
1
On founding the theory of algorithms

Yiannis N. Moschovakis

My topic is the problem of “founding” the theory of algorithms, part of
the more general problem of “founding” computer science; whether it needs
founding—which, I will argue, it does; what should count as a “foundation”
for it; and why a specific “mathematical foundation” which I have proposed1

gives a satisfactory solution to the problem—better than the most commonly
accepted “standard” approach. It will be impossible to completely avoid making
some comments about the general problem of “founding a mathematical disci-
pline,” but I will strive (mostly) to stay away from overly broad generalities, and
concentrate on the aspects of the question which are special to algorithms.

The paper splits naturally into two parts: A general introduction in Sec-
tions 1 – 4 which lays out the problem and reviews briefly the various approaches
to it in the literature, and a more specific (in some places technical) outline of
the proposed solution, beginning with Section 5. Before anything else, how-
ever, I will start in Section 1 with a theorem and a proof, a simple, elementary
fact which is often included in a good, first course in computer science. It will
be much easier to understand what I am after using this sample of “computer
science talk” (and my slant towards it) as a starting point.

1 The mergesort algorithm

Suppose L is a set with a fixed (total) ordering ≤ on it, and let L∗ be the set
of all strings (finite sequences) of members of L. A string v = 〈v0, . . . , vm−1〉 is
sorted (in non-decreasing order), if v0 ≤ v1 ≤ . . . ≤ vm−1, and for each u ∈ L∗,
sort(u) is the sorted “rearrangement” of u,

sort(u) =df the unique, sorted string v such that for some permutation

π of {0, . . . , m − 1}, v = 〈uπ(0), uπ(1), . . . , uπ(m−1)〉.

During the preparation of this paper, the author was partially supported by an NSF Grant.
1My first publication on this problem was [9], a broad, discursive paper, with many claims,

some discussion and no proofs. This was followed by the technical papers [10, 11, 14], and
also [16, 5, 12, 15, 17] on the related problems of the logic of recursion and the theory of
concurrent processes. My main purposes here are (a) to return to the original, foundational
concerns which motivated [9], and re-consider them in the light of the technical progress which
has been achieved since then; and (b) to propose (in Section 7) a modeling of the connection
between an algorithm and its implementations, which, in some sense, completes the founda-
tional frame of this program. I have tried hard to make this paper largely independent of the
earlier technical work and as broadly accessible as possible, but I have, almost certainly, failed.

1

2 Yiannis N. Moschovakis

The efficient computation of sort(u) is of paramount importance in many com-
puting applications. Most spell-checkers, for example, view a given manuscript
as a finite sequence of words and start by “alphabetizing” it, i.e., sorting it with
respect to the lexicographic ordering. The subsequent lookup of these words in
the dictionary can be done very quickly, so that this initial sorting is the most
critical (expensive) part of the spell-checking process.

Among the many sorting algorithms which have been studied in the literature,
the mergesort is (perhaps) simplest to define and analyze, if not the easiest to
implement. It is based on the fact that the sorting function satisfies the equation

sort(u) =

{

u if |u| ≤ 1,
merge(sort(h1(u)), sort(h2(u))) otherwise,

(1.1)

where |u| is the length of u; h1(u) and h2(u) are the first and second halves
of the sequence u (appropriately adjusted when |u| is odd); and the function
merge(v, w) is defined recursively by the equation

merge(v, w) =

w if v = ∅,
v else, if w = ∅,
〈v0〉 ∗ merge(tail(v), w) else, if v0 ≤ w0,
〈w0〉 ∗ merge(v, tail(w)) otherwise.

(1.2)

Here u ∗ v is the concatenation operation,

〈u0, . . . , um−1〉 ∗ 〈v0, . . . , vn−1〉 = 〈u0, . . . , um−1, v0, . . . , vn−1〉,

and tail(u) is the “beheading” operation on non-empty strings,

tail(〈u0, u1, . . . , um−1〉) = 〈u1, . . . , um−1〉 (for m > 0).

We establish these facts and the main property of the mergesort algorithm in
four, simple propositions.

1.1. Lemma. Equation (1.2) determines a unique function on strings, and

such that if v and w are sorted, then

merge(v, w) = sort(v ∗ w), (1.3)

i.e., merge(v, w) is the “merge” of v and w in this case.

Proof is by induction on the sum |v|+ |w| of the lengths of the given sequences.
If either u = ∅ or v = ∅, then (1.2) determines the value merge(v, w) and also
implies (1.3), since ∅ ∗ u = u ∗ ∅ = u. If both v and w are non-empty, then by
induction hypothesis

merge(v, tail(w)) = sort(v ∗ tail(w)), merge(tail(v), w) = sort(tail(v) ∗ w),

and then (1.2) yields immediately that merge(v, w) = sort(v ∗w), as required. ⊣

1.2. Lemma. For each v and w, merge(v, w) can be computed from (1.2)
using no more than |v| + |w| − 1 comparisons of members of L.

On founding the theory of algorithms, Preprint, February 12, 2002. 2

On founding the theory of algorithms 3

Proof is again by induction on |v|+ |w|, and at the basis, when either v = ∅ or
w = ∅, (1.2) gives the value of merge(v, w) using no comparisons at all. If both
v and w are non-empty, then we need to compare v0 with w0 to determine which
of the last two cases in (1.2) applies, and then (by the induction hypothesis) no
more than |v| + |w| − 2 additional comparisons to complete the computation. ⊣

1.3. Lemma. The sorting function sort(u) satisfies equation (1.1).

Proof. If |u| ≤ 1, then u is sorted, and so sort(u) = u, in agreement with (1.1).
If |u| ≥ 2, then the second case in (1.1) applies, and by Lemma 1.1,

merge(sort(h1(u)), sort(h2(u))) = sort(sort(h1(u)) ∗ sort(h2(u))) = sort(u),

as required. ⊣

1.4. Lemma. If |u| = 2n, then sort(u) can be computed from (1.1) using

no more than n · 2n comparisons of members of L.

Proof. By induction on n, the result is immediate when n = 0, since (1.1)
yields sort(u) = u using no comparisons when u = 〈u0〉 has length 20 = 1.
If |u| = 2n+1, then each of the halves of u has length 2n, and the induction
hypothesis guarantees that we can compute sort(h1(u)) and sort(h2(u)) by (1.1)
using no more than (n−1)·2n−1 comparisons for each, i.e., (n−1)·2n comparisons
in all; by Lemma 1.2 now, the computation of merge(sort(h1(u)), sort(h2(u))) can
be done by (1.3) using no more than 2n − 1 < 2n additional comparisons, for a
grand total of n · 2n. ⊣

If we define the “binary logarithm” of a positive number by

log2(m) = the least n such that m ≤ 2n,

then Lemma 1.4 (with a bit of arithmetic) yields easily the main result we have
been after:

1.5. Theorem. The mergesort algorithm sorts a string of length n using

no more than n · log2(n) comparisons. ⊣

It is an important result, because the number of required comparisons is a very
reasonable measure of complexity for a sorting algorithm, and it can be shown
that n log2(n) is asymptotically the least number of comparisons required to sort

a string of length n.

1.6. Programming considerations. The mergesort is a recursive algo-
rithm, and so it is easiest to express in a relatively rich programming language
which understands recursion, like Pascal, C, or Lisp—in fact, all that is needed
is to re-write equations (1.1) and (1.2) in the rigid syntax of these languages;2

it is correspondingly difficult to express it directly in the assembly language of

2I am cheating just a bit here: this re-write is easy if the language can deal with strings (as
Lisp and some extensions of the others do), but a bit cumbersome if we must first “teach” the
language the basic operations on strings.

To appear in the Proceedings of the September, 1995 Sicily meeting. 3

4 Yiannis N. Moschovakis

some machine, because in that case we must first implement recursion, which is
not a simple matter. In addition, whether produced by the compiler of a high-
level language or by hand, the implementation of the mergesort requires a good
deal of space and (as with all implementations of recursive algorithms), it may
be slow. Because of these reasons, the mergesort is not often used in practice,
despite its simplicity and optimality.

