
march 2012  |   vol.  55  |   no.  3  |   communications of the acm     5

editor’s letter

The 14th International Congress of Logic, Methodology 
and Philosophy of Science (CLMPS), held last July in 
France, included a special symposium on the subject  
of “What is an algorithm?”

This may seem to be a strange ques-
tion to ask just before the Turing Cen-
tenary Year, which is now being cel-
ebrated by numerous events around 
the world (see http://www.turingcen-
tenary.eu/). Didn’t Turing answer this 
question decisively? Isn’t the answer 
to the question “an algorithm is a Tur-
ing machine”?

But conflating algorithms with Tur-
ing machines is a misreading of Tur-
ing’s 1936 paper “On Computable 
Numbers, with an Application to the 
Entscheidungsproblem.” Turing’s aim 
was to define computability, not algo-
rithms. His paper argued that every 
function on natural numbers that can 
be computed by a human computer 
(until the mid-1940s a computer was 
a person who computes) can also be 
computed by a Turing machine. There 
is no claim in the paper that Turing 
machines offer a general model for al-
gorithms. (See S. B. Cooper’s article on 
page 74 for a perspective on Turing’s 
model of computation.) So the ques-
tion posed by the special CLMPS sym-
posium is an excellent one.

Incontrovertibly, algorithms con-
stitute one of the central subjects of 
study in computer science. Should we 
not have by now a clear understand-
ing of what an algorithm is? It is worth 
pointing out that mathematicians for-
malized the notion of proof only in the 
20th century, even though they have 
been using proofs at that point for 
about 2,500 years. Analogously, the fact 
that we have an intuitive notion of what 
an algorithm is does not mean that we 
have a formal notion. For example, 

when should we say that two programs 
describe the same algorithm? This re-
quires a rigorous definition!

Surprisingly, the two key speakers 
in the symposium, Y. Gurevich and Y. 
Moschovakis, provided very different 
answers to this basic question, even af-
ter focusing on classical sequential al-
gorithms (see in-depth papers at http://
goo.gl/0E7wa and http://goo.gl/HsQHq).

Gurevich argued that every algo-
rithm can be defined in terms of an 
abstract state machine. Intuitively, an 
abstract state machine is a machine 
operating on states, which are arbi-
trary data structures. The key require-
ment is that one step of the machine 
can cause only a bounded local change 
on the state. This requirement corre-
sponds both to the one-cell-at-a-time 
operations of a Turing machine and the 
bounded-width operations of von Neu-
mann machines.

Moschovakis, in contrast, argued 
that an algorithm is defined in terms of 
a recursor, which is a recursive descrip-
tion built on top of arbitrary opera-
tions taken as primitives. For example, 
the factorial function can be described 

recursively, using multiplication as a 
primitive algorithmic operation, while 
Euclid’s greatest-common divisor al-
gorithm can be described recursively, 
using the remainder function as a 
primitive operation.

So is an algorithm an abstract state 
machine or a recursor? Mathemati-
cally, one can show that recursors can 
model abstract state machines and ab-
stract state machines can model recur-
sors, but which definition is primary?

I find this debate reminiscent of 
the endless argument in computer 
science about the advantages and dis-
advantages of imperative and func-
tional programming languages, going 
all the way back to Fortran and Lisp. 
Since this debate has never been set-
tled and is unlikely to be ever settled, 
we learned to live with the coexistence 
of imperative and functional pro-
gramming languages.

Physicists learned to live with de 
Broglie’s wave-particle duality, which 
asserts that all particles exhibit both 
wave and particle properties. Further-
more, in quantum mechanics, clas-
sical concepts such as “particle” and 
“wave” fail to describe fully the behav-
ior of quantum-scale objects. Perhaps 
it is time for us to adopt a similarly nu-
anced view of what an algorithm is.

An algorithm is both an abstract 
state machine and a recursor, and nei-
ther view by itself fully describes what 
an algorithm is. This algorithmic dual-
ity seems to be a fundamental princi-
ple of computer science.

Moshe Y. Vardi, editor-in-chief

What is an Algorithm?
DOI:10.1145/2093548.2093549		  Moshe Y. Vardi

Is an algorithm  
an abstract  
state machine  
or a recursor?

http://doi.acm.org/10.1145/2093548.2093569
http://doi.acm.org/10.1145/2093548.2093569
http://doi.acm.org/10.1145/2093548.2093569



