
january 2013 | vol. 56 | no. 1 | communications of the acm 5

editor’s letter

The Turing Centenary with its furious pace
is now behind us and we can afford some
reflection on what has transpired. What
started as an idea that the centenary of one

of the founding figures of computing
should be celebrated has turned into a
global social phenomenon. A quick pe-
rusal of the Turing Centenary Web page
(http://www.turingcentenary.eu/) re-
veals an amazing explosion of meetings,
lectures, exhibitions, and volumes.

There is a risk, however, that in our
focus on highlighting Turing’s seminal
contributions we may have gone from
celebration to hagiography. Listen-
ing to so many speakers extol Turing’s
accomplishments, one could end up
believing that Turing single-handedly
begat computing, being the father of
computability, universal machines,
stored-program computers, crypto-
analysis, and artificial intelligence.
This picture is simplistic and does not
do justice to the richness of the story of
how computing emerged between 1930
and 1950. We do not have one founding
figure, we have several, and we should
recognize and celebrate all of them.

The study of computability was
launched at Princeton University,
where Alonzo Church, together with
his students Stephen Kleene and Bar-
kley Rosser formalized computability
in the early 1930s first in terms of the
lambda-calculus, and then in terms
of recursive functions (proposed by
Jacques Herbrand and Kurt Gödel).
They also proved the equivalence of the
two formalisms, which led to Church’s
identification of computability with re-
cursiveness. Yet, this characterization
of computability was not compelling
enough and described as “thoroughly
unsatisfactory” by Gödel. It was then
Turing’s influential analysis of com-

putability in terms of finite machines
and its equivalence to the lambda-
calculus and recursiveness that led to
our current accepted understanding
of computability, referred to as the
Church-Turing Thesis. (Emil Post in-
dependently formulated another no-
tion of machines, which turned out to
be equivalent to Turing machines.)

Turing was a leading scientist in
deciphering the German Enigma code
at Bletchley Park in the early 1940s.
Yet, unlike his computability work,
which was done independently of the
Princeton effort, breaking the Enigma
was a collective effort. To start with,
Turing was building on previous work
by Polish and British code-break-
ers. I.J. Good played a key role in the
Bayesian statistical analysis of Enig-
ma messages and Gordon Welchman
made key contributions to the design
of the Bombe, the machine that used
brute-force search to identify correct
Enigma rotor positions. Overall, one
must remember that the British code-
breaking project was a huge effort;
12,000 people toiled at Bletchley Park
during the war.

The claims that Turing invented the
stored-program computer, which typi-
cally refers to the uniform handling of
programs and data, are simply ahistori-
cal. One can trace the kernel of the idea
of handling programs and data uni-
formly back to Gödel’s arithmetization
of provability in 1931. The idea then
showed up again in the lambda-calculus,
recursive functions, and Turing ma-
chines. Turing invented a universal ma-
chine, a machine that can simulate all

other machines, but he was preceded by
the Princeton group, who constructed a
universal lambda-term and a universal
recursive function. While these ideas
undoubtedly influenced the efforts of
John von Neumann and his collabora-
tors at the University of Pennsylvania
in the 1940s, we should not confuse a
mathematical idea with an engineer-
ing design. It was the EDVAC Report of
1945 that offered the first explicit expo-
sition of the stored-program computer.
Turing’s ACE Report, which elaborated
on this idea and cited the EDVAC Re-
port, was submitted in early 1946. The
first embodiments of the stored-pro-
gram computer were the Manchester
Baby and the Cambridge EDSAC, put
into operation in 1949 and preceding
the Pilot ACE, which was based on Tur-
ing’s design and first run in 1950.

Turing was not the first to think
about artificial intelligence (AI). The
philosopher Charles S. Peirce wrote in
1887: “Precisely how much the busi-
ness of thinking a machine could pos-
sibly be made to perform, and what
part of it must be left to the living mind
is a question not without conceivable
practical importance.” Nevertheless,
Turing’s 1950 paper “Computing Ma-
chinery and Intelligence” is indeed the
first deep philosophical investigation
of the possibility of artificial intelli-
gence. While the Turing Test, referred
in the paper as the “Imitation Game,”
has been rather under-influential in
the history of AI, Turing does deserve
the credit for putting the question
of general machine intelligence so
squarely on the table.

Computing emerged during the
1930–1950 period because the time
was right. Many people played key roles
in this development; assigning precise
credit is quite impossible. Turing was
a great computing pioneer, and his
place in the computing pantheon is se-
cure, but he is not alone there.

Moshe Y. Vardi, editor-in-chief

Who Begat Computing?
DOI: 10.1145/2398356.2398357		 Moshe Y. Vardi

