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The Data Interoperability Problem 

n  Data may reside 
q  at several different sites 
q  in several different formats (relational, XML, …). 
 

n   Two different, but related, facets of data interoperability: 
 

q  Data Integration (aka Data Federation): 
 

q  Data Exchange (aka Data Translation): 
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Data Integration 
Query heterogeneous data in different sources via a virtual  
global schema 
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Data Exchange 

    Transform data structured under a source schema into data 
structured under a different target schema. 

            S               T 
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Data Exchange 

Data Exchange is an old, but recurrent, database problem 
 
n  Phil Bernstein – 2003                                                     
   “Data exchange is the oldest database problem” 

 
n  EXPRESS:  IBM San Jose Research Lab – 1977 

    EXtraction, Processing, and REStructuring System  
    for transforming data between hierarchical databases.  
 

n  Data Exchange underlies: 
q  Data Warehousing, ETL (Extract-Transform-Load) tasks; 
q  XML Publishing, XML Storage, … 
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Foundations of Data Interoperability 

    Theoretical Aspects of Data Interoperability  
    Develop a conceptual framework for formulating and studying 

fundamental problems in data interoperability: 
 
n  Semantics of data integration & data exchange   
 
n  Algorithms for data exchange 
 
n  Complexity of query answering  
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Outline of the Talk 

n  Schema Mappings and Data Exchange 
 
n  Solutions in Data Exchange 

q  Universal Solutions 
q  The Core of the Universal Solutions 
 

n  Query Answering in Data Exchange 
 
n  Composing Schema Mappings 
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Schema Mappings 

n  Schema mappings: 
    high-level, declarative assertions that specify  the 

relationship between two schemas. 
 
n  Ideally, schema mappings should be 

q   expressive enough to specify data interoperability tasks; 
q   simple enough to be efficiently manipulated by tools. 

 
n  Schema mappings constitute the essential building blocks in 

formalizing data integration and data exchange. 
 
n  Schema mappings play a prominent role in Bernstein’s 

metadata management framework. 
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Schema Mappings & Data Exchange 

Source  S    Target  T 

   

n  Schema Mapping M = (S, T, Σ) 
q  Source schema  S, Target schema T 
q  High-level, declarative assertions Σ that specify the 

relationship between S and T.  
n  Data Exchange via the schema mapping M = (S, T, Σ) 
    Transform a given source instance I to a target instance J, 

so that <I, J> satisfy the specifications Σ of M. 
 

I J 

Σ
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Solutions in Schema Mappings 

Definition: Schema Mapping  M = (S, T, Σ) 
    If I is a source instance, then a solution for I is a 
    target instance J such that  <I, J > satisfy Σ. 
 
Fact: In general, for a given source instance I, 
q  No solution for I may exist 
    or 
q  Multiple solutions for I may exist; in fact, infinitely many 

solutions for I may exist. 
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Schema Mappings:  Basic Problems 

 
 
 
 
Definition: Schema Mapping  M = (S, T, Σ) 
q  The existence-of-solutions problem Sol(M):    (decision problem) 
     Given a source instance I, is there a solution J for I? 
                  
q  The data exchange problem associated with M:  (function problem) 
    Given a source instance I,  construct a solution J for I, provided a 

solution exists. 
                   
 
 

Schema  S  Schema  T 

I J 

Σ 



12 

Schema Mapping Specification Languages 

n  Question: How are schema mappings specified? 
 
n  Answer:  Use logic. In particular, it is natural to try to use 
    first-order logic as a specification language for schema 

mappings. 
 
n  Fact: There is a fixed first-order sentence specifying a 

schema mapping M* such that Sol(M*) is undecidable. 
 
n  Hence, we need to restrict ourselves to well-behaved 

fragments of first-order logic. 
 



