Schema Mappings Data Exchange & Metadata Management

Phokion G. Kolaitis IBM Almaden Research Center

joint work with

Ronald FaginRenée J. MillerLucian PopaWang-Chiew TanIBM AlmadenU. TorontoIBM AlmadenUC Santa Cruz

The Data Interoperability Problem

Data may reside

- at several different sites
- □ in several different formats (relational, XML, ...).
- Two different, but related, facets of data interoperability:
 - **Data Integration** (aka Data Federation):
 - **Data Exchange** (aka Data Translation):

Data Integration

Query heterogeneous data in different sources via a virtual global schema

Data Exchange

Transform data structured under a source schema into data structured under a different target schema.

Data Exchange is an old, but recurrent, database problem

- Phil Bernstein 2003
 - "Data exchange is the oldest database problem"
- EXPRESS: IBM San Jose Research Lab 1977
 EXtraction, Processing, and REStructuring System for transforming data between hierarchical databases.
- Data Exchange underlies:
 - Data Warehousing, ETL (Extract-Transform-Load) tasks;
 - □ XML Publishing, XML Storage, ...

Foundations of Data Interoperability

Theoretical Aspects of Data Interoperability

Develop a conceptual framework for formulating and studying fundamental problems in data interoperability:

- Semantics of data integration & data exchange
- Algorithms for data exchange
- Complexity of query answering

Outline of the Talk

- Schema Mappings and Data Exchange
- Solutions in Data Exchange
 - Universal Solutions
 - The Core of the Universal Solutions
- Query Answering in Data Exchange
- Composing Schema Mappings

Schema Mappings

Schema mappings:

high-level, declarative assertions that specify the relationship between two schemas.

Ideally, schema mappings should be

- expressive enough to specify data interoperability tasks;
- simple enough to be efficiently manipulated by tools.
- Schema mappings constitute the essential building blocks in formalizing data integration and data exchange.
- Schema mappings play a prominent role in Bernstein's metadata management framework.

Schema Mappings & Data Exchange

- Schema Mapping M = (S, T, Σ)
 - Source schema S, Target schema T
 - High-level, declarative assertions Σ that specify the relationship between S and T.
- Data Exchange via the schema mapping M = (S, T, Σ)

Transform a given source instance I to a target instance J, so that $\langle I, J \rangle$ satisfy the specifications Σ of **M**.

Solutions in Schema Mappings

Definition: Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ If I is a source instance, then a solution for I is a target instance J such that $\langle I, J \rangle$ satisfy Σ .

Fact: In general, for a given source instance I,

No solution for I may exist

or

 Multiple solutions for I may exist; in fact, infinitely many solutions for I may exist.

Schema Mappings: Basic Problems

Definition: Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$

- The existence-of-solutions problem Sol(M): (decision problem) Given a source instance I, is there a solution J for I?
- The data exchange problem associated with M: (function problem) Given a source instance I, construct a solution J for I, provided a solution exists.

Schema Mapping Specification Languages

- Question: How are schema mappings specified?
- Answer: Use logic. In particular, it is natural to try to use first-order logic as a specification language for schema mappings.
- Fact: There is a fixed first-order sentence specifying a schema mapping M* such that Sol(M*) is undecidable.
- Hence, we need to restrict ourselves to well-behaved fragments of first-order logic.

Embedded Implicational Dependencies

- Dependency Theory: extensive study of constraints in relational databases in the 1970s and 1980s.
- Embedded Implicational Dependencies: Fagin, Beeri-Vardi, ...
 Class of constraints with a balance between high expressive power and good algorithmic properties:
 - Tuple-generating dependencies (tgds)
 Inclusion and multi-valued dependencies are a special case.
 - Equality-generating dependencies (egds)
 - Functional dependencies are a special case.