2 Deconstruction

Before going on to learn that most of the preceding section was really meaningless
gibberish, the conscientious reader should re-read it and make sure that, in fact,
it makes perfect sense—except, perhaps, for the last paragraph which turned the
computerese up a bit.

Lemmas 1.1 and 1.3 make straight-forward, mathematical assertions about
the merging and sorting functions, and their proofs are standard. Not so with
Lemmas 1.2 and 1.4: they proclaim that the values of these functions can be

computed from equations (1.2) and (1.1) using no more than some number of

comparisons. Evidently, these lemmas are not just about the merging and sorting
functions, but also about computations, numbers of comparisons, and (more
significantly) about the specific equations (1.2) and (1.1). We understand the
proof of Lemma 1.2, for example, by reading equation (1.2) as an (implicit)
definition of a computation procedure:

2.1. The merging algorithm. To compute merge(v, w), look first at v;
if v = ∅, give output w; otherwise, if w = ∅, give output v; otherwise, if v0 ≤
w0, compute z = merge(tail(v), w) and give output 〈v0〉 ∗ z; and if none of the

preceding cases applies, compute z = merge(v, tail(w)) and give output 〈w0〉 ∗ z.

And here is the corresponding reading of (1.1) which we need for the proof
of 1.4:

2.2. The mergesort algorithm. To sort a string u, check first if |u| ≤ 1,
and if this is true, give output u; otherwise, sort separately the first and the

second half of u, and then merge the values by the procedure 2.1.

But these elaborations are not enough: We also made in the proofs of 1.2
and 1.4 certain assumptions about the “making” and “counting” of “compar-
isons” by the computation procedure we extracted from equations (1.2) and (1.1).
In the proof of 1.4, for example, we assumed that if we need C1 comparisons to

sort h1(u) and C2 comparisons to sort h2(u), then, altogether we need C1 + C2

comparisons to (separately) sort both of these strings. These are very natural
assumptions, to be sure, as are the interpretations of equations (1.2) and (1.1)—
which is why the proofs in Section 1 appear to be solid. Suppose, however,
that in the middle of a mathematical seminar talk about some operator T (f) on
Hilbert space, the lecturer appeals to the equation

T (f + g) = T (f) + T (g);

he or she would be immediately challenged to prove that T (f) is additive, start-

On founding the theory of algorithms, Preprint, February 12, 2002. 4

On founding the theory of algorithms 5

ing (presumably) with a precise definition of T (f), if one has not been given.
What is missing in Section 1 are precise (mathematical) definitions of algorithms,
uses of comparisons, etc., and rigorous proofs, from the definitions, of the basic
properties of algorithms on which the arguments were grounded.

I have called algorithms these purposeful interpretations of equations (1.2)
and (1.1), but computation procedures or effective, deterministic instructions

could do as well (for now)—all these words are used in computer science litera-
ture, more-or-less interchangeably.

2.3. Implementations. The second paragraph of Section 1 starts with
the comment that [among sorting algorithms]

. . . the mergesort is (perhaps) simplest to define and analyze, if not
the easiest to implement,

and the last paragraph 1.6 elaborates on the issue. Lots of new words and claims
are thrown around in 1.6: It is asserted that “the mergesort is a recursive al-
gorithm” which can be “expressed in Pascal or Lisp”; that “it is not a simple
matter to implement recursion [in an assembly language]”; that “the implemen-
tation of the mergesort requires a lot of space”, etc. The innocent reader should
take it on faith that all of this makes perfect, common sense to an experienced
programmer, and also that very little of it has ever been defined properly. Now
“not the easiest” and “a lot of space” will never be made precise, to be sure, but
this kind of talk suggests that programmers understand and (generally) affirm
the following:

(1) A given algorithm can be expressed (programmed, implemented) in differ-
ent programming languages, and so (in particular), an algorithm has many
implementations.

(2) Implementations have important properties, e.g., the time and space needed
for their execution.

2.4. Moral. To found the theory of algorithms, we must define precisely
its basic notions, starting with algorithms, implementations, and the relation
between a given algorithm and its various implementations; and it is important
that this be done so that the arguments in Section 1 are endowed with precise
meaning very nearly in their present form, because these simple, intuitive ideas
are so natural and appealing as to cast doubt on the necessity for rigor.

3 How do we define basic notions?

The Moral 2.4 declares that we should give precise definitions of algorithms and
implementations, but there is more than one way to go about this. Consider the
following three, different approaches (one with two flavors), starting with the
“standard” one, which, in fact, I will adopt.

3.1. (I) Define them in set theory. This is certainly the “orthodox”
method of making notions precise in modern mathematics: To “found” number
theory, we define the whole numbers and the operations on them in set theory; to

To appear in the Proceedings of the September, 1995 Sicily meeting. 5

6 Yiannis N. Moschovakis

“found” analysis, we give rigorous, set-theoretic definitions of the real numbers,
functions, limits, derivatives, etc.; to “found ” probability theory, we declare that
“a random variable is a measurable function on a probability space,” right after
we give precise, set-theoretic definitions of all the words within the quotes.

Despite its wide acceptability by working mathematicians, this kind of “set-
theoretic foundation” for a mathematical theory has been attacked by many
philosophers, most seriously Benacerraf [1], and also by some mathematicians;
Saunders MacLane has entertained generations of audiences by asking plaintively
in countless lectures,

does anybody, seriously think that 2 = {∅, {∅}}?

Probably not, but the von Neumann ordinal {∅, {∅}} clearly “codes” all the
properties of two-element sets which depend only on their cardinality; somewhat
more fancifully, {∅, {∅}} models faithfully the number 2 (whatever that is) up
to equinumerosity—as, in fact, does any two-element set. For some less trivial
examples, any Peano system (M, 0, S) models faithfully “the natural numbers”
(whatever they are), up to first-order isomorphism;3 and any countable, dense
linear ordering without endpoints models faithfully “the order type” η of the
rational numbers (whatever that is), up to order isomorphism.4 ,5

The proper role of a “set-theoretic definition” of a mathematical notion C is
not to tell us in ultimate, metaphysical terms exactly what the C-objects (those
which fall under C) are, but to identify and delineate their fundamental, mathe-
matical properties. Typically, we do this by specifying a class of sets MC and an
equivalence relation ∼C on MC , with the intention that each α ∈ MC faithfully

represents (codes) some C-object αC , and that two members α, β ∈ MC code the
same C-object exactly when α ∼C β. A modeling of this type is successful if the
∼C-invariant properties of the members of MC capture exactly the fundamental
properties of the C-objects—which implies that every fundamental property of
a C-object can be “read off” any of its codes.6

3 A triple (M, 0, S) is a Peano system if M is a set; 0 ∈ M ; S : M → M \{0} is an injection;
and every subset X of M which contains 0 and is closed under S exhausts M . All foundations
of the natural numbers start with the facts that (a) there exists a Peano system, and (b) any
two Peano systems are isomorphic, and differ only in what they do with them.

4Any two countable, dense linear orderings with no endpoints are order isomorphic (Cantor).
5 In fact, I believe that most mathematical theories (and all the non-trivial ones) can be

clarified considerably by having their basic notions modeled faithfully in set theory; that for
many of them, a (proper) set-theoretic foundation is not only useful but necessary—in the sense
that their basic notions cannot be satisfactorily explicated without reference to fundamentally
set-theoretic notions; and that set-theoretic foundations of mathematical theories can be for-
mulated so that they are compatible with a large variety of views about truth in mathematics
and the nature of mathematical objects. Without explaining it in detail or defending it, the
textbook [13] applies this view consistently to the presentation of the elementary theory of sets
and its applications. The brief remarks here are only meant to clarify what I aim to do with
algorithms in the more technical sections of the paper, following this one.

