PhD course on
View-based query processing

Data integration — lecture 2

Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
{rosati }@dis.uniromal.it

Corso di Dottorato in Ingegneria Informatica, Universita di Roma “La Sapienza”

Course overview

. Introduction to view-based query processing [Lenzerini]

. Conjunctive query evaluation [Gottlob]

. Data exchange [Gottlob]

. Data integration [De Giacomo, Rosati]

. Data integration through ontologies [De Giacomo]

. View-based query processing over semistructured data [Calvanese]

. Reasoning about views [Lenzerini]

| ecture overview

the role of global integrity constraints
inclusion dependencies

guery reformulation under inclusion dependencies
— chase
— canonical model

— query rewriting algorithm
key dependencies

decidability and separation

Global integrity constraints

integrity constraints (ICs) posed over the global schema

specify intensional knowledge about the domain of interest

add semantics to the information

but: data in the sources can conflict with global integrity constraints

the presence of global integrity constraints rises semantic and

computational problems

open research problems

Integrity constraints for relational schemas

Most important ICs for the relational model:
e key dependencies (KDs)
e functional dependencies (FDs)
e inclusion dependencies (IDs)
e foreign keys (FKSs)

e exclusion dependencies (EDs)

Inclusion dependencies (IDs)

an ID states that the presence of a tuple in a relation implies the
presence of a tuple in another relation where ¢’ contains a projection of

the values contained in ¢

syntax: ’r[il, e ,ik] C S[j17 e 7j/€]

e.g., thelID 71| C s[2]

corresponds to the FOL sentence
Vao,y,z.r(z,y,2) — 32,2 . s(2',x,)

IDs are a special form of tuple-generating dependencies

Semantics for GAV systems under integrity

constraints

We refer only to databases over a fixed infinite domain I".

Given a source database C for a system Z, a global database B is legal for

(Z,C) if:
1. it satisfies the ICs on the global schema

2. it satisfies the mapping, i.e. BB is constituted by a superset of the

retrieved global database 71et(Z,C)

e ret(Z,C) is obtained by evaluating, for each relation in G, the mapping

gueries over the source database

e assumption of sound mapping (open-world assumption)

Semantics: Certain Answers

® we are interested in certain answers

e atuple ¢ is a certain answer for a query () if t is in the answer to () for

all (possibly infinite) legal databases for (Z, C)

e the certain answers to () are denoted by cert(Q,Z,C)

Example

Global schema : player(Pname, YOB, Pteam)
team(Tname, Tcity, Tleader)

Constraints : team|Tleader, Tname| C player|Pname, Pteam]

y

player(X,Y, 7)) «— s(X,Y,2)
player(X,Y, 7)) «— s3(X,Y,”7)

Mapping : player ~-» <

\

team -~ team(X,Y,Z) «— s2(X,Y,”7)

Example (cont'd)

Source database C

s1:| Totti | 1971 | Roma So:| Juve | Torino | Del Piero

s3:| Vieri | 1970 | Inter

Retrieved global database 'ret(I ,C)

Totti | 1971 | Roma _
player: team:| Juve | Torino | Del Piero
Vieri | 1970 | Inter

10

Example (cont'd)

Totti 1971 | Roma

player : Vieri 1970 | Inter team : | Juve | Torino | Del Piero

Del Piero Q Juve

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for Z have at least the tuples shown above, where

o is some value of the domain I".

11

Example (cont'd)

Totti 1971 | Roma

player : Vieri 1970 | Inter team : | Juve | Torino | Del Piero

Del Piero Q Juve

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for Z have at least the tuples shown above, where

o is some value of the domain I".

Warning 1 there may be an infinite number of legal databases for Z

12

Example (cont'd)

player :

The ID on the global schema tells us that

Totti 1971 | Roma
Vieri 1970 | Inter
Del Piero Q Juve

team :

Juve

Torino

Del Piero

Del Piero is a player of Juve

All legal global databases for Z have at least the tuples shown above, where

o is some value of the domain I".

Warning 1 there may be an infinite number of legal databases for Z

Warning 2 in case of cyclic IDs, legal databases for Z may be of infinite size

13

Example (cont'd)

Totti 1971 | Roma

player : Vieri 1970 | Inter team : | Juve | Torino | Del Piero

Del Piero Q Juve

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for Z have at least the tuples shown above, where

o is some value of the domain I".