Data Exchange with Tgds and Egds

- Joint work with R. Fagin, R.J. Miller, and L. Popa
- Studied data exchange between relational schemas for schema mappings specified by
 - Source-to-target tgds
 - Target tgds
 - Target egds

Schema Mapping Specification Language

The relationship between source and target is given by formulas of first-order logic, called

Source-to-Target Tuple Generating Dependencies (s-t tgds) $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \psi(\mathbf{x}, \mathbf{y}), \text{ where}$

- $\varphi(\mathbf{x})$ is a conjunction of atoms over the source;
- $\psi(\mathbf{x}, \mathbf{y})$ is a conjunction of atoms over the target.

Example:

 $(Student(s) \land Enrolls(s,c)) \rightarrow \exists t \exists g (Teaches(t,c) \land Grade(s,c,g))$

Schema Mapping Specification Language

 s-t tgds assert that: some SPJ source query is *contained* in some other SPJ target query

 $(Student (s) \land Enrolls(s,c)) \rightarrow \exists t \exists g (Teaches(t,c) \land Grade(s,c,g))$

- s-t tgds generalize the main specifications used in data integration:
 - They generalize LAV (local-as-view) specifications:

 $P(\mathbf{x}) \rightarrow \exists \mathbf{y} \psi(\mathbf{x}, \mathbf{y})$, where P is a source

schema.

They generalize GAV (global-as-view) specifications:

 $\varphi(\mathbf{x}) \rightarrow \mathsf{R}(\mathbf{x})$, where R is a target schema

At present, most commercial II systems support GAV only.

Target Dependencies

In addition to source-to-target dependencies, we also consider target dependencies:

□ Target Tgds : $\phi_T(\mathbf{x}) \rightarrow \exists \mathbf{y} \psi_T(\mathbf{x}, \mathbf{y})$

Dept (did, dname, mgr_id, mgr_name) → Mgr (mgr_id, did) (a target inclusion dependency constraint)

□ Target Equality Generating Dependencies (egds): $\phi_T(\mathbf{x}) \rightarrow (\mathbf{x}_1 = \mathbf{x}_2)$

 $(Mgr (e, d_1) \land Mgr (e, d_2)) \rightarrow (d_1 = d_2)$ (a target key constraint)

Data Exchange Framework

Schema Mapping **M** = (**S**, **T**, Σ_{st} , Σ_t), where

- Σ_{st} is a set of source-to-target tgds
- Σ_t is a set of target tgds and target egds

Underspecification in Data Exchange

Fact: Given a source instance, multiple solutions may exist.

Example:

Source relation E(A,B), target relation H(A,B)

 $\Sigma: \quad \mathsf{E}(x,y) \ \twoheadrightarrow \exists z \ (\mathsf{H}(x,z) \ \land \ \mathsf{H}(z,y))$

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

- $J_1 = \{H(a,b), H(b,b)\}$
- $J_2 = \{H(a,a), H(a,b)\}$
- $J_3 = \{H(a,X), H(X,b)\}$
- $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$

constants:

a, b, ...

variables (labelled nulls):

Χ, Υ, ...

Main issues in data exchange

For a given source instance, there may be multiple target instances satisfying the specifications of the schema mapping. Thus,

- When more than one solution exist, which solutions are "better" than others?
- How do we compute a "best" solution?
- In other words, what is the "right" semantics of data exchange?

Universal Solutions in Data Exchange

- We introduced the notion of universal solutions as the "best" solutions in data exchange.
 - By definition, a solution is universal if it has homomorphisms to all other solutions (thus, it is a "most general" solution).
 - Constants: entries in source instances
 - Variables (labeled nulls): other entries in target instances
 - Homomorphism h: $J_1 \rightarrow J_2$ between target instances:
 - h(c) = c, for constant c
 - If $P(a_1,...,a_m)$ is in $J_{1,}$, then $P(h(a_1),...,h(a_m))$ is in J_2

Example - continued

Source relation S(A,B), target relation T(A,B)

 Σ : $E(x,y) \rightarrow \exists z (H(x,z) \land H(z,y))$

Source instance I = {H(a,b)}

Solutions: Infinitely many solutions exist

- J₁ = {H(a,b), H(b,b)} is not universal
- J₂ = {H(a,a), H(a,b)} is not universal
- J₃ = {H(a,X), H(X,b)} is universal
- $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$ is universal
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$

is <mark>not</mark> universal

Structural Properties of Universal Solutions

- Universal solutions are analogous to most general unifiers in logic programming.
- Uniqueness up to homomorphic equivalence: If J and J' are universal for I, then they are homomorphically equivalent.
- Representation of the entire space of solutions: Assume that J is universal for I, and J' is universal for I'. Then the following are equivalent:
 - 1. I and I' have the same space of solutions.
 - 2. J and J' are homomorphically equivalent.