6Sometimes we can do more and choose C so that ∼C is the identity relation on C, notably
in the case of Cantor’s ordinal numbers where the class of von Neumann ordinals has this
property. In other cases this is not possible: For example, Cantor dealt with linear order types
exactly as he dealt with ordinal numbers, but (apparently) there is no way to define in Zermelo-

On founding the theory of algorithms, Preprint, February 12, 2002. 6

On founding the theory of algorithms 7

For the case of algorithms, I will first introduce the class of recursors, which
model the “mathematical structure of algorithms” (much like measurable func-
tions on probability spaces model random variables), and the relation of recursor

isomorphism between them, which models “algorithm identity”. Algorithms,
however, do not make sense absolutely, but only with respect to certain “data”
and certain “given” (possibly higher-order) operations on these data, relative
to which they are “effective”; for the full modeling, then, I will also introduce
the appropriate structures which model such data+givens contexts (up to struc-

ture isomorphism), and finally claim that the recursors which are explicitly and

immediately definable (in a specific, precise sense) on each structure M model
faithfully “the algorithms of M”.

3.2. (II) Deny that they exist. In the original, “naive” development of
the calculus, there were real numbers, variables, limits, infinitesimals, differ-
entials and many other things. Some of these were eventually given rigorous,
set-theoretic definitions, perhaps not always completely faithful to their naive
counterparts, but close enough; for example, a real-valued function is not exactly
the same thing as a dependent variable and the modern notion of a differential is
far removed from the classical one, but we can still recognize the old objects in
their precise counterparts. There are, however, no infinitesimals in (standard)
modern analysis; classical statements about infinitesimals are viewed as informal
(and vague) “ways of speaking” about real numbers, functions and limits, and
they must be replaced by precise statements which make no reference to them
and (roughly) mean the same thing.

There are two, wildly different approaches to the foundations of computer sci-
ence which treat algorithms as “pre-mathematical” notions, to be denied rather
than defined.

3.3. (IIa) Algorithms as implementations. By this “standard view”,
especially popular among complexity theorists, there are no algorithms, only
implementations, variously called machines or models of computations;7 these
are modeled in set theory; and assertions about algorithms like those in Section 1
are understood as informal “ways of speaking” about implementations. I will
discuss this approach in detail Section 4.

3.4. (IIb) Algorithms as constructive proofs. Another, more radical
proposal which also denies independent existence to algorithms is the claim that
algorithms are implicitly defined by constructive proofs. Consider, for example,
an assertion of the form

φ ≡ (∀x ∈ A)(∃y ∈ B)P (x, y). (3.1)

Fraenkel set theory a class of linearly ordered sets which contains exactly one representative
from each order isomorphism class. Because of this, “linear order types” can be “defined in
set theory” only in the minimal way described here, but their study does not appear to have
suffered because of this defect.

7Not all who adopt it will approve of my description of this view: In his classic [7], for
example, Knuth dubs “algorithms” (essentially) what I call “implementations” and avoids
altogether the second word. It amounts to the same thing.

To appear in the Proceedings of the September, 1995 Sicily meeting. 7

8 Yiannis N. Moschovakis

A constructive proof of φ should naturally yield an algorithm for computing a
function f : A → B, such that

(∀x ∈ A)P (x, f(x)),

and there exists a considerable body of work verifying this for formalized sys-
tems of constructive mathematics, typically using various notions of realizability

or (considerably deeper) applications of the Gentzen cut elimination procedure.
To pursue the reduction suggested here, however, one needs to argue the con-
verse: that statements about algorithms (in general) are really assertions about
constructive proofs, and that they can be re-formulated so that all references to
“algorithms” are eliminated.8

One problem with this view is that algorithms “support” many auxiliary
notions, like “number of comparisons,” “length of computation,” etc., which are
not usually associated with proofs. Girard, who is its foremost expositor, has
introduced linear logic partly in an attempt to associate with proofs some of
these notions, especially an account of use of resources which is often important
in algorithm analysis. I suppose one could re-prove the results of Section 1 in
some dialect of linear logic, and show that no more than n·log2(n) “assumptions”

of comparisons are needed to prove that sort(u) is defined, if u has length n. This,
or something very much like it, would be the assertion about constructive proofs
which captures the meaning of Theorem 1.5. Now, some considerable effort
is required to do this proof-theoretic analysis, and, in the end (I believe) one
will again need to write down and argue from the all-important equations (1.2)
and (1.1); but the mere (classical) truth of these equations suffices to “yield
the algorithm” and its basic property, and so I do not see the foundational
significance of constructing the linear logic proof.

Although I doubt seriously that algorithms will ever be eliminated in favor
of constructive proofs (or anything else, for that matter), I think that this view
is worth pursuing, because it leads to some very interesting problems. With spe-
cific, precise definitions of algorithms and constructive proofs at hand, one could
investigate whether, in fact, every algorithm can be extracted (in some concrete
way) from some associated, constructive proof. Results of this type would add
to our understanding of the important connection between computability and
constructivity.

3.5. (III) Axiomatize their theory. This is what we do for set theory:
Can we similarly take “algorithms”, “implementations”, and whatever else we
need as primitive notions and formulate a reasonable axiomatic theory which
will make sense out of computer science talk such as that in Section 1?

I am trying to ask a methodological question here, one which could be an-
swered without making a commitment to any specific philosophy of mathematics.
We can understand a proposed set of axioms for a theory T formally,9 as being

8Still more radical would be to simply define “algorithm” to be constructive proof of an
assertion of the form (3.1), but I cannot recall seeing this view explained or defended.

9Here “formally” means “without regard to meaning” and not (necessarily) “in a formal

On founding the theory of algorithms, Preprint, February 12, 2002. 8

On founding the theory of algorithms 9

“all there is to T”; realistically, as expressing some important truths about the
fundamental objects and notions of T , which exist independently of what we
choose to say about them; and, surely, in many more, subtler ways. It seems,
however, that the foundational value of a specific axiomatization (how much it
helps us to understand T) is independent of our general view of the axiomatic
method. It has more to do with the choice of primitives and axioms, and what
the development of T from them reveals about T .10

I will also exclude from this option the kind of “second-order axiomatizations”
which accept (uncritically, as part of logic) quantification over all subsets of
the domain. It is often claimed, for example, that the Peano axioms provide
a foundation of arithmetic in second order logic, because of the “categoricity”
theorem (b) in Footnote 3. This is true, as far as it goes, but we cannot account
for all uses of whole numbers in mathematics by appealing to such an external

(metamathematical) interpretation of (b): In many important applications we
need to understand (b) internally (as part of our mathematics), for example, to
prove that “every two complete, ordered fields are isomorphic”.11 This problem
is even more severe for complex notions like algorithms (or topological spaces,
random variables, etc.) whose basic properties are explicitly and irreducibly set-
theoretic: Second order “axiomatizations” can yield (at most) a poor shadow of
the account of them that we need to understand their uses in mathematics.

What remains is the possibility of an axiomatization of computer science
whose natural formalization would be in first-order logic, or (at least) in a many-
sorted, first order logic, where some of the basic sets are fixed to stand for
numbers (so we can talk of “the number of comparisons” or “the number of
steps” in a computation) and a few other, mathematical objects. The trouble
now is that the theory is too complex: There are too many notions competing for
primitive status (algorithms, implementations and computations, at the least)
and the relations between them do not appear to be easily expressible in first-
order terms. I doubt that the project can be carried through, and, in any case,
there are no proposals on the table suggesting how we might get started.

3.6. Syntax vs. semantics. Finally, I should mention—and dismiss out-
right—various, vague suggestions in computer science literature that algorithms

are syntactic objects, e.g., programs. Perhaps Frege [2] said it best:

language”. A coherent axiomatization in ordinary language can always be “formalized,” in the
trivial sense of making precise the syntax of the relevant fragment of English and the logic;
whether (and how) the formal version corresponds to the naive one is hard to talk about, and
involves precisely the philosophical issues about axiomatizations which I am trying to avoid.