13 

Embedded Implicational Dependencies 

n  Dependency Theory: extensive study of constraints in 
relational databases in the 1970s and 1980s. 

 
n  Embedded Implicational Dependencies: Fagin, Beeri-Vardi, … 
    Class of constraints with a balance between high expressive 

power and good algorithmic properties: 
q  Tuple-generating dependencies     (tgds) 
Inclusion and multi-valued dependencies are a special case. 
q  Equality-generating dependencies (egds) 
Functional dependencies are a special case. 
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Data Exchange with Tgds and Egds 

n  Joint work with R. Fagin, R.J. Miller, and L. Popa 
 
n  Studied data exchange between relational schemas for 

schema mappings specified by  
q  Source-to-target tgds 
q  Target tgds 
q  Target egds 
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Schema Mapping Specification Language 

     The relationship between source and target is given by formulas of 
first-order logic, called  

 
     Source-to-Target Tuple Generating Dependencies  (s-t tgds)  
                                  ϕ(x) → ∃y ψ(x, y), where 

§  ϕ(x)     is a conjunction of atoms over the source;  
§  ψ(x, y) is a conjunction of atoms over the target.  
 
Example:     
(Student(s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g)) 
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Schema Mapping Specification Language 

§  s-t tgds assert that: 
     some SPJ source query is contained in some other SPJ target query 
 

(Student (s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g)) 
        

§  s-t tgds generalize the main specifications used in data integration: 
§  They generalize LAV (local-as-view) specifications: 
                               P(x)  →  ∃y ψ(x, y), where P is a source 

schema. 
§  They generalize GAV (global-as-view) specifications: 
                               ϕ(x)  →  R(x),  where R is a target schema 
§  At present, most commercial II systems support GAV only. 
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Target Dependencies 

    In addition to source-to-target dependencies, we also consider 
     target dependencies:  

q  Target Tgds :    ϕT(x)  →  ∃y ψT(x, y)  
   
Dept (did, dname, mgr_id, mgr_name)  →  Mgr (mgr_id, did)  
                      (a target inclusion dependency constraint) 
    

q  Target Equality Generating Dependencies (egds):  
                              ϕT(x)  →  (x1=x2)  

  
(Mgr (e, d1) ∧ Mgr (e, d2)) →  (d1 = d2) 
                      (a target key constraint)        
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Data Exchange Framework 

    Schema Mapping M = (S, T, Σst , Σt ), where 
 
§  Σst is a set of source-to-target tgds 

§  Σt  is a set of target tgds and target egds 

Source Schema  
S  

Target Schema  
T 

  Σst 

I J 

  Σt 
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Underspecification in Data Exchange 

n  Fact: Given a source instance, multiple solutions may exist. 
 
n  Example:  
    Source relation E(A,B), target relation H(A,B) 
Σ:    E(x,y)  → ∃z (H(x,z) ∧ H(z,y)) 
Source instance I = {E(a,b)} 
Solutions: Infinitely many solutions exist 
§  J1  =  {H(a,b), H(b,b)}                                        constants:                                       
§  J2  =  {H(a,a), H(a,b)}                                        a, b, … 
§  J3  =  {H(a,X), H(X,b)}                                       variables (labelled nulls):  
§  J4  =  {H(a,X), H(X,b), H(a,Y), H(Y,b)}               X, Y, … 
§  J5  =  {H(a,X), H(X,b), H(Y,Y)} 
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Main issues in data exchange 

    For a given source instance, there may be multiple target 
instances satisfying the specifications of the schema mapping. 
Thus, 

 
q  When more than one solution exist, which solutions are 

“better” than others? 
 
q  How do we compute a “best” solution? 

q  In other words, what is the “right” semantics of data 
exchange? 
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Universal Solutions in Data Exchange 

n  We introduced the notion of universal solutions as the “best” 
solutions in data exchange. 
q  By definition,  a solution is universal if it has  

homomorphisms to all other solutions  
    (thus, it is a “most general” solution). 
q  Constants: entries in source instances 
q  Variables (labeled nulls): other entries in target instances 
q  Homomorphism h: J1 → J2 between target instances: 

n  h(c) = c, for constant c 
n  If P(a1,…,am) is in J1,, then P(h(a1),…,h(am)) is in J2 
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Universal Solutions in Data Exchange 