Algorithmic Properties of Universal Solutions

Theorem (FKMP): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ such that:

- Σ_{st} is a set of source-to-target tgds;
- Σ_t is the union of a weakly acyclic set of target tgds with a set of target egds.

Then:

- Universal solutions exist if and only if solutions exist.
- **Sol(M)**, the existence-of-solutions problem for **M**, is in **P**.
- A canonical universal solution (if solutions exist) can be produced in polynomial time using the chase procedure.

Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgds contain as special cases:

Sets of full tgds

 $\varphi_{T}(\mathbf{x}) \rightarrow \psi_{T}(\mathbf{x})$, where $\varphi_{T}(\mathbf{x})$ and $\psi_{T}(\mathbf{x})$ are conjunctions of target atoms.

Example: $H(x,z) \land H(z,y) \rightarrow H(x,y) \land C(z)$

Full tgds express containment between relational joins.

Sets of acyclic inclusion dependencies
 Large class of dependencies occurring in practice.

The Smallest Universal Solution

- **Fact:** Universal solutions need not be unique.
- Question: Is there a "best" universal solution?
- Answer: In joint work with R. Fagin and L. Popa, we took a "small is beautiful" approach:

There is a smallest universal solution (if solutions exist); hence, the most compact one to materialize.

- Definition: The core of an instance J is the smallest subinstance J' that is homomorphically equivalent to J.
- Fact:
 - Every finite relational structure has a core.
 - The core is unique up to isomorphism.

The Core of a Structure

Definition: J' is the core of J if J'?

- there is a hom. h: $J \rightarrow J'$
- there is no hom. g: $J \rightarrow J''$, where J''?

The Core of a Structure

Example - continued

Source relation E(A,B), target relation H(A,B)

 Σ : (E(x,y) $\rightarrow \exists z (H(x,z) \land H(z,y))$

Source instance I = $\{E(a,b)\}$.

Solutions: Infinitely many universal solutions exist.

- $J_3 = \{H(a,X), H(X,b)\}$ is the core.
- J₄ = {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal, but not the core.
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ is not universal.

Core: The smallest universal solution

Theorem (FKP): $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ a schema mapping:

All universal solutions have the same core.

- The core of the universal solutions is the smallest universal solution.
- If every target constraint is an egd, then the core is polynomial-time computable.

Theorem (Gottlob – PODS 2005): $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$

If every target constraint is an egd or a full tgd, then the core is polynomial-time computable.

Outline of the Talk

Schema Mappings and Data Exchange

Solutions in Data Exchange

- ✓ Universal Solutions
- ✓ The Core of the Universal Solutions
- Query Answering in Data Exchange
- Composing Schema Mappings

Query Answering in Data Exchange

Question: What is the semantics of target query answering?

Definition: The certain answers of a query q over T on I

certain(q,I) =
$$\bigcap \{ q(J) : J \text{ is a solution for I } \}.$$

Note: It is the standard semantics in data integration.

Certain Answers Semantics

certain(q,I) = $\bigcap \{ q(J) : J \text{ is a solution for I} \}.$

Computing the Certain Answers

Theorem (FKMP): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_{t})$ such that:

- \Box Σ_{st} is a set of source-to-target tgds, and
- Σ_t is the union of a weakly acyclic set of tgds with a set of egds. Let q be a union of conjunctive queries over **T**.
- If I is a source instance and J is a universal solution for I, then

certain(q,I) = the set of all "null-free" tuples in q(J).

- Hence, **certain**(q,I) is computable in time polynomial in |I|:
 - 1. Compute a canonical universal J solution in polynomial time;
 - 2. Evaluate q(J) and remove tuples with nulls.

