
PhD course on

View-based query processing

Data integration – lecture 2

Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
{rosati }@dis.uniroma1.it

Corso di Dottorato in Ingegneria Informatica, Università di Roma “La Sapienza”

Course overview

1. Introduction to view-based query processing [Lenzerini]

2. Conjunctive query evaluation [Gottlob]

3. Data exchange [Gottlob]

4. Data integration [De Giacomo, Rosati]

5. Data integration through ontologies [De Giacomo]

6. View-based query processing over semistructured data [Calvanese]

7. Reasoning about views [Lenzerini]

2

Lecture overview

• the role of global integrity constraints

• inclusion dependencies

• query reformulation under inclusion dependencies

– chase

– canonical model

– query rewriting algorithm

• key dependencies

• decidability and separation

3

Global integrity constraints

• integrity constraints (ICs) posed over the global schema

• specify intensional knowledge about the domain of interest

• add semantics to the information

• but: data in the sources can conflict with global integrity constraints

• the presence of global integrity constraints rises semantic and

computational problems

• open research problems

4

Integrity constraints for relational schemas

Most important ICs for the relational model:

• key dependencies (KDs)

• functional dependencies (FDs)

• inclusion dependencies (IDs)

• foreign keys (FKs)

• exclusion dependencies (EDs)

5

Inclusion dependencies (IDs)

• an ID states that the presence of a tuple in a relation implies the

presence of a tuple in another relation where t′ contains a projection of

the values contained in t

• syntax: r[i1, . . . , ik] ⊆ s[j1, . . . , jk]

• e.g., the ID r[1] ⊆ s[2]
corresponds to the FOL sentence

∀x, y, z . r(x, y, z) → ∃x′, z′ . s(x′, x, z′)

• IDs are a special form of tuple-generating dependencies

6

Semantics for GAV systems under integrity

constraints

We refer only to databases over a fixed infinite domain Γ.

Given a source database C for a system I , a global database B is legal for

(I, C) if:

1. it satisfies the ICs on the global schema

2. it satisfies the mapping, i.e. B is constituted by a superset of the

retrieved global database ret(I, C)
• ret(I, C) is obtained by evaluating, for each relation in G, the mapping

queries over the source database

• assumption of sound mapping (open-world assumption)

7

Semantics: Certain Answers

• we are interested in certain answers

• a tuple t is a certain answer for a query Q if t is in the answer to Q for

all (possibly infinite) legal databases for (I, C)
• the certain answers to Q are denoted by cert(Q, I, C)

8

Example

Global schema : player(Pname,YOB ,Pteam)

team(Tname,Tcity ,Tleader)

Constraints : team[Tleader ,Tname] ⊆ player[Pname,Pteam]

Mapping : player Ã

player(X, Y, Z) ← s1(X,Y, Z)

player(X, Y, Z) ← s3(X,Y, Z)

team Ã team(X, Y, Z) ← s2(X, Y, Z)

9

Example (cont’d)

Source database C

s1: Totti 1971 Roma s2: Juve Torino Del Piero

s3: Vieri 1970 Inter

Retrieved global database ret(I, C)

player:
Totti 1971 Roma

Vieri 1970 Inter
team: Juve Torino Del Piero

10

Example (cont’d)

player :

Totti 1971 Roma

Vieri 1970 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

11

Example (cont’d)

player :

Totti 1971 Roma

Vieri 1970 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

Warning 1 there may be an infinite number of legal databases for I

12

Example (cont’d)

player :

Totti 1971 Roma

Vieri 1970 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

Warning 1 there may be an infinite number of legal databases for I
Warning 2 in case of cyclic IDs, legal databases for I may be of infinite size

13

Example (cont’d)

player :

Totti 1971 Roma

Vieri 1970 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

Consider the query q(X,Z) ← player(X, Y, Z) :

14

Example (cont’d)

player :

Totti 1971 Roma

Vieri 1970 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

Consider the query q(X,Z) ← player(X, Y, Z) :

cert(q, I, C) = {〈Totti, Roma〉, 〈Vieri, Inter〉, 〈Del Piero, Juve〉}

15

Query processing under inclusion dependencies

• intuitive strategy: add new facts until IDs are satisfied

• problem: infinite construction in the presence of cyclic IDs

• example 1: r[2] ⊆ r[1]

suppose ret(I, C) = {r(a, b)}
1) add r(b, c1)
2) add r(c1, c2)
3) add r(c2, c3)
....