Schema  S  Schema  T 

I J 

Σ 

J1 
J2 

J3 

   Universal Solution 

    Solutions 

h1 h2 h3 
Homomorphisms 



23 

Example - continued 

    Source relation S(A,B), target relation T(A,B) 
Σ :    E(x,y)  → ∃z (H(x,z) ∧ H(z,y)) 
Source instance I = {H(a,b)} 
 
Solutions: Infinitely many solutions exist 
§  J1  =  {H(a,b), H(b,b)}    is not universal 
§  J2  =  {H(a,a), H(a,b)}    is not universal 
§  J3  =  {H(a,X), H(X,b)}   is universal 
§  J4  =  {H(a,X), H(X,b), H(a,Y), H(Y,b)}   is universal 
§  J5  =  {H(a,X), H(X,b), H(Y,Y)}               is not universal 
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Structural Properties of Universal Solutions 

n  Universal solutions are analogous to most general unifiers in logic 
programming. 

 
n  Uniqueness up to homomorphic equivalence:  

  If J and J’ are universal for I, then they are homomorphically 
  equivalent. 

 
n  Representation of  the entire space of solutions: 

 Assume that J is universal for I, and J’ is universal for I’. 
 Then the following are equivalent: 
1.  I and I’ have the same space of solutions. 
2.  J and J’ are homomorphically equivalent.  
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Algorithmic Properties of Universal Solutions 

Theorem (FKMP): Schema mapping M= (S, T, Σst, Σt) such that: 
q  Σst is a set of source-to-target tgds;  
q  Σt   is the union of a weakly acyclic set of  target tgds with a 

set of  target egds.  
Then: 

n  Universal solutions exist if and only if solutions exist. 

n  Sol(M), the existence-of-solutions problem for M, is in P. 
 
n  A canonical universal solution (if solutions exist) can be 

produced in polynomial time using the chase procedure. 
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Weakly Acyclic Sets of Tgds 

Weakly acyclic sets of tgds contain as special cases: 
 
§  Sets of full tgds 
                                     ϕT(x)  →  ψT(x), 
    where ϕT(x)  and ψT(x) are conjunctions of target atoms. 
 
    Example:    H(x,z) ∧ H(z,y)  →  H(x,y) ∧ C(z) 
 
    Full tgds express containment between relational joins. 
 
§  Sets of  acyclic inclusion dependencies 
    Large class of dependencies occurring in practice. 
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The Smallest Universal Solution 

n  Fact: Universal solutions need not be unique. 
n  Question: Is there a “best” universal solution? 
n  Answer:  In joint work with R. Fagin and L. Popa, we took a  
    “small is beautiful” approach: 
    There is a smallest universal solution (if solutions exist); hence,  
     the most compact one to materialize. 
  
§  Definition: The core of an instance J is the smallest subinstance J’ 

that is homomorphically equivalent to J. 
 
§  Fact:  

§  Every finite relational structure has a core. 
§  The core is unique up to isomorphism. 
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The Core of a Structure 

   

J’= core(J) 

     J Definition: J’ is the core of J if 
§    J’ � J 
 
§    there is a hom. h: J → J’ 
 
§    there is no hom. g: J → J’’,  
     where J’’ � J’. 

h 
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The Core of a Structure 

   

J’= core(J) 

     J Definition: J’ is the core of J if 
§    J’ � J 
 
§    there is a hom. h: J → J’ 
 
§    there is no hom. g: J → J’’,  
     where J’’ � J’. 

h 

 
Example: If a graph G contains a                , then 
  
G is 3-colorable   if and only if   core(G)  =                  . 
 