Consider the query q(X,Z) « player(X,Y, 7) :

14

Example (cont'd)

Totti 1971 | Roma

player : Vieri 1970 | Inter team : | Juve | Torino | Del Piero

Del Piero Q Juve

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for Z have at least the tuples shown above, where

« is some value of the domain I".
Consider the query q(X, Z) « player(X,Y, Z2) :
cert(q,Z,C) = {(Totti, Roma), (Vieri, Inter), (Del Piero, Juve) }

15

Query processing under inclusion dependencies

® intuitive strategy: add new facts until IDs are satisfied
e problem: infinite construction in the presence of cyclic IDs

e example 1: 7|2] C r[1]
suppose 1et(Z,C) = {r(a,b)}
1) add r(b, c1)

2) add 7(cq, c2)
3) add (co, c3)

(infinite construction)

16

Query processing under inclusion dependencies

e example 2: r[1] C s[1], s[2] C r[1]
suppose 1et(Z,C) = {r(a,b)}

(infinite construction)

17

The chase

e chase of a database: exhaustive application of a set of rules that

transform the database, in order to make the database consistent with a

set of integrity constraints

e the chase for IDs has only one rule, the ID-chase rule

18

The ID-chase rule

if the schema contains the ID 7[i1, ..., | C s[j1,-- ., Jk|
and there is a fact in DB of the form r(ay, .. ., ay)
and there are no facts in DB of the form s(b1, ..., by,)
such thata;, = b;, foreach ¢ € {1,...,k},
then add to DB the fact s(c1, ..., Cm),
where for each h suchthat 1 < h < m,
if h = jp for some £ then ¢}, = a;,
otherwise ¢y, is a new constant symbol

(not occurring already in DB)

notice: new existential symbols are introduced (skolem terms)

19

Properties of the chase

bad news: the chase is in general infinite
good news: the chase identifies a canonical model

canonical model = a database that “represents” of all the models of the

system

we can use the chase to prove soundness and completeness of a query

processing method

but: only for positive queries!

20

Query processing under inclusion dependencies

why don’t we use a finite number of existential constants in the chase?
example: r[1] C s[1], s[2] C r[1]
suppose ret(Z,C) = {r(a,b)}
compute chase(ret(Z,C)) with only one new constant ¢y :
0)r(a,b); 1)adds(a,ci); 2)addr(ci,ci); 3)adds(ci,cq)
this database is not a canonical model for (Z,C)
e.g., forthe query ¢(X) — r(X,Y),s(Y,Y):
a € ¢ehase(ret(Z.0)) while ¢ ¢ cert(q,Z,C)

— unsound method!

(and is unsound for any finite number of new constants)

21

An algorithm for rewriting CQs under IDs

e basic idea: let's chase the query, not the data!
e query chase: dual notion of database chase
e |Ds are applied from right to left

e advantage: much easier termination conditions! which imply:
— decidability properties

— efficiency

22

Query rewriting under inclusion dependencies

Given a user query () over G
e we look for a rewriting R of () expressed over S

e arewriting R is perfect if RC = cert(Q,Z,C) for every source
database C.

With a perfect rewriting, we can do query answering by rewriting

Note that we avoid the construction of the retrieved global database

ret(Z,C)

23

Query rewriting for IDs

Intuition: Use the IDs as basic rewriting rules

q(X,Z) « player(X,Y, Z)

team| Tleader, Tname| C player|Pname, Pteam]

as a logic rule: player(Ws, Wy, W7) «— team(Wy, Wo, W3)

24

Query rewriting for IDs

Intuition: Use the IDs as basic rewriting rules
q(X, Z) < player(X,Y, Z)

team|Tleader, Tname| C player| Pname, Pteam)|
as a logic rule: player(Ws, Wy, W7) «— team(Wy, Wo, W3)

Basic rewriting step:
when the atom unifies with the head of the rule
substitute the atom with the body of the rule

We add to the rewriting the query

q(X,”Z) < team(Z,Y, X)

25

Query Rewriting for IDs: algorithm ID-rewrite

Ilterative execution of;