(infinite construction)

16

Query processing under inclusion dependencies

• example 2: r[1] ⊆ s[1], s[2] ⊆ r[1]

suppose ret(I, C) = {r(a, b)}
1) add s(a, c1)
2) add r(c1, c2)
3) add s(c1, c3)
4) add r(c3, c4)
5) add s(c3, c5)
....

(infinite construction)

17

The chase

• chase of a database: exhaustive application of a set of rules that

transform the database, in order to make the database consistent with a

set of integrity constraints

• the chase for IDs has only one rule, the ID-chase rule

18

The ID-chase rule

• if the schema contains the ID r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
and there is a fact inDB of the form r(a1, . . . , an)
and there are no facts inDB of the form s(b1, . . . , bm)

such that ai` = bj`
for each ` ∈ {1, . . . , k},

then add toDB the fact s(c1, . . . , cm),

where for each h such that 1 ≤ h ≤ m,

if h = j` for some ` then ch = ai`

otherwise ch is a new constant symbol

(not occurring already inDB)

• notice: new existential symbols are introduced (skolem terms)

19

Properties of the chase

• bad news: the chase is in general infinite

• good news: the chase identifies a canonical model

• canonical model = a database that “represents” of all the models of the

system

• we can use the chase to prove soundness and completeness of a query

processing method

• but: only for positive queries!

20

Query processing under inclusion dependencies

why don’t we use a finite number of existential constants in the chase?

example: r[1] ⊆ s[1], s[2] ⊆ r[1]

suppose ret(I, C) = {r(a, b)}
compute chase(ret(I, C)) with only one new constant c1:

0) r(a, b); 1) add s(a, c1); 2) add r(c1, c1); 3) add s(c1, c1)

this database is not a canonical model for (I, C)
e.g., for the query q(X) :– r(X,Y), s(Y, Y):

a ∈ qchase(ret(I,C)) while a 6∈ cert(q, I, C)
⇒ unsound method!

(and is unsound for any finite number of new constants)

21

An algorithm for rewriting CQs under IDs

• basic idea: let’s chase the query, not the data!

• query chase: dual notion of database chase

• IDs are applied from right to left

• advantage: much easier termination conditions! which imply:

– decidability properties

– efficiency

22

Query rewriting under inclusion dependencies

Given a user query Q over G
• we look for a rewriting R of Q expressed over S
• a rewriting R is perfect if RC = cert(Q, I, C) for every source

database C.

With a perfect rewriting, we can do query answering by rewriting

Note that we avoid the construction of the retrieved global database

ret(I, C)

23

Query rewriting for IDs

Intuition: Use the IDs as basic rewriting rules

q(X, Z) ← player(X, Y, Z)

team[Tleader ,Tname] ⊆ player[Pname,Pteam]

as a logic rule: player(W3,W4,W1) ← team(W1,W2,W3)

24

Query rewriting for IDs

Intuition: Use the IDs as basic rewriting rules

q(X, Z) ← player(X, Y, Z)

team[Tleader ,Tname] ⊆ player[Pname,Pteam]

as a logic rule: player(W3,W4,W1) ← team(W1,W2,W3)

Basic rewriting step:

when the atom unifies with the head of the rule

substitute the atom with the body of the rule

We add to the rewriting the query

q(X, Z) ← team(Z, Y, X)

25

Query Rewriting for IDs: algorithm ID-rewrite

Iterative execution of:

1. reduction: atoms that unify with other atoms are eliminated and the

unification is applied

2. basic rewriting step

26

The algorithm ID-rewrite

Input: relational schema Ψ, set of IDs ΣI , UCQ Q

Output: perfect rewriting of Q

Q′ := Q;

repeat

Qaux := Q′;
for each q ∈ Qaux do

(a) for each g1, g2 ∈ body(q) do

if g1 and g2 unify then Q′ := Q′ ∪ {τ(reduce(q, g1, g2))};