Fact: Computing cores of graphs is an NP-hard problem. 
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Example - continued 

Source relation E(A,B), target relation H(A,B) 
Σ :    (E(x,y)  → ∃z (H(x,z) ∧ H(z,y)) 
Source instance I = {E(a,b)}. 
Solutions: Infinitely many universal solutions exist. 
§  J3 =  {H(a,X), H(X,b)}   is the core. 
 
§  J4 =  {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal, but not 

the core. 

§  J5 =  {H(a,X), H(X,b), H(Y,Y)}   is not universal. 
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Core: The smallest universal solution 

Theorem (FKP):   M = (S, T, Σst , Σt )  a schema mapping: 
q  All universal solutions have the same core. 
 
q  The core of the universal solutions is the smallest universal 

solution. 
 
q  If every target constraint is an egd, then the core is 

polynomial-time computable. 

Theorem (Gottlob – PODS 2005):   M = (S, T, Σst , Σt )  
    If every target constraint is an egd or a full tgd, then the core is 

polynomial-time computable. 
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Outline of the Talk 

ü  Schema Mappings and Data Exchange 

ü  Solutions in Data Exchange 
ü Universal Solutions 
ü The Core of the Universal Solutions 

n  Query Answering in Data Exchange 
 
n  Composing Schema Mappings 
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Query Answering in Data Exchange 

Schema S  Schema  T 

I J 

Σ q 

Question:  What is the semantics of target query answering? 

 
Definition: The certain answers of a query q over T on I   
 

                certain(q,I) =  ∩ { q(J):  J is a solution for I }. 
 
Note: It is the standard semantics in data integration. 
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 Certain Answers Semantics 

certain(q,I) 

 
 
 

 q(J1) 

q(J2) q(J3) 

       certain(q,I)  =   ∩ { q(J):  J is a solution for I }. 
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Computing the Certain Answers 

Theorem (FKMP):  Schema mapping M = (S, T, Σst, Σt) such that: 
q  Σst  is a set of source-to-target tgds, and  
q  Σt     is the union of a weakly acyclic set of tgds with a set of egds. 
Let q be a union of conjunctive queries over T. 
§  If I is a source instance and J is a universal solution for I, then  
 
              certain(q,I) = the set of all “null-free” tuples in q(J). 
 
§  Hence,  certain(q,I) is computable in time polynomial in |I|: 

1.  Compute a canonical universal J solution in polynomial time; 
2.  Evaluate q(J) and remove tuples with nulls.  
 

Note: This is a data complexity result  (M and q are fixed). 
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 Certain Answers via Universal Solutions 

 
 
 

 q(J1) 

q(J2) q(J3) 

       certain(q,I)  =  set of null-free tuples of q(J). 

q(J) certain(q,I) 

  q(J) 

universal solution J for I 

q: union of conjunctive queries 
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Computing the Certain Answers 

Theorem (FKMP):  Schema mapping  M = (S, T, Σst, Σt)  such that: 
q  Σst  is a set of source-to-target tgds, and  
q  Σt     is the union of a weakly acyclic set of tgds with a set of egds.  

Let q be a union of conjunctive queries with inequalities (�). 
§  If q has at most one inequality per conjunct, then 
     certain(q,I) is computable in time polynomial in |I| 
     using a disjunctive chase. 
 
§  If q is has at most two inequalities per conjunct, then 
     certain(q,I) can be coNP-complete, even if Σt  =  �. 



38 

Universal Certain Answers 

n  Alternative semantics of query answering based on universal 
solutions. 

n  Certain Answers:  
                   “Possible Worlds”  =  Solutions 
n  Universal Certain Answers: 
                   “Possible Worlds”  =   Universal Solutions 
 
Definition:  Universal certain answers of a query q over T on I   

            u-certain(q,I)  =  ∩ { q(J):  J is a universal solution for I }. 
 