10Zermelo’s axiomatization of set theory is a good example of this. It was first proposed in
Zermelo [22] quite formally, as an expedient for avoiding inconsistency, and only much later in
Zermelo [21] was it justified on the basis of a realistic, intuitive understanding of the cumulative
hierarchy of sets. By the time this happened, the axioms (augmented with replacement) had
been well established and there was no doubt of their value both in developing (technically)
and in understanding the theory of sets.

11This and the fundamentally set-theoretic nature of (b) in Footnote 3 are part of the
argument for the “necessity” of set-theoretic foundations alluded to in Footnote 5.

To appear in the Proceedings of the September, 1995 Sicily meeting. 9

10 Yiannis N. Moschovakis

This connection [between a sign and its denotation] is arbitrary. You
cannot forbid the use of an arbitrarily produced process or object as
a sign for something else.

In the absence of a precise semantics, Pascal programs are just meaningless
scribbles; to read them as algorithms, we must first interpret the language—and
it is then the meanings attached to programs by this interpretation which are
the algorithms, not the programs themselves.12

4 Abstract machines and implementations

The first definition of an abstract machine was given by Turing, in the classic [20].
Without repeating here the well-known definition (e.g., see [6]),13 we recall that
each Turing machine M is equipped with a “semi-infinite tape” which it uses
both to compute and also to communicate with its environment: To determine
the value f(n) (if any) of the partial function14 f : N ⇀ N computed by M , we
put n on the tape in some standard way, e.g., by placing n + 1 consecutive 1s
at its beginning; we start the machine in some specified, initial, internal state q0

and looking at the leftmost end of the tape; and we wait until the machine stops
(if it does), at which time the value f(n) can be read off the tape, by counting the
successive 1s at the left end. Turing argued that the number-theoretic functions

which can (in principle) be computed by any deterministic, physical device are

exactly those which can be computed by a Turing machine, and the corresponding
version of this claim for partial functions has come to be known as the Church-

Turing Thesis, because an equivalent claim was made by Church at about the
same time. Turing’s brilliant analysis of “mechanical computation” in [20] and
a huge body of work in the last sixty years has established the truth of the
Church-Turing Thesis beyond reasonable doubt; it is of immense importance in
the derivation of foundationally significant undecidability results from technical
theorems about Turing machines, and it has been called “the first natural law
of pure mathematics.”

Turing machines capture the notion of mechanical computability of number-

theoretic functions, by the Church-Turing Thesis, but they do not model faith-
fully the notion of mechanical computation. If, for example, we code the input

12It has also been suggested that we do not need algorithms, only the equivalence relation
which holds between two programs P and Q (perhaps in different programming languages)
when they (intuitively) express the same algorithm. It is difficult to see how we can do this
for all programming languages (current and still to be invented) without a separate notion
of algorithm; and, in any case, if we have a good notion of “program equivalence”, we can
then “define” algorithms to be the equivalence classes of this equivalence and solve the basic
problem.

13Turing machines are modeled in set theory by finite sets of tuples of some form, but their
specific representation does not concern us here.

14 A partial function f : X ⇀ W is an (ordinary, total) function f : Df → W , from some
subset Df ⊆ X of X into W ; or (equivalently) a (total) function f : X → W ∪ {⊥}, where
⊥ /∈ W is some fixed object “objectifying” the “undefined,” so that “f(x) is undefined” is the
same as “f(x) = ⊥”. For most of what we do here it does not matter, but the official choice for
this paper is the second one, so that “f : X ⇀ W” is synonymous with “f : X → W ∪ {⊥}”.

On founding the theory of algorithms, Preprint, February 12, 2002. 10

On founding the theory of algorithms 11

by putting the argument n on the tape in binary15 (rather than unary) notation
(using no more than log2(n) 0s and 1s), then the time needed for the computa-
tion of f(n) can sometimes be considerably shortened; and if we let the machine
use two tapes rather than one, then (in some cases) we may gain a quadratic
speedup of the computation, see [8]. This means that important aspects of the
complexity of computations are not captured by Turing machines. We consider
here a most general notion of model of computation, which (in particular) makes
the mode of input and output part of the “machine”.

4.1. Iterators. For any two sets X and W , an iterator φ : X W is a
quadruple (input, S, σ, T, output), where:

(1) S is an arbitrary (non-empty) set, the set of states of φ;

(2) input : X → S is the input function of φ;

(3) σ : S → S is the transition function of φ;

(4) T ⊆ S is the set of terminal states of φ, and s ∈ T =⇒ σ(s) = s; and

(5) output : T → W is the output function of φ.

The computation of φ for a given x ∈ X is the sequence of states {sn(x)}n∈N

defined recursively by

s0(x) = input(x),

sn+1(x) =

{

sn(x) if sn(x) ∈ T,
σ(sn(x)), otherwise;

the computation length on the input x (if it is finite) is

ℓ(x) = (the least n such that sn(x) ∈ T) + 1;

and the partial function φ : X ⇀ W computed by φ is defined by the formula

φ(x) = output(sℓ(x)(x)).

Each Turing machine M can be viewed as an iterator M : N N, by taking
for states the (so-called) “complete configurations” of M , i.e., the triples (σ, q, i)
where σ is the tape, q is the internal state, and i is the location of the machine,
along with the standard input and output functions.

It is generally conceded that this broad notion of iterator can model the man-
ner in which every conceivable (deterministic, discrete, digital) mechanical device
computes a function, and so it captures the structure of mechanical computation.
It is too wide to capture the effectivity of mechanical computation, because it
allows an arbitrary set of states and arbitrary input, transition and output func-
tions, but (for the moment) I will disregard this problem; it is easy enough to
solve by imposing definability or finiteness assumptions on the components of
iterators, similar to those of Turing machines, see 8.4. The question I want to

15The binary representation of a natural number n is the unique sequence akak−1 · · · a0 of

0s and 1s (with ak = 1, unless n = 0), such that n = a0 + 2a1 + 22a2 + · · · + 2kak.

To appear in the Proceedings of the September, 1995 Sicily meeting. 11

12 Yiannis N. Moschovakis

address now is whether the notion of iterator is wide enough to model faithfully
algorithms, as it is typically assumed in complexity theory;16 put another way,

are algorithms the same as mechanical computation procedures? (4.1)

A positive answer to this question expresses more precisely the view (IIa) in 3.3,
and it might appear that it is the correct answer, especially as we have been
using the two terms synonymously up until now. There are, however, at least
two serious problems with this position.

4.2. Recursion and iteration. If all algorithms are modeled by iterators,
then which iterator models the mergesort algorithm of Section 1? This was
defined implicitly by the recursive equations (1.1) and (1.2) (or so we claimed in
Section 1), and so we first need to transform the intuitive computation procedure
which we extracted from these equations into a precise definition of an iterator.
The problem is not special to the mergesort, which is just one of many important
examples of recursive algorithms defined by systems of recursive equations.

To clarify the situation, consider the following description of an arbitrary
iterator φ = (input, S, σ, T, output) by a while-program in a pidgin, Pascal-like
programming language:

s := input(x);
while (s /∈ T) s := σ(s);
w := output(s);
return w.

We do not need any elaborate, precise definitions of the semantics of while-
programs to recognize that this one (naturally understood) defines φ, and that,
conversely, the algorithm expressed by any program built with assignments and
while-loops can be directly modeled by an iterator. The first problem, then,
is how to construct while-programs which express the intuitive, computation
procedures implicit in systems of recursive equations like (1.1) and (1.2).

This can be done, in many different ways generally called implementations

of recursion.17 These methods are not simple, but they are precise enough so

16Knuth [7] (essentially, in the present terminology) defines an algorithm to be an iterator φ :
X W , which also satisfies the additional hypothesis that for every x ∈ X, the computation
terminates. This termination restriction is reminiscent of the view (IIb) in 3.4, and it is hard to
understand in the context of Knuth’s own (informal) use of the notion. Suppose, for example,
that Prof. Prewales had proposed in 1990 a precise, mechanical procedure which searched (in a
most original and efficient way) for a minimal counterexample to Fermat’s last theorem; would
we not have called this an “algorithm,” just because Prewales could not produce a proof of
termination? And what would be the “meaning” of the Pascal program produced by Prewales,
which (by general agreement) implemented his procedure? It seems more natural to say that
Prewales had, indeed, defined an algorithm, and to say this even now, when we know that the
execution of his program is doomed to diverge.