(b) for each g ∈ body(q) do

for each I ∈ ΣI do

if I is applicable to g then Q′ := Q′ ∪ { q[g/gr(g, I)] }
until Qaux = Q′;
return Q′

27

Properties of ID-rewrite

• ID-rewrite terminates

• ID-rewrite produces a perfect rewriting of the input query

• more precisely:

– unfM(q) = unfolding of the query q w.r.t. the GAV mappingM
• Theorem: unfM(ID-rewrite(q)) is a perfect rewriting of the query q

• Theorem: query answering in GAV systems under IDs is in PTIME in

data complexity (actually in LOGSPACE)

28

Key dependencies (KDs)

• a KD states that a set of attributes functionally determines all the relation

attributes

• syntax: key(r) = {i1, . . . , ik}
• e.g., the KD key(r) = {1} corresponds to the FOL sentence

∀x, y, y′, z, z′.r(x, y, z) ∧ r(x, y′, z′) → y = y′ ∧ z = z′

• KDs are a special form of equality-generating dependencies

• we assume that only one key is specified on every relation

29

Query answering under IDs and KDs

• possibility of inconsistencies (recall the sound mapping)

• when ret(I, C) violates the KDs, no legal database exists and query

answering becomes trivial!

Theorem: Query answering under IDs and KDs is undecidable.

Proof: by reduction from implication of IDs and KDs.

30

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

r1[A1] ⊆ r2[A2]

where A2 is not a strict superset of key(r2)

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if ret(I, C) satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

31

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

r1[A1] ⊆ r2[A2]

where A2 is not a strict superset of key(r2)

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if ret(I, C) satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

the problem is undecidable as soon as we extend the language of the IDs

32

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

r1[A1] ⊆ r2[A2]

where A2 is not a strict superset of key(r2)

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if ret(I, C) satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

the problem is undecidable as soon as we extend the language of the IDs

foreign keys (FKs) are a special case of NKCIDs

33

Query processing under separable KDs and IDs

• global algorithm:

1. verify consistency of ret(I, C) with respect to KDs

2. compute ID-rewrite of the input query

3. unfold the query computed at previous step

4. evaluate the query over the sources

• the KD consistency check can be done by suitable CQs with inequality

• (exercise: choose a key dependency and write a query that checks

consistency with respect to such a key)

• computation of ret(I, C) can be avoided (by unfolding the queries for

the KD consistency check)

34

Example: checking KD consistency

relation: player[Pname,Pteam]

key dependency: key(player) = {Pname}

KD (in)consistency query:

q() :– player(X,Y), player(X, Z), Y 6= Z

q true iff the instance of player violates the key dependency

35

Example: unfolding a KD consistency query

mapping:
player(X,Y) ← s1(X, Y)

player(X,Y) ← s2(X, Y)

q′ = unfolding of q:

q′() = s1(X,Y), s1(X,Z), Y 6= Z∨
s1(X,Y), s2(X,Z), Y 6= Z∨
s2(X,Y), s1(X,Z), Y 6= Z∨
s2(X,Y), s2(X,Z), Y 6= Z

36

Query answering under separable KDs and IDs

Computational characterization:

• Theorem: query answering in GAV systems under KDs and NKCIDs is

in PTIME in data complexity (actually in LOGSPACE)

37

Information integration under integrity constraints

• the above algorithms are applicable in information integration systems

with GAV mappings and (separable) KDs and IDs

• what happens in the presence of LAV mappings?

• what happens in the presence of other integrity constraints (exclusion

dependencies)?

• see next lecture

38

The inconsistency issue

• ID are “repaired” by the sound semantics

• KD violations are NOT repaired

• need for a more “tolerant” semantics

• see next lecture

39

More expressive queries

• under KDs and FKs, can we go beyond CQs?

• union of CQs (UCQs): YES

ID-rewrite(q1 ∨ . . . ∨ qn) = ID-rewrite(q1) ∪ . . . ∪ ID-rewrite(qn)

• recursive queries: NO

• answering recursive queries under KDs and FKs is undecidable

[Calvanese & Rosati, 2003]

• (same undecidability result holds in the presence of IDs only)

40

