDs, NKCIDs and
EDs is in PTime in data complexity (actually in LogSpace )

D. Calvanese Data Integration BIT PhD Summer School 162 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Part 3: Query answering with constraints

Outline

5 The role of global integrity constraints

6 Query answering in GAV with constraints
Incompleteness and inconsistency in GAV systems
Query answering in GAV under inclusion dependencies
Rewriting CQs under inclusion dependencies in GAV
Query answering in GAV under IDs and KDs
Query answering in GAV under IDs, KDs, and EDs

7 Query answering in LAV with constraints
LAV systems and integrity constraints
Query answering in (G)LAV under inclusion dependencies
Query answering in (G)LAV under IDs and EDs
LAV systems and key dependencies

D. Calvanese Data Integration BIT PhD Summer School 163 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

LAV systems and integrity constraints Part 3: Query answering with constraints

(G)LAV system with integrity constraints

We consider a data integration system I = 〈G,S,M〉 where

G is a global schema with constraints

M is a set of LAV mappings, whose assertions have the form
φS ; φG and are interpreted as

∀~x. φS(~x)→ φG(~x)

where φS is a conjunctive query over S, and φG is a conjunctive
query over G

Basic observation: Since G does have constraints, the canonical
retrieved global database M(C)↓ may not be legal for G

D. Calvanese Data Integration BIT PhD Summer School 165 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

LAV systems and integrity constraints Part 3: Query answering with constraints

Semantics of (G)LAV systems with integrity constraints

Given a source db C, a global db B (over ∆) satisfies I relative to C if

1 it is legal wrt the global schema, i.e., it satisfies the ICs

2 it satisfies the mapping, i.e., B is a superset of the canonical
retrieved global database M(C)↓ (sound mappings)

Recall:

M(C) is obtained by evaluating, for each mapping assertion
φS ; φG , the query φS over C, and using the obtained tuples to
populate the global relations according to φG , using fresh constants
for existentially quantified elements

We are interested in certain answers to a query, i.e., those that hold
for all global databases that satisfy I relative to C

D. Calvanese Data Integration BIT PhD Summer School 166 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

LAV systems and integrity constraints Part 3: Query answering with constraints

(G)LAV data integration systems with constraints

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes / no no

no (G)LAV yes no

IDs GAV yes no

KDs GAV yes / no yes

IDs + KDs GAV yes yes

IDs (G)LAV yes no

KDs (G)LAV yes yes

IDs + KDs GAV yes yes

D. Calvanese Data Integration BIT PhD Summer School 167 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

LAV systems and integrity constraints Part 3: Query answering with constraints

(G)LAV with constr. – Incompleteness and inconsistency

D. Calvanese Data Integration BIT PhD Summer School 168 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in (G)LAV under inclusion dependencies Part 3: Query answering with constraints

(G)LAV systems under IDs

Under IDs only, we can exploit the previous results for GAV also for
(G)LAV, by turning the (G)LAV mappings into GAV mappings:

We transform a (G)LAV integration system I = 〈G,S,M〉 with IDs
only into a GAV system I ′ = 〈G′,S,M′〉

With respect to I, the transformed system I ′ contains auxiliary IDs
and auxiliary global relation symbols

The transformation is query-preserving:

For every conjunctive query q and for every source database C, the
certain answers to q wrt I and C are equal to the certain answers
to q wrt I ′ and C

D. Calvanese Data Integration BIT PhD Summer School 170 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in (G)LAV under inclusion dependencies Part 3: Query answering with constraints

Transforming LAV into GAV – Example

Initial LAV mappings: s(x, y) ; { (x, y) | r1(x, z), r2(y, w) }
t(x, y) ; { (x, y) | r1(x, z), r3(y, x) }

We introduce two new global relations for each mapping assertion:
si/2, se/4, and ti/2, te/3

Transformed GAV mappings: { (x, y) | s(x, y) } ; si(x, y)
{ (x, y) | t(x, y) } ; ti(x, y)

Additional IDs generated by the transformation:

si[1, 2] ⊆ se[1, 2] se[1, 3] ⊆ r1[1, 2] se[2, 4] ⊆ r2[1, 2]
ti[1, 2] ⊆ te[1, 2] te[1, 3] ⊆ r1[1, 2] te[2, 1] ⊆ r3[1, 2]

D. Calvanese Data Integration BIT PhD Summer School 171 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in (G)LAV under inclusion dependencies Part 3: Query answering with constraints

Query answering in (G)LAV systems under IDs

Method for query answering in a (G)LAV system I with IDs:

1 Transform I into a GAV system I ′

2 Apply the query answering method for GAV systems under IDs
(The unfolding step must take into account the presence of
auxiliary global symbols)

Theorem

Answering conjunctive queries in (G)LAV systems under IDs is in
PTime in data complexity (actually in LogSpace )

D. Calvanese Data Integration BIT PhD Summer School 172 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in (G)LAV under IDs and EDs Part 3: Query answering with constraints

(G)LAV systems under IDs and EDs

What happens if we have also EDs in the global schema?