17In the simplest of the classical, “sequential” methods for implementing recursion, the most
important part of the state is a “stack”, a finite sequence of pieces of information which
(roughly) reminds the machine what it was doing before starting on the “recursive call” just
completed. There are also “parallel” implementations, in which the “stack” is replaced by
a “tree” (or other structure) of “processes” which “communicate” among themselves in pre-

On founding the theory of algorithms, Preprint, February 12, 2002. 12

On founding the theory of algorithms 13

that they can be automated: For example, one of the most important tasks of
a compiler for a “higher level” language like Pascal is exactly this conversion
of recursive programs to while-programs, in the assembly language of a specific
processor (a concrete, physical iterator, really), which can then run them.

Assume then that we associate with each system E of recursive equations
(like (1.1) and (1.2)) an iterator φE , using some fixed “compilation process”,
and we make the view (IIa) in 3.3 precise by calling φE the algorithm defined by

E. Now the first problem with this view is that φE is far removed from E and
the resulting, rigorous proofs of the important properties of φE are complex and
only tenuously related to the simple, intuitive arguments outlined in Section 1.

The complaint is not so much about the mere complexity of the rigorous
proofs, because it is not unusual for technical complications to crop up when we
insist on full rigor in mathematics. It is the artificiality and irrelevance of many
of the necessary arguments which casts doubt on the approach, as they deal
mostly with the specifics of the compilation procedure rather than the salient,
mathematical properties of algorithms. Still, this is not a fatal objection to
(IIa), only an argument against it, on the grounds that the loss of elegance and
simplicity which it requires is out of proportion with the gain in rigor that it
yields.

4.3. The non-uniqueness of compilation. The second problem with
the view (IIa) is that there are many ways to “compile” recursive programs—
to assign an iterator φE to each system of recursive equations E—and there
is no single, natural way to choose any one of them as “canonical”. This is a
most serious problem, I think, which makes it very unlikely that we can usefully
identify algorithms with computational procedures, or iterators.

Take the mergesort, for example, express it formally in Pascal, C and Lisp,
and suppose φP , φC and φL are the iterators which we get when we compile these
programs in some specific way for some specific processor. Each of these three
iterators has equal claim to be “the mergesort algorithm” by (IIa), and there is
no obvious way to choose among them. More significantly (because we might
allow ourselves some arbitrary choice here), these three iterators, obviously, have
something in common, but exactly

what is the relation between φP , φC and φL? (4.2)

The natural answer is that

they are all implementations of the mergesort algorithm, (4.3)

but, of course, we cannot say this without an independent notion of the merge-

sort algorithm. Even if we give up on making precise and answering fully Ques-
tion (4.2), we would still like to say that

determined ways. This listing of buzzwords is as far as I can go here in suggesting to the
knowledgable reader the reduction procedures to which I am alluding.

To appear in the Proceedings of the September, 1995 Sicily meeting. 13

14 Yiannis N. Moschovakis

every computational procedure extracted from the recursive equa-
tions (1.1) and (1.2) satisfies Lemmas 1.2 and 1.4

(suitably formulated for iterators), and it is hard to see how we can express this
without making reference to some one, semantic object, assigned directly to (1.1)
and (1.2) and with a prior claim to model the mergesort algorithm.

4.4. Proposal I: Implementations are iterators. From this discussion,
it seems to me most natural to assume that iterators model implementations,
which are special, “iterative algorithms,” and that results such as Lemmas 1.2
and 1.4 are about more abstract objects, whatever we decide to call them; each
of these objects, then, may admit many implementations, and codes the “imple-
mentation independent” properties of algorithms.

5 The theory of recursive equations

To motivate our choice of set-theoretic representations of algorithms in the next
section, let us first outline rigorous formulations and proofs of the results in
Section 1 in the context of the theory of recursive equations. This is a simple,
classical theory, whose basic results are very similar in flavor to those of the
theory of differential equations.

A poset (partially ordered set)18 (D,≤D) is inductive or complete if every
chain (linearly ordered subset) A ⊆ D has a least, upper bound, sup A, and a
mapping (function)

π : D → E

on one poset to another is monotone if

d ≤D d′ =⇒ π(d) ≤E π(d′).

The basic fact about complete posets is that monotone mappings have least fixed
points, in the following, strong sense:

5.1. The monotone, least fixed point theorem. If π : X×D → D is

a monotone mapping on the poset product X × D to D, and if D is inductive,

then, for each x ∈ X, the equation

d = π(x, d) (x ∈ X, d ∈ D)

18 A poset is a structure (D,≤D), where the binary relation ≤D on D satisfies the conditions
(a) d ≤D d; (b) d1 ≤D d2 & d2 ≤D d3] =⇒ d1 ≤D d3; and (c) [d1 ≤D d2 & d2 ≤D d1] =⇒ d1 =
d2. Every set X is a discrete poset with the identity relation, x1 ≤X x2 ⇐⇒ x1 = x2; and for
every W and ⊥ /∈ W , the set W ∪ {⊥} is a flat poset, with x ≤ y ⇐⇒ x = ⊥ ∨ x = y. Since
the empty set is (trivially) a chain and its least upper bound (when it exists) is easily the least
element of D, every inductive poset has a least element ⊥D = sup ∅. It can be shown that a
poset (D,≤D) is inductive exactly when it has a least element and every non-empty, directed
subset of D has a supremum. There is a tendency in recent computer science literature to
widen the notion by omitting the requirement that D has a least element, which is why I am
avoiding the common term dcpo for these structures. Computer scientists also tend to study
only continuous (in the appropriate, Scott topology) rather than the more general monotone
mappings, which makes the theory easier but not general enough to cover all the applications
that we need here. The basic facts about inductive sets and monotone mappings can be found
in most textbooks on denotational semantics and in some set theory books, e.g., [13].

On founding the theory of algorithms, Preprint, February 12, 2002. 14

On founding the theory of algorithms 15

has a least solution

d(x) = (µd ∈ D)[d = π(x, d)],

characterized by the conditions

d(x) = π(x, d(x)), (∀e ∈ D)[e ≤D π(x, e) =⇒ d(x) ≤D e];

in addition, the function x 7→ d(x) is monotone on X to D.19

The simplest, interesting inductive posets are the partial function spaces

(A ⇀ B) = {p | p : A ⇀ B} (= {p | p : A → B ∪ {⊥}})

partially ordered “pointwise,”

p ≤ q ⇐⇒ (∀x ∈ A)[p(x) ≤ q(x)]

⇐⇒ (∀x ∈ A, y ∈ B)[p(x) = y =⇒ q(x) = y],

and products of these, i.e., spaces of pairs (or tuples) of partial functions. To
apply Theorem 5.1 to the sorting problem of Section 1, for example, we need
the posets (L∗ ⇀ L∗) and (L∗ ×L∗ ⇀ L∗) which contain the functions sort and
merge, and also the poset

(L × L ⇀ {ff , tt}),

where {ff , tt} is some arbitrary set of two, distinct objects standing for falsity

and truth and which contains the characteristic function

χ≤(s, t) =

{

tt, if s ≤ t,
ff , if t < s

of the given ordering on L. In general, a partial function c : L×L ⇀ {ff , tt} can
be viewed as the characteristic partial function, of a partial, binary relation on
L. The idea is to generalize the problem, and try to find (partial) “merging” and
“sorting” functions, relative to an arbitrary partial relation c : L × L ⇀ {ff , tt},
which stands for some approximation to a total ordering. We can get this very
easily from Theorem 5.1: for each c : L×L ⇀ {ff , tt}, there exist partial functions

sort(c) : L∗ ⇀ L∗ and merge(c) : L∗ × L∗ ⇀ L∗,

which are (least) solutions of the recursive equations

sort(c)(u) =

{

u if |u| ≤ 1,
merge(c)(sort(c)(h1(u)), sort(c)(h2(u))) otherwise,

(5.1)

merge(c)(v, w) =

w if v = ∅,
v else, if w = ∅,
〈v0〉 ∗ merge(c)(tail(v), w) else, if c(v0, w0) = tt,
〈w0〉 ∗ merge(c)(v, tail(w)) else, if c(v0, w0) = ff ;

(5.2)

19Various versions of this basic fact have been attributed to different mathematicians, but a
special case (with a proof which suffices for the full result) is already a subroutine of Zermelo’s
first proof of the Wellordering Theorem in [23].