Note: This is a data complexity result (M and q are fixed).

Certain Answers via Universal Solutions

Computing the Certain Answers

Theorem (FKMP): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ such that:

- \Box Σ_{st} is a set of source-to-target tgds, and
- Σ_t is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries with inequalities (?).

- If q has at most one inequality per conjunct, then certain(q,I) is computable in time polynomial in |I| using a disjunctive chase.
- If q is has at most two inequalities per conjunct, then certain(q,I) can be coNP-complete, even if $\Sigma_t =$?.

Universal Certain Answers

- Alternative semantics of query answering based on universal solutions.
- Certain Answers:

"Possible Worlds" = Solutions

Universal Certain Answers:

"Possible Worlds" = Universal Solutions

Definition: Universal certain answers of a query q over **T** on I

u-certain(q,I) = $\cap \{ q(J): J \text{ is a universal solution for I } \}.$

Facts:

- certain(q,I) ? u-certain(q,I)
- certain(q,I) = u-certain(q,I), q a union of conjunctive queries

Computing the Universal Certain Answers

Theorem (FKP): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ such that:

- Σ_{st} is a set of source-to-target tgds
- \Box Σ_t is a set of target egds and target tgds.

Let q be an existential query over **T**.

• If I is a source instance and J is a universal solution for I, then

u-certain(q,I) = the set of all "null-free" tuples in q(core(J)).

 Hence, u-certain(q,I) is computable in time polynomial in |I| whenever the core of the universal solutions is polynomial-time computable.

Note: Unions of conjunctive queries with inequalities are a special case of existential queries.

Universal Certain Answers via the Core

From Theory to Practice

- Clio/Criollo Project at IBM Almaden managed by Howard Ho.
 - Semi-automatic schema-mapping generation tool;
 - Data exchange system based on schema mappings.
- Universal solutions used as the semantics of data exchange.
- Universal solutions are generated via SQL queries extended with Skolem functions (implementation of chase procedure), provided there are no target constraints.
- Clio/Criollo technology is being exported to WebSphere II.

Some Features of Clio

- Supports nested structures
 - Nested Relational Model
 - Nested Constraints
- Automatic & semiautomatic discovery of attribute correspondence.
- Interactive derivation of schema mappings.
- Performs data exchange

File: C:\eclipse\workspace\YClio\xsml\genex-rdb2xr

Outline of the Talk

Schema Mappings and Data Exchange

Solutions in Data Exchange

- ✓ Universal Solutions
- ✓ The Core of the Universal Solutions
- Query Answering in Data Exchange
- Composing Schema Mappings joint work with R. Fagin, L. Popa, and W.-C. Tan

Managing Schema Mappings

- Schema mappings can be quite complex.
- Methods and tools are needed to manage schema mappings automatically.
- Metadata Management Framework Bernstein 2003 based on generic schema-mapping operators:
 - Composition operator
 - Inverse operator
 - Merge operator
 -

Composing Schema Mappings

• Given $\mathbf{M}_{12} = (\mathbf{S}_1, \mathbf{S}_2, \Sigma_{12})$ and $\mathbf{M}_{23} = (\mathbf{S}_2, \mathbf{S}_3, \Sigma_{23})$, derive a schema mapping $\mathbf{M}_{13} = (\mathbf{S}_1, \mathbf{S}_3, \Sigma_{13})$ that is "equivalent" to the sequence \mathbf{M}_{12} and \mathbf{M}_{23} .

What does it mean for M_{13} to be "equivalent" to the composition of M_{12} and M_{23} ?

Earlier Work

- Metadata Model Management (Bernstein in CIDR 2003)
 - Composition is one of the fundamental operators
 - However, no precise semantics is given
- Composing Mappings among Data Sources (Madhavan & Halevy in VLDB 2003)
 - □ First to propose a semantics for composition
 - However, their definition is in terms of maintaining the same certain answers relative to a class of queries.
 - Their notion of composition *depends* on the class of queries; it may *not* be unique up to logical equivalence.