The above transformation of (G)LAV into GAV is still correct in the
presence of EDs

It is thus possible to first turn the (G)LAV system into a GAV one
and then compute query answering in the transformed system

The addition of EDs is completely modular (we just need to add
auxiliary steps in the query answering technique)

D. Calvanese Data Integration BIT PhD Summer School 174 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

Query answering in (G)LAV under IDs and EDs Part 3: Query answering with constraints

Query answering in (G)LAV systems under IDs and EDs

Method for query answering in a (G)LAV system I with IDs and EDs:

1 Transform I into a GAV system I ′

2 Apply the query answering method for GAV systems under IDs and
EDs
(The unfolding step must take into account the presence of
auxiliary global symbols)

Theorem

Answering conjunctive queries in (G)LAV systems under IDs end Eds is
in PTime in data complexity (actually in LogSpace )

D. Calvanese Data Integration BIT PhD Summer School 175 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

LAV systems and key dependencies Part 3: Query answering with constraints

(G)LAV systems under KDs

We consider a (G)LAV system with only KDs in the global schema:

The transformation of (G)LAV into GAV is still correct in the
presence of KDs

More precisely, starting from a (G)LAV system I with KDs, we
obtain a GAV system I ′ with KDs and IDs

But in general, I ′ is such that the IDs added by the transformation
are key-conflicting IDs (i.e., these IDs are not NKCIDs), and hence
the KDs are in general not separable

Therefore, it is not possible to apply the query answering method for
(G)LAV systems under separable KDs and IDs

Question: Can we find some analogous query answering method based
on query rewriting?

D. Calvanese Data Integration BIT PhD Summer School 177 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

LAV systems and key dependencies Part 3: Query answering with constraints

(G)LAV systems under KDs – A negative result

Problem: KDs and LAV mappings derive new equality-generating
dependencies (not simple KDs)

Theorem (Duschka & al., 1998)

Given a LAV data integration system I with KDs in the global schema
and a conjunctive query q, in general there does not exist a first-order
query rew such that rewC = cert(q, I, C) for every source database C

In other words, in LAV with KDs, conjunctive queries are not first-order
rewritable, and one would need to resort to more powerful relational
query languages (e.g., Datalog)

D. Calvanese Data Integration BIT PhD Summer School 178 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

LAV systems and key dependencies Part 3: Query answering with constraints

Data integration with constraints – First-order rewritability

Can query answering in integration systems be performed by first-order
(UCQ) rewriting?

GAV with IDs + EDs: yes

GAV with IDs + KDs + EDs: only if KDs and IDs are separable

LAV with IDs + EDs: yes

LAV with KDs: no

D. Calvanese Data Integration BIT PhD Summer School 179 / 190



Global integrity constraints Query answering in GAV with constraints Query answering in LAV with constraints

LAV systems and key dependencies Part 3: Query answering with constraints

Data integration with constraints – Complexity results

EDs KDs IDs Data/Combined complexity

no no general PTIME/PSPACE

yes-no yes no PTIME/NP

yes yes-no no PTIME/NP

yes-no yes NKC PTIME/PSPACE

yes no general PTIME/PSPACE

yes-no yes 1KC undecidable

yes-no yes general undecidable

D. Calvanese Data Integration BIT PhD Summer School 180 / 190



Concluding remarks

Part 4: Conclusions

Part IV

Concluding remarks

D. Calvanese Data Integration BIT PhD Summer School 181 / 190



Concluding remarks

Part 4: Conclusions

Outline

8 Concluding remarks

D. Calvanese Data Integration BIT PhD Summer School 182 / 190



Concluding remarks

Part 4: Conclusions

Outline

8 Concluding remarks

D. Calvanese Data Integration BIT PhD Summer School 183 / 190



Concluding remarks

Part 4: Conclusions

Further issues and open problems

Further forms of constraints, e.g.,

KDs with restricted forms of key-conflicting IDs
ontology languages, description logics, RDF

[— & al. PODS’98, — & al., KR’06]

Semistructured data and XML

constraints (DTDs, XML Schema, . . . )
query languages (transitive closure)

Finite models vs. unrestricted models [Rosati, PODS’06]

Data exchange and materialization

D. Calvanese Data Integration BIT PhD Summer School 184 / 190



Concluding remarks

Part 4: Conclusions

Acknowledgements

Andrea Cal̀ı

Giuseppe De Giacomo

Domenico Lembo

Maurizio Lenzerini

Riccardo Rosati

Moshe Y. Vardi

D. Calvanese Data Integration BIT PhD Summer School 185 / 190



Concluding remarks

Part 4: Conclusions

References I

S. Abiteboul and O. Duschka.

Complexity of answering queries using materialized views.