Facts:     

§    certain(q,I)  �   u-certain(q,I) 
§    certain(q,I)  =   u-certain(q,I),  q a union of conjunctive queries  
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 Computing the Universal Certain Answers 

Theorem (FKP):  Schema mapping  M = (S, T, Σst, Σt)  such that: 
q  Σst  is a set of source-to-target tgds 
q  Σt     is a set of target egds and target tgds.  
Let q be an existential query over T. 
§  If I is a source instance and J is a universal solution for I, then  
 
      u- certain(q,I)  =  the set of all “null-free” tuples in q(core(J)). 
 
§  Hence,  u-certain(q,I) is computable in time polynomial in |I| 

whenever the core of the universal solutions is polynomial-time 
computable. 

 
Note:  Unions of conjunctive queries with inequalities are a special 

case of existential queries.  
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 Universal Certain Answers via the Core 

 
 
 

 q(J1) 

q(J2) q(J3) 

       u-certain(q,I)  =  set of null-free tuples of q(core(J)). 

q(J) u-certain(q,I) 

  q(core(J)) 

universal solution J for I 

q: existential 
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From Theory to Practice 

n  Clio/Criollo Project at IBM Almaden managed by Howard Ho. 
q  Semi-automatic schema-mapping generation tool; 
q  Data exchange system based on schema mappings. 
 

n  Universal solutions used as the semantics of data exchange. 
 
n  Universal solutions are generated via SQL queries extended 

with Skolem functions (implementation of chase procedure), 
provided there are no target constraints. 

 
n  Clio/Criollo technology is being exported to WebSphere II. 
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n  Supports nested structures 
q  Nested Relational 

Model 
q  Nested Constraints 
 

n  Automatic & semi-
automatic discovery of 
attribute correspondence. 

 
n  Interactive derivation of 

schema mappings. 
 
n  Performs data exchange 

Some Features of Clio 
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Source 
Schema S  

  

      

  “conforms to” 

  data 
Data exchange process 
(or SQL/XQuery/XSLT) 

  “conforms to” 

Schema Mappings in Clio 

Mapping 
Generation 

Schema Mapping 
 Target  
Schema T 
 



45 

Outline of the Talk 

ü  Schema Mappings and Data Exchange 

ü  Solutions in Data Exchange 
ü Universal Solutions 
ü The Core of the Universal Solutions 

ü Query Answering in Data Exchange 

n  Composing Schema Mappings 
     joint work with R. Fagin, L. Popa, and W.-C. Tan 
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Managing Schema Mappings 

n  Schema mappings can be quite complex. 
 

n  Methods and tools are needed to manage schema mappings 
automatically. 

 
n  Metadata Management Framework – Bernstein 2003 
     based on generic schema-mapping operators: 

q  Composition operator 
q  Inverse operator 
q  Merge operator 
q  …. 
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 Composing Schema Mappings 

n  Given Μ12 = (S1, S2, Σ12) and Μ23 = (S2, S3, Σ23), derive a 
schema mapping Μ13 = (S1, S3, Σ13) that is “equivalent” to 
the sequence Μ12 and Μ23. 

Schema  S1  Schema  S2  Schema  S3 

Μ12 Μ23 

Μ13 

What does it mean for Μ13 to be “equivalent” to the 
composition of Μ12 and Μ23? 
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Earlier Work 

n  Metadata Model Management (Bernstein in CIDR 2003) 
q  Composition is one of the fundamental operators 
q  However, no precise semantics is given 
 

n  Composing Mappings among Data Sources  
    (Madhavan & Halevy in VLDB 2003) 

q  First to propose a semantics for composition 
q  However, their definition is in terms of maintaining the 

same certain answers relative to a class of queries.  
q  Their notion of composition depends on the class of 

queries; it may not be unique up to logical equivalence.  
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Semantics of Composition 

n  Every schema mapping M = (S, T, Σ) defines a binary relationship Inst(M) 
between instances:                                       

                          Inst(M) = { <I,J> | < I,J > � Σ }. 