Semantics of Composition

Every schema mapping M = (S, T, Σ) defines a binary relationship Inst(M) between instances:

 $Inst(\mathbf{M}) = \{ \langle I, J \rangle | \langle I, J \rangle ? \}.$

Definition: (FKPT)

A schema mapping \mathbf{M}_{13} is a composition of \mathbf{M}_{12} and \mathbf{M}_{23} if

$$\begin{aligned} \text{Inst}(\mathbf{M}_{13}) &= \text{Inst}(\mathbf{M}_{12}) \circ \text{Inst}(\mathbf{M}_{23}), \text{ that is,} \\ &< I_1, I_3 > \textcircled{?} \Sigma_{13} \\ & \text{if and only if} \end{aligned}$$
 there exists I₂ such that $< I_1, I_2 > \textcircled{?} \Sigma_{12} \text{ and } < I_2, I_3 > \textcircled{?} \Sigma_{23}. \end{aligned}$

Note: Also considered by S. Melnik in his Ph.D. thesis

The Composition of Schema Mappings

Fact: If both $\mathbf{M} = (\mathbf{S}_1, \mathbf{S}_3, \Sigma)$ and $\mathbf{M'} = (\mathbf{S}_1, \mathbf{S}_3, \Sigma')$ are compositions of \mathbf{M}_{12} and \mathbf{M}_{23} , then Σ are Σ' are logically equivalent. For this reason:

- We say that M (or M') is *the* composition of M_{12} and M_{23} .
- We write $M_{12} \circ M_{23}$ to denote it

Definition: The composition query of M_{12} and M_{23} is the set Inst(M_{12}) ° Inst(M_{23})

Issues in Composition of Schema Mappings

The semantics of composition was the first main issue.

Some other key issues:

- Is the language of s-t tgds *closed under composition*?
 If M₁₂ and M₂₃ are specified by finite sets of s-t tgds, is
 M₁₂ ° M₂₃ also specified by a finite set of s-t tgds?
- If not, what is the "right" language for composing schema mappings?

Composition: Expressibility & Complexity

M ₁₂	M ₂₃	\mathbf{M}_{12} ° \mathbf{M}_{23}	Composition
Σ ₁₂	Σ ₂₃	Σ ₁₃	Query
finite set of full s-t tgds φ (x) → ψ (x)	finite set of s-t tgds φ(x) → ∃ y ψ(x , y)	finite set of s-t tgds φ (x)→∃y ψ (x,y)	in PTIME
finite set of s-t tgds	finite set of (full) s-t tgds	may not be definable:	in NP;
φ (x) → ∃ y ψ(x , y)	φ (x) → ∃ y ψ (x, y)	in Datalog	can be NP-complete

Employee Example

□ $Rep(e,e) \rightarrow SelfMgr(e)$

- Theorem: This composition is not definable by any finite set of s-t tgds.
- Fact: This composition is definable in a well-behaved fragment of second-order logic, called SO tgds, that extends s-t tgds with Skolem functions.

Employee Example - revisited

$$Σ_{12}$$
:
□ ∀e (Emp(e) → ∃m Rep(e,m))

 Σ_{23} :

- □ $\forall e \forall m (\operatorname{Rep}(e,m) \rightarrow \operatorname{Mgr}(e,m))$
- □ $\forall e (\text{Rep}(e,e) \rightarrow \text{SelfMgr}(e))$

```
Fact: The composition is definable by the SO-tgd Σ<sub>13</sub>:
□ ∃f (∀e( Emp(e) → Mgr(e,f(e) ) ∧ ∀e( Emp(e) ∧ (e=f(e)) → SelfMgr(e) ))
```

Definition: Let **S** be a source schema and **T** a target schema.

A second-order tuple-generating dependency (SO tgd) is a formula of the form:

 $\exists f_1 \ \dots \ \exists f_m(\ (\forall \boldsymbol{x_1}(\varphi_1 \rightarrow \psi_1)) \land \ \dots \land \ (\forall \boldsymbol{x_n}(\varphi_n \rightarrow \psi_n)) \), \ where$

- Each f_i is a function symbol.
- Each ϕ_i is a conjunction of atoms from **S** and equalities of terms.
- Each ψ_i is a conjunction of atoms from **T**.