In Proc. of PODS’98, pages 254–265, 1998.

A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini.

On the expressive power of data integration systems.

In Proc. of ER 2002, 2002.

A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini.

On the role of integrity constraints in data integration.

IEEE Bull. on Data Engineering, 25(3):39–45, 2002.

A. Cal̀ı, D. Lembo, and R. Rosati.

Query rewriting and answering under constraints in data integration systems.

In Proc. of IJCAI 2003, pages 16–21, 2003.

D. Calvanese Data Integration BIT PhD Summer School 186 / 190



Concluding remarks

Part 4: Conclusions

References II

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

Data complexity of query answering in description logics.

In Proc. of KR 2006, 2006.

D. Calvanese, G. De Giacomo, and M. Lenzerini.

On the decidability of query containment under constraints.

In Proc. of PODS’98, pages 149–158, 1998.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.

View-based query processing: On the relationship between rewriting, answering
and losslessness.

In Proc. of ICDT 2005, volume 3363 of LNCS, pages 321–336. Springer, 2005.

D. Calvanese and R. Rosati.

Answering recursive queries under keys and foreign keys is undecidable.

In Proc. of KRDB 2003. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-79/, 2003.

D. Calvanese Data Integration BIT PhD Summer School 187 / 190

http://ceur-ws.org/Vol-79/


Concluding remarks

Part 4: Conclusions

References III

O. M. Duschka, M. R. Genesereth, and A. Y. Levy.

Recursive query plans for data integration.

J. of Logic Programming, 43(1):49–73, 2000.

A. Fuxman and R. J. Miller.

First-order query rewriting for inconsistent databases.

In Proc. of ICDT 2005, volume 3363 of LNCS, pages 337–351. Springer, 2005.

G. Grahne and A. O. Mendelzon.

Tableau techniques for querying information sources through global schemas.

In Proc. of ICDT’99, volume 1540 of LNCS, pages 332–347. Springer, 1999.

A. Y. Halevy.

Answering queries using views: A survey.

VLDB Journal, 10(4):270–294, 2001.

D. Calvanese Data Integration BIT PhD Summer School 188 / 190



Concluding remarks

Part 4: Conclusions

References IV

M. Lenzerini.

Data integration: A theoretical perspective.

In Proc. of PODS 2002, pages 233–246, 2002.

N. Leone, T. Eiter, W. Faber, M. Fink, G. Gottlob, G. Greco, E. Kalka, G. Ianni,
D. Lembo, V. Lio, B. Nowicki, R. Rosati, M. Ruzzi, W. Staniszkis, and
G. Terracina.

Boosting information integration: The INFOMIX system.

In Proc. of SEBD 2005, pages 55–66, 2005.

A. Y. Levy, A. Rajaraman, and J. J. Ordille.

Query answering algorithms for information agents.

In Proc. of AAAI’96, pages 40–47, 1996.

D. Calvanese Data Integration BIT PhD Summer School 189 / 190



Concluding remarks

Part 4: Conclusions

References V

R. Rosati.

On the decidability and finite controllability of query processing in databases
with incomplete information.

In Proc. of PODS 2006, 2006.

D. Calvanese Data Integration BIT PhD Summer School 190 / 190


	Part 1: Introduction to data integration
	Basic issues in data integration
	The problem of data integration
	Variants of data integration
	Problems in data integration

	Data integration: Logical formalization
	Semantics of a data integration system
	Relational calculus
	Queries to a data integration system
	Formalizing the mapping
	Formalizing GAV data integration systems
	Formalizing LAV data integration systems


	Part 2: Query answering without constraints
	Query answering
	Query answering in GAV without constraints
	Retrieved global database
	Query answering via unfolding
	Universal solutions

	Query answering in (G)LAV without constraints
	(G)LAV and incompleteness
	Approaches to query answering in (G)LAV
	(G)LAV: Direct methods (aka view-based query answering)
	(G)LAV: Query answering by (view-based) query rewriting


	Part 3: Query answering with constraints
	The role of global integrity constraints
	Query answering in GAV with constraints
	Incompleteness and inconsistency in GAV systems
	Query answering in GAV under inclusion dependencies
	Rewriting CQs under inclusion dependencies in GAV
	Query answering in GAV under IDs and KDs
	Query answering in GAV under IDs, KDs, and EDs

	Query answering in LAV with constraints
	LAV systems and integrity constraints
	Query answering in (G)LAV under inclusion dependencies
	Query answering in (G)LAV under IDs and EDs
	LAV systems and key dependencies


	Part 4: Conclusions
	Concluding remarks