 

n  Definition: (FKPT)  
     A schema mapping M13 is a composition of M12 and M23 if  

                    Inst(M13) = Inst(M12) ° Inst(M23),  that is, 
                                              <I1,I3>  �  Σ13   

                                          if and only if  
  there exists I2 such that  <I1,I2>  �  Σ12 and  <I2,I3>  �  Σ23. 
 

§  Note:  Also considered by S. Melnik in his Ph.D. thesis 
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The Composition of  Schema Mappings 

Fact: If  both Μ = (S1, S3, Σ) and Μ’ = (S1, S3, Σ’) are     
compositions of Μ12 and Μ23, then Σ are Σ’ are logically 
equivalent. For this reason: 

  
q  We say that  Μ (or Μ’) is the composition of Μ12 and Μ23. 
q  We write Μ12 ° Μ23 to denote it 
 
Definition: The composition query of Μ12 and Μ23 is the set  

       Inst(Μ12) ° Inst(Μ23) 
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Issues in Composition of Schema Mappings 

n  The semantics of composition was the first main issue. 
      
     Some other key issues: 
 
n  Is the language of s-t tgds closed under composition?   
     If Μ12 and Μ23  are specified by finite sets of s-t tgds, is   
     Μ12 ° Μ23 also specified by a finite set of s-t tgds?  
 
n  If not, what is the “right” language for composing schema 

mappings? 
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Composition: Expressibility & Complexity 

Μ12   
Σ12 

Μ23  
Σ23 
 

Μ12 ° Μ23 
Σ13 
 

Composition 
Query 

finite set of full 
s-t tgds 
ϕ(x) → ψ(x) 
 

finite set of  
s-t tgds 
ϕ(x) → ∃y ψ(x, y) 

finite set of  
s-t tgds  
ϕ(x)→∃yψ(x,y) 

in PTIME 

finite set of  
s-t tgds 
ϕ(x) → ∃y ψ(x,y) 

finite set of (full) 
s-t tgds 
ϕ(x) → ∃y ψ(x, y) 
 
 

may not be 
definable: 
by any set of s-t 
tgds; 
in  FO-logic; 
in  Datalog  

in NP; 
 
can be  
NP-complete 
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Employee Example 
n  Σ12 : 

q   Emp(e) → ∃m Rep(e,m)  
n  Σ23 : 

q   Rep(e,m) → Mgr(e,m)  
q   Rep(e,e) → SelfMgr(e)  

 
n  Theorem: This composition is not definable by any finite set 

of s-t tgds. 
 
n  Fact:  This composition is definable in a well-behaved 

fragment of second-order logic, called SO tgds, that extends 
s-t tgds with Skolem functions. 

  
 

Emp 
  e 

Rep 
  e  
  m 

Mgr 
  e 
  m 

SelfMgr 
  e 
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Employee Example - revisited 

Σ12 : 
q   ∀e ( Emp(e) → ∃m Rep(e,m) ) 

Σ23 : 
q   ∀e∀m( Rep(e,m) → Mgr(e,m) ) 
q   ∀e ( Rep(e,e) → SelfMgr(e) ) 

 
Fact: The composition is definable by the SO-tgd 
Σ13 : 

q  ∃f (∀e( Emp(e) → Mgr(e,f(e) ) ∧       
    ∀e( Emp(e) ∧ (e=f(e)) → SelfMgr(e) ) ) 
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Second-Order Tgds 

Definition: Let S be a source schema and T a target schema. 
    A second-order tuple-generating dependency (SO tgd) is a 

formula of the form: 
          ∃f1 … ∃fm( (∀x1(φ1 → ψ1)) ∧ … ∧ (∀xn(φn → ψn)) ), where 

q  Each fi is a function symbol. 
q  Each φi is a conjunction of atoms from S and equalities of 

terms. 
q  Each ψi is a conjunction of atoms from T. 
 