Example:
$$\exists f (\forall e(Emp(e) \rightarrow Mgr(e, f(e)) \land \forall e(Emp(e) \land (e=f(e)) \rightarrow SelfMgr(e)))$$

Composing SO-Tgds and Data Exchange

Theorem (FKPT):

- The composition of two SO-tgds is definable by a SO-tgd.
- There is an algorithm for composing SO-tgds.
- The chase procedure can be extended to schema mappings specified by SO-tgds, so that it produces universal solutions in polynomial time.
- For schema mappings specified by SO-tgds, the certain answers of target conjunctive queries are polynomial-time computable.

Synopsis of Schema Mapping Composition

- s-t tgds are not closed under composition.
- SO-tgds form a well-behaved fragment of second-order logic.
 - SO-tgds are closed under composition; they are a "good" language for composing schema mappings.
 - SO-tgds are "chasable":

Polynomial-time data exchange with universal solutions.

 SO-tgds and the composition algorithm have been incorporated in Criollo's Mapping Specification Language (MSL).

Related Work and Extensions in this PODS

G. Gottlob:

Computing Cores for Data Exchange: Algorithms & Practical Solutions

- A. Nash, Ph. Bernstein, S. Melnik: Composition of Mappings Given by Embedded Dependencies
- A. Fuxman, Ph. Kolaitis, R.J. Miller, W.-C. Tan: Peer Data Exchange
- M. Arenas & L. Libkin: XML Data Exchange: Consistency and Query Answering

Theory and Practice

"Quelli che s'innamoran di pratica sanza scienza, son come 'l nocchiere ch'entra in navilio sanza timone o bussola, che mai ha certezza dove si vada"

Leonardo da Vinci, 1452-1519

"He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may cast."

Reduction from 3-Colorability

•
$$\Sigma_{12}$$

• $\forall x \forall y (E(x,y) \rightarrow \exists u \exists v (C(x,u) \land C(y,v)))$
• $\forall x \forall y (E(x,y) \rightarrow F(x,y))$
• Σ_{23}
• $\forall x \forall y \forall u \forall v (C(x,u) \land C(y,v) \land F(x,y) \rightarrow D(u,v))$

- Let I₃ = { (r,g), (g,r), (b,r), (r,b), (g,b), (b,g) }
- Given **G**=(V, E),
 - let I₁ be the instance over S₁ consisting of the edge relation E of G
- **G** is 3-colorable iff $\langle I_1, I_3 \rangle \in Inst(M_{12})^{\circ} Inst(M_{23})$
- [Dawar98] showed that 3-colorability is not expressible in $L_{\infty\omega}$

Algorithm Compose(M₁₂, M₂₃)

- Input: Two schema mappings M₁₂ and M₂₃
- **Output**: A schema mapping $M_{13} = M_{12}^{\circ}M_{23}$
- Step 1: Split up tgds in Σ_{12} and Σ_{23} • $C_{12} = Emp(e) \rightarrow (Mgr1(e, f(e)))$ • $C_{23} =$ • Mgr1(e, m) $\rightarrow Mgr(e, m)$
 - Mgr1(e,m) \rightarrow Mgr(e,m)
 - Mgr1(e,e) \rightarrow SelfMgr(e)
- Step 2: Compose C₁₂ with C₂₃
 - $\Box \quad \chi_1 : \text{Emp}(e_0) \land (e=e_0) \land (m=f(e_0)) \rightarrow \text{Mgr1}(e,m)$
 - □ χ_2 : Emp(e₀) ∧ (e=e₀) ∧ (e=f(e₀)) → SelfMgr(e)
- Step 3: Construct M₁₃
 - □ Return $M_{13} = (S_1, S_3, \Sigma_{13})$ where
 - $\Box \quad \Sigma_{13} = \exists f(\exists e_0 \exists e \exists m \chi_1 \land \exists e_0 \exists e \chi_2)$