To appear in the Proceedings of the September, 1995 Sicily meeting. 15

16 Yiannis N. Moschovakis

and which depend monotonically on c : L × L ⇀ {ff , tt}. If ≤ is the given
ordering on L, then merge(χ≤) and sort(χ≤) are obviously the merging and
sorting functions we need; and on the other hand, using exactly the arguments
(by induction on |v| + |w| and |u|) for Lemmas 1.2 and 1.4, we can show the
following:

5.2. Theorem. Suppose sort(c) and merge(c) are monotonic functions of

c : L × L ⇀ {ff , tt} which satisfy the recursive equations (5.1) and (5.2).
(a) If merge(c)(v, w) = z ∈ L∗, then there exists a partial function c′ ≤ c

which is defined on at most |v|+ |w|−1 pairs, and such that merge(c′)(v, w) = z.
(b) If |u| = 2n and sort(c)(u) = z ∈ L∗, then there exists a partial function

c′ ≤ c which is defined on at most n · 2n pairs, and such that sort(c′)(u) = z.

There is no mention of “algorithms” or “uses of comparisons” in Theorem 5.2,
but it is not hard to find in it the heart of the claims of Lemmas 1.2 and 1.4.
The key move is from the equations (1.1) and (1.2) (which we know to hold
of the sorting and merging functions), to the “parametrized” equations (5.1),
(5.2), whose meaning is unclear, for arbitrary c, but which have least solutions
sort(c) and merge(c) by Theorem 5.1, and these solutions depend monotonically
on “the parameter” c. Let us now make the natural assumption that any method
for extracting a computation procedure (perhaps an iterator) φ from the equa-
tions (1.1) and (1.2), should also apply to (5.1), (5.2) and yield a generalized
computation procedure φ(c), for each c, which computes sort(c)—simply by re-
placing each instruction to check if s ≤ t by compute c(s, t). If sort(u) = z, so
that φ applied to u computes z, then sort(c)(u) = z, for some small c ≤ χ≤ by
Theorem 5.2, and hence φ(c) applied to u should also compute z—but it cannot
“ask” for comparisons outside the domain of c, because then it would diverge.

This simple method of varying the parameter (here the ordering ≤ on L) and
then applying Theorem 5.1, is a powerful tool for deriving properties of functions
which are (least) solutions of recursive equations.

6 Functionals and recursors

What do we learn from the rigorous arguments of the preceding section about
choosing a set-theoretic object to model “the mergesort algorithm”? It seems
that all we needed was the “semantic content” of equations (1.1) and (1.2), i.e.,
the pair (f, g) of operations defined by their right-hand-sides,

f(u, p, q) =

{

u if |u| ≤ 1,
q(p(h1(u)), p(h2(u))) otherwise,

(6.1)

g(v, w, p, q) =

w if v = ∅,
v else, if w = ∅,
〈v0〉 ∗ q(tail(v), w) else, if v0 ≤ w0,
〈w0〉 ∗ q(v, tail(w)) otherwise.

(6.2)

Formally, these are functionals on L∗, in a technical sense which is basic and
useful enough to deserve special billing.

On founding the theory of algorithms, Preprint, February 12, 2002. 16

On founding the theory of algorithms 17

6.1. Functionals. A functional on a collection of sets M is any mono-
tone, partial function

h : X1 × · · · × Xn ⇀ W,

where W ∈ M or W = {ff , tt}; and each Xi is either a set in M, or a partial
function space Xi = (U ⇀ V), with U = U1 × · · · × Ul a product of sets in M
and V ∈ M or V = {ff , tt}. For example, the operation of m-ary partial function

application

apm(x1, . . . , xm, p) = p(x1, . . . , xm) (x1, . . . , xm ∈ M, p : Mm ⇀ W) (6.3)

is a functional on the sets M , W ; and the operation

∃M (p) =

{

tt if (∃x ∈ M)[p(x) = tt],
ff if (∀x ∈ M)[p(x) = ff],

(6.4)

is a functional on M which “embodies” (in Kleene’s expression) existential quan-
tification on M . Note also that, by this definition, all partial functions and partial
relations on M are functionals.

It was (essentially) systems of functionals like (f, g) that I chose initially
in [9, 11] to model algorithms, and these are the concrete objects which come
up in the most interesting applications. To develop the general theory simply
and smoothly, however, it is best to use a class of more abstract objects, which
includes suitable representations of these systems.20

6.2. Recursors. A recursor α : X W on a poset X (perhaps discrete,
just a set) to a set W is a triple (D, τ, value), where:

(1) D is an inductive poset, the domain or solution set of α;

(2) τ : X × D → D is a monotone mapping, the transition mapping of α; and

(3) value : X ×D ⇀ W is a monotone, partial mapping, the value mapping of
α.21

The partial function α : X ⇀ W determined (computed) by α is defined by

α(x) = value(x, (µd ∈ D)[d = τ (x, d)]),

where, for each x ∈ X, (µd ∈ D)[d = τ (x, d)] is the least, fixed point of the
recursive equation

d = τ (x, d) (x ∈ X, d ∈ D);

and it is monotone, by Theorem 5.1. We say that α is a recursor on a collection
of sets M, if α : X ⇀ W is a functional on M as in 6.1.

20The present version yields, in particular, a natural and comprehensible formulation of
recursor isomorphism, a notion whose original definition (in [11]) is quite opaque.

21This means that d1 ≤ d2 =⇒ value(x, d1) ≤ value(x, d2), or, equivalently,

d1 ≤ d2 &value(x, d1) is defined =⇒ value(x, d1) = value(x, d2).

See Footnotes 14 and 18 for the precise conventions about partial functions.

To appear in the Proceedings of the September, 1995 Sicily meeting. 17

18 Yiannis N. Moschovakis

Two recursors α1 = (D1, τ1, value1), α2 = (D2, τ2, value2) : X W (on the
same sets) are isomorphic, if there exists an order-preserving bijection

π : D1 → D2

which respects the transition and value mappings, i.e., for all x ∈ X and d ∈ D1,

π(τ1(x, d)) = τ2(x, π(d)),

value1(x, d) = value2(x, π(d)).

Isomorphic recursors (easily) determine the same partial functions, i.e., α1 = α2.

6.3. Proposal II: Algorithms are recursors. The mathematical struc-

ture of every algorithm on a poset X to a set W is modeled faithfully by some

recursor α : X W ; and two recursors model the same algorithm if they are

isomorphic.