Example:    ∃f (∀e( Emp(e) → Mgr(e,f(e) ) ∧   

        ∀e( Emp(e) ∧ (e=f(e)) → SelfMgr(e) ) ) 
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Composing SO-Tgds and Data Exchange 

Theorem (FKPT):  
q  The composition of two SO-tgds is definable by a SO-tgd. 

q  There is an algorithm for composing SO-tgds. 

q  The chase procedure can be extended to schema mappings 
specified by SO-tgds, so that it produces universal solutions in 
polynomial time. 

 
q  For schema mappings specified by SO-tgds, the certain 

answers of target conjunctive queries are polynomial-time 
computable.  
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Synopsis of Schema Mapping Composition 

n  s-t tgds are not closed under composition. 
 
n  SO-tgds form a well-behaved fragment of second-order logic. 
 

q  SO-tgds are closed under composition; they are 
    a “good” language for composing schema mappings. 
 
q  SO-tgds are “chasable”: 

Polynomial-time data exchange with universal solutions. 
 

n  SO-tgds and the composition algorithm have been 
incorporated in Criollo’s Mapping Specification Language 
(MSL).  
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Related Work and Extensions in this PODS 

n  G. Gottlob:  
Computing Cores for Data Exchange: Algorithms & Practical 
Solutions 
 

n  A. Nash, Ph. Bernstein, S. Melnik: 
    Composition of Mappings Given by Embedded Dependencies 
 
n  A. Fuxman, Ph. Kolaitis, R.J. Miller, W.-C. Tan:  
    Peer Data Exchange 
 
n  M. Arenas & L. Libkin:  
    XML Data Exchange: Consistency and Query Answering 
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Theory and Practice 

   "Quelli che s'innamoran di 
pratica sanza scienza, son 
come 'l nocchiere ch'entra in 
navilio sanza timone o 
bussola, che mai ha certezza 
dove si vada" 

    
     Leonardo da Vinci,  1452-1519           
 
    "He who loves practice without 

theory is like the sailor who 
boards ship without a rudder 
and compass and never knows 
where he may cast." 
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Reduction from 3-Colorability 

n   Σ12 
q   ∀x∀y (E(x,y) → ∃u∃v (C(x,u) ∧ C(y,v))) 
q   ∀x∀y (E(x,y) → F(x,y)) 

n   Σ23 
q   ∀x∀y∀u∀v (C(x,u) ∧ C(y,v) ∧ F(x,y) → D(u,v)) 

n  Let I3 = { (r,g), (g,r), (b,r), (r,b), (g,b), (b,g) } 

n  Given G=(V, E),  
q  let I1 be the instance over S1 consisting of the edge relation E 

of G 

n  G is 3-colorable iff <I1,I3> ∈ Inst(Μ12) ° Inst(Μ23) 

n  [Dawar98] showed that 3-colorability is not expressible in L∞ω 
ω 
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Algorithm Compose(Μ12, Μ23) 

n  Input: Two schema mappings Μ12 and Μ23 
n  Output: A schema mapping Μ13 = Μ12° Μ23 

n  Step 1: Split up tgds in Σ12 and Σ23 
q   C12 = Emp(e) → (Mgr1(e, f(e)) 
q   C23 = 

n  Mgr1(e,m) → Mgr(e,m) 
n  Mgr1(e,e) → SelfMgr(e) 

n  Step 2: Compose C12 with C23 

q   χ1 : Emp(e0) ∧ (e=e0) ∧ (m=f(e0)) → Mgr1(e,m) 
q   χ2 : Emp(e0) ∧ (e=e0) ∧ (e=f(e0)) → SelfMgr(e) 

n  Step 3: Construct Μ13 
q  Return Μ 13 = (S1, S3, Σ13) where 
q   Σ13 = ∃f(∃e0 ∃e∃m χ1 ∧ ∃e0∃e χ2) 