1. reduction: atoms that unify with other atoms are eliminated and the

unification is applied

2. basic rewriting step

26

The algorithm ID-rewrite

Input: relational schema W, set of IDs .7, UCQ ()
Output: perfect rewriting of ()
Q= Q;
repeat
Qauz = Q'
foreach q €)y dO
(a) for each g1, g2 € body(q) do
if g1 and go unify then Q' := Q" U {7 (reduce(q, g1, 92))};
(b) for each g € body(q) do
foreach I € X7 do
if [is applicable to g then Q" := Q" U { qlg/ar(g,)]}
until Quuz = @’

return ()’

27

Properties of ID-rewrite

ID-rewrite terminates
ID-rewrite produces a perfect rewriting of the input query

more precisely:

— unf r,(q) = unfolding of the query g w.r.t. the GAV mapping M
Theorem: unf ,,(ID-rewrite(q)) is a perfect rewriting of the query q

Theorem: query answering in GAV systems under IDs is in PTIME in

data complexity (actually in LOGSPACE)

28

Key dependencies (KDs)

a KD states that a set of attributes functionally determines all the relation

attributes

syntax: key(r) = {i1,... 0k}

e.g., the KD key(r) = {1} corresponds to the FOL sentence
Vo,y 2 2 (@ y, 2) Ar(e) sy =y Az =2

KDs are a special form of equality-generating dependencies

we assume that only one key is specified on every relation

29

Query answering under IDs and KDs

e possibility of inconsistencies (recall the sound mapping)

e when ret(I, C’) violates the KDs, no legal database exists and query

answering becomes trivial!

Theorem: Query answering under IDs and KDs is undecidable.

Proof: by reduction from implication of IDs and KDs.

30

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form
r1[A1] C 72|Ag]

where A is not a strict superset of key(r2)

Theorem (IDs-KDs separation): Under KDs and NKCIDs:
if ret(Z, C) satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query ()

31

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form
r1[A1] C 72|Ag]

where A is not a strict superset of key(r2)

Theorem (IDs-KDs separation): Under KDs and NKCIDs:
if ret(Z, C) satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query ()

the problem is undecidable as soon as we extend the language of the IDs

32

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form
r1[A1] C 72|Ag]

where A is not a strict superset of key(r2)

Theorem (IDs-KDs separation): Under KDs and NKCIDs:
if ret(Z, C) satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query ()

the problem is undecidable as soon as we extend the language of the IDs

foreign keys (FKs) are a special case of NKCIDs

33

Query processing under separable KDs and IDs

global algorithm:

1. verify consistency of ret(Z, C) with respect to KDs
2. compute ID-rewrite of the input query

3. unfold the query computed at previous step

4.

evaluate the query over the sources
the KD consistency check can be done by suitable CQs with inequality

(exercise: choose a key dependency and write a query that checks

consistency with respect to such a key)

computation of ret(Z, C) can be avoided (by unfolding the queries for

the KD consistency check)

34

Example: checking KD consistency

relation: player| Pname, Pteam)|

key dependency: key(player) = { Pname}
KD (in)consistency query:

Q() = player(X, Y), pIayer(X) Z),Y + 7

q true iff the instance of player violates the key dependency

35

Example: unfolding a KD consistency query

player(X,Y) «+ s(X,Y)
P|ayer(X,Y) — SQ(X,Y)

mapping:

¢’ = unfolding of ¢:
qlo — Sl(Xa Y)asl(X, Z),Y 7é YAV
s1(X,Y),s2(X, 2),Y # ZV
s2(X,Y),s1(X, 2),Y # ZV
s2(X,Y),s2(X,2),Y #Z

36

Query answering under separable KDs and IDs

Computational characterization:

e Theorem: query answering in GAV systems under KDs and NKCIDs is
in PTIME in data complexity (actually in LOGSPACE)

37

Information integration under integrity constraints

the above algorithms are applicable in information integration systems

with GAV mappings and (separable) KDs and IDs
what happens in the presence of LAV mappings?

what happens in the presence of other integrity constraints (exclusion

dependencies)?

see next lecture

38

The inconsistency issue

e |D are “repaired” by the sound semantics
e KD violations are NOT repaired
e need for a more “tolerant” semantics

® see next lecture

39

More expressive queries

e under KDs and FKs, can we go beyond CQs?

e union of CQs (UCQs): YES

ID-rewrite(q1 V ...V qp) = ID-rewrite(qy) U . .. U ID-rewrite(q,)
e recursive queries: NO

e answering recursive queries under KDs and FKs is undecidable

[Calvanese & Rosati, 2003]

e (same undecidability result holds in the presence of IDs only)

40