6.4. The where notation. Defining and manipulating recursors becomes
much easier with the following, compact where notation, one of several variants of
the notation for recursive definitions used in programming languages: To specify
that α = (D, τ, value) : X W , we write

α(x) = value(x, d) where {d = τ (x, d)}, (6.5)

suggesting that to compute the value α(x) using α, we first take the least solution
of the equation within the braces { } and then plug it into the “head” partial
mapping in the front. We can have more than one equations within the braces
in this notation,

α(x) = value(x, d1, d2) where {d1 = τ1(x, d1, d2), d2 = τ2(x, d1, d2)}
=df value(x, 〈d1, d2〉) where {〈d1, d2〉 = 〈τ1(x, d1, d2), τ2(x, d1, d2〉},

where the angled brackets indicate that the domain of α is the product poset
D1 ×D2; and we can also allow recursive equations involving (partial) functions
within the braces,

α(x) = value(x, p) where {p(u) = τ (x, u, p)}
=df value(x, p) where {p = λ(u)τ (x, u, p)},

in which case the domain of α is the partial function poset (U ⇀ W), the range
of the variable p.22

The judicious application and combination of these conventions facilitates
significantly the definition and manipulation of recursors. For example, each
monotone partial function f : X ⇀ W (and, in particular, each functional) is
naturally represented by the “degenerate” recursor

rf (x) =df f(x) where {d = d},

22If t(u) is an expression which takes values in W ∪ {⊥} and in which the variable u occurs,
ranging over U , then λ(u)t(u) stands for the partial function p, where p(u) = t(u).

On founding the theory of algorithms, Preprint, February 12, 2002. 18

On founding the theory of algorithms 19

with domain {⊥} and such that (obviously) rf = f . Less trivially, each iterator
φ = (input, S, σ, T, output) on X to W , is represented by the recursor

rφ(x) =df p(input(x)) where {p(s) = if s ∈ T then output(s) else p(σ(s))} (6.6)

with domain the partial function poset (S ⇀ W), which computes the same
partial function rφ(x) = φ(x) as φ and codes φ up to iterator isomorphism.23

Finally, the “systems of functionals” which arise in the study of recursive equa-
tions can also be represented by recursors, e.g., we set

mergesort1(u) = p(u) where {p(u) = f(u, p, q), q(v, w) = g(v, w, p, q)}, (6.7)

where f and g are defined by (6.1), (6.2).24

It is natural and convenient to “identify” monotone partial functions, iter-
ators and systems of functionals with these recursors which represent them, so
that the class of recursors may be said to include these objects.

6.5. Algorithm identity. Suppose A is an (intuitive) algorithm which
computes (say) the first one billion prime numbers, and you define A′ by saying

first add 2 + 2 and then do A;

or, you let A′′ be

do A two times (simultaneously, in parallel) and give as output just

one of the results :

Are A, A′ and A′′ different algorithms, or are they all identical? They are,
clearly, very closely related, but most people would call them different—or grant,
at least, that any rigorous representation of algorithms would model them by
non-isomorphic objects; and, indeed, if α, α′ and α′′ are their natural recursor
representations, then no two of these three recursors are isomorphic.

In fact, recursor isomorphism is a very fine equivalence relationship which is
not preserved by many useful algorithm transformations (optimizations, refine-
ments, etc.), and we must often introduce “coarser” equivalences (or reductions)
to express important facts of informal algorithm analysis.25 Rather than a de-
fect, this is a virtue, in most cases, as it forces out a precise version of exactly
what it is which is being proved.

23An isomorphism between two iterators φi = (inputi, Si, σi, Ti, outputi) (i = 1, 2) on X to
W is a bijection ρ : S1 → S2 between the sets of states, such that ρ[T1] = T2; ρ(input1(x)) =
input2(x); ρ(σ1(s)) = σ2(ρ(s)), for every s ∈ S1; and output1(s) = output2(ρ(s)), for every
s ∈ T1 which is input-accessible, i.e., such that for some x ∈ X and some n, s = σn

1
(input

1
(x)).

The precise result is that the recursors r1 and r2 associated with two iterators φ1 and φ2 are
isomorphic if and only if φ1 and φ2 are isomorphic iterators.

24 This is only approximate, see 8.6 below. Note, also, that we might equally well have set

mergesort2(u) = p(u) where {q(v,w) = g(v, w, p, q), p(u) = f(u, p, q)},

but mergesort1 and mergesort2 are isomorphic: It is an easy, general fact, that re-ordering the
listing of the parts within the braces of a where expression produces an isomorphic recursor.

25By the simple result quoted in Footnote 24, however, changing the order in which we
specify computations which are to be executed in parallel “preserves the algorithm”.

To appear in the Proceedings of the September, 1995 Sicily meeting. 19

20 Yiannis N. Moschovakis

6.6. Infinitary recursors; graph connectivity. It is clear that not ev-
ery recursor models an algorithm,26 because we have allowed the transition and
value mappings to be completely arbitrary, as they are for iterators. We will
deal with this question of “effective definability” of algorithms in Section 8. In
contrast to iterators, however, a recursor may fail to determine an “effective
computation” in a more dramatic way, as in the following example.

Suppose that (G, R) is a graph, i.e., a non-empty set of nodes G together with
a symmetric, binary edge relation R on G, and consider the recursive equivalence

p(x, y) ⇐⇒ x = y ∨ (∃z)[R(x, z) & p(z, y)] (p ⊆ G × G). (6.8)

Quite easily, the least binary relation p on G which satisfies (6.8) is

p(x, y) ⇐⇒ there is a path which joins x with y, (6.9)

and from this it follows that if we set

conn ⇔ (∃x)q(x) where {q(x) ⇔ (∀y)p(x, y), (6.10)

p(x, y) ⇔ x = y ∨ (∃z)[R(x, z) & p(z, y)]},

then conn : I {ff , tt} is a nullary27 recursor which “verifies” the connectedness
of the graph G, i.e.,

conn ⇔ tt ⇐⇒ G is connected,

We can also extract from the recursive equivalence (6.8) a computation pro-
cedure (of sorts) for verifying whether an arbitrary x ∈ G can be joined with
some arbitrary y ∈ G, much as we did in Section 1: If x = y, give output tt, and

if not, check (simultaneously) for each immediate neighnor z of x, if it can be

joined with y, and give tt only if one does. So far, so good, but how long—how

many basic, computation steps—does it take to verify that G is connected, i.e., to
carry out all the verifications required to show that every x can be joined with
every y in G? Well, it depends on the so-called diameter of G, the supremum
of shortest paths connecting its points: If this is finite (and, in particular, if G
is finite), then we can clearly do all the verifications in a finite number of steps,
but if G is connected with infinite diameter, then it seems that we need to use
inifinitely many steps to check that every point in G can be joined with every
other one, and so the total “computation” of conn requires at least ω (= the
least infinite ordinal) steps.

Whether (in the proper context) we can take conn to represent an “algo-
rithm” is an interesting question, to which I will return in 9—but, if it does,
then that should be some sort of (absolutely) non-implementable, infinitary al-

26Well, maybe not so clear, see the remarks following 8.4.
27Here I is some fixed set with a single element (say ∅), so that a recursor α : I {ff , tt}

has no real arguments, and simply computes an object α = α(∅) ∈ {ff , tt,⊥}. I am also using
“⇔” for the equality relation on {⊥, ff , tt} in the definition of conn, since conn is a partial
relation.

On founding the theory of algorithms, Preprint, February 12, 2002. 20

On founding the theory of algorithms 21

gorithm, since “real,” terminating computations cannot take infinitely many
steps for their completion.

The “number of steps” required by a recursor α to “compute” a value α(x) is
an important quantity associated with α, part of a bundle of notions with which
the mathematical theory of recursors starts.

6.7. Recursor iteration. Fix a recursor α = (D, τ, value) : X W and
some x ∈ X, let

τx(d) = τ (x, d),

and for each ordinal number ξ, set (by ordinal recursion)

dξ
α(x) =df τx(sup{dη

α(x) | η < ξ}) (with sup ∅ = ⊥),
αξ(x) =df value(x, dξ

α(x)),
||α|| =df the least ξ (∀x ∈ X)[dξ

α(x) = sup{dη
α(x) | η < ξ}].

(6.11)

It is not hard to show that these definitions make sense28 and that they determine
the partial function computed by α, i.e.,

α(x) = supξα
ξ(x).

We call α finitary if ||α|| ≤ ω, and infinitary if ||α|| > ω.

The closure ordinal ||α|| and the (partial) stage assignment

|α|(x) =df µξ [αξ(x) ∈ W] < ||α||, (6.12)

(defined exactly when α(x) is defined) are fundamental invariants of α: For the
recursor rφ associated with an iterator φ by (6.6), for example, ||rφ|| = ω, and

|rφ|(x) = ℓ(x) − 1 = (the computation length on x) − 1.

In the case of 6.6,
||conn|| = the diameter of G + 2,

so that if G has infinite diameter, then ||conn|| = ω + 2.
One may choose to view the iteration sequence {dξ(x) | ξ < ||α||} as some sort

of very abstract, “logical computation” of α(x), whose length (if it terminates)
is the possibly infinite ordinal |α|(x). More loosely, but closer to the truth,
we may say that each iterate dξ(x) codes some “information” about the value
α(x), which can be extracted by the value mapping and increases with ξ; and
when enough such information is available, then α(x) = αξ(x) = value(x, dξ(x))
becomes defined.

These iterates are also the key tool for “rigorizing” many informal arguments
about algorithms extracted from recursive equations. I will not go into this
here, and I will also avoid any further discussion of the mathematical theory of
recursors, whose basic facts are presented in [10, 11, 14].

28This is an outline of the standard proof of Theorem 5.1.

To appear in the Proceedings of the September, 1995 Sicily meeting. 21

22 Yiannis N. Moschovakis

7 Implementations

Imagine a world (presumably run by mathematicians) where one could patent
algorithms, so that each time you used Prof. X’s “superfast multiplication” α
you should pay him a fee.29 Now to use α, you must first implement it, i.e., write
a program P which (in some sense) expresses α, and which can be understood
and “run” by some actual machine; and Prof. Y has written just such a program
P , but he claims that it has nothing to do with X’s α, it is actually an implemen-
tation of some other algorithm β, unrelated to α and invented by himself: What
are the relevant objective criteria—the mathematical relations which hold or do
not hold between α and P or β and P—for settling the dispute? The humor is
dubious, but the problem of making precise exactly what it means to say that
the program P implements the algorithm α is very serious, one of the basic (I
think) foundational problems in the theory of algorithms.

Having already resolved in 4.4 that implementations are iterators, and that
each iterator φ can be identified with a recursor rφ, (6.6), I will propose an
answer which follows from a general theory of reduction among recursors: First
I will define a relation α ≤r β between recursors, which (roughly) means that
“the abstract computations of α are faithfully simulated by those of β”, and then
I will say that φ implements α if α ≤r rφ.

7.1. Recursor reduction. A recursor α1 = (D1, τ1, value1) : X1 W
is reducible to another α2 = (D2, τ2, value2) : X2 W (on the same set of
values), and we write α1 ≤r α2, if there exist monotone mappings

ρ : X1 → X2, π : X1 × D1 → D2,

so that:

(1) For all x ∈ X1 and d ∈ D1, τ2(ρ(x), π(x, d)) ≤ π(x, τ1(x, d));

(2) for all x ∈ X1 and d ∈ D1, value2(ρ(x), π(x, d)) ≤ value1(x, d); and

(3) for each x ∈ X1, α1(x) = α2(ρ(x)).

It is easy to show that the reduction relation is reflexive and transitive on
the class of all recursors.

7.2. Proposal III: “To implement” means “to reduce”. An imple-
mentation of a recursor α is any iterator φ such that α ≤r rφ; and α is (ab-
stractly) implementable, if it admits an implementation.

In the concrete examples of this very abstract notion, the universe X2 of α2

is an expansion of the universe X1 of α1 by new “data structures,” e.g., stacks,
caches, etc. To understand how the abstract computations of the two recursors
are related, imagine (as at the end of Section 6) that each d ∈ D1 represents some
information about the value α1(x), which by (3) is the same as α2(ρ(x)); for each
x, now, π(x, d) gives us a corresponding piece of information about α2(ρ(x)), and

29In our world, the law is vague and still not fully formed, but (as I understand it) it denies
patents to algorithms but grants Copyrights to programs.

On founding the theory of algorithms, Preprint, February 12, 2002. 22

On founding the theory of algorithms 23

(1) and (2) prescribe that each step of α2 “increments no more” the available
information and “contributes no more” to the computation of the common value
α1(x) = α2(ρ(x)) than the corresponding step of α1.

30 Technically, (1) and (2)
yield that for all ordinals ξ,

π(x, dξ
1(x)) ≥ dξ

2(ρ(x)),

from which it follows that
αξ

1(x) ≥ αξ
2(ρ(x)), (7.1)

and (3), then, says simply that the iteration of α2 eventually “catches up” with
that of α1, so that, in the limit, the same partial function is computed.

From (7.1) we also get

|α1|(x) ≤ |α2|(ρ(x)) (if α1(x) is defined),

so that in particular
||α1|| ≤ ||α2||; (7.2)

and this with 6.7 implies that if α is abstractly implementable, then ||α|| ≤ ω.
It is not hard to verify that the converse also holds,31 so that:

7.3. Fact. The abstractly implementable recursors are exactly those with

closure ordinal ≤ ω.

To justify this modeling of “φ implements α”, one must (at least) show that
it covers simply and naturally the standard reductions of recursion to iteration,
and that it extends the precise definitions which already exist for simulating one
iterator by another. This can be done, quite easily, but the inevitable technical-
ities are not suitable for this paper.

8 Algorithms

It is tempting to assume that the successor operation S(n) = n + 1 on the
natural numbers is “immediately computable,” an absolute “given,” presumably
because of the trivial nature of the algorithm for constructing the unary (tally)
representation of S(n) from that of n—just add one tally ; if we use binary
notation, however, then the computation of S(n) is not so trivial, and may
require the examination of all log2(n) binary digits of n for its construction—
while multiplication by 2 becomes trivial now—just add one 0. The point was
already made in Section 4, to argue that the mode of input must be part of any
model of computation, but it also shows that while there is one, absolute notion

30It is not always true for a monotone τ that d ≤ τx(d), but τx is only applied to such d’s
in the construction (6.11) of the iteration sequence {dξ(x) | ξ < ||α||}, so that, where it is
relevant, applying the transition mapping, indeed, does not decrease our information about
the value.

31 You cook up an iterator whose computation for each x is the sequence of iterates
d0(x), d1(x), . . ., and then check that α is reducible to it. It is, in general, an inefficient
implementation, but it is used routinely in finite model theory, and (I have been told) it is also
used for some very special database applications.

To appear in the Proceedings of the September, 1995 Sicily meeting. 23

24 Yiannis N. Moschovakis

of computability on N (by the Church-Turing Thesis), there is no corresponding
absolute notion of “algorithm” on the natural numbers—much less on arbitrary
sets. Algorithms make sense only relative to operations which we wish to admit
as immediately given on the relevant sets of data. Any set can be a data set; as
for the given operations, we may have partial functions, functionals, or, in the
most general case, recursors.

8.1. Structures. A (recursor) structure is a pair M = (M,F) such that:

(1) Each M ∈ M is a set and at least one such M is non-empty; these are the
basic or data sets of M.

(2) Each α ∈ F is a recursor on the data sets of M, i.e., α : X ⇀ W is a
functional on M as in 6.1.

M is a first order structure if every given is a (total) function, and a functional

structure if every given is a functional.
Simplest among these are the usual (single- or many-sorted) first-order struc-

tures of model theory, e.g.,

N = (N, 0, S, P, χ0), (8.1)

where 0 is the (nullary) constant, S(n) = n + 1, P (n) = n − 1 (with P (0) = 0),
and χ0 : N → {ff , tt} is the characteristic function of {0}; the choice of givens in
this simplest structure of arithmetic implies (in effect) that we take the numbers
to be finite sequences of tallies. The expansion

(N, ∃N) = (N, 0, S, P, χ0, ∃N), (8.2)

of N by the existential quantifier (6.4) is an important example of a func-
tional structure, and every first-order structure M has an analogous expansion
(M, ∃M). In the most general case, the “given” recursors of a structure represent
algorithms which we accept as “black boxes,” right from the start, and they are
the basic ingredients with which we build the algorithms of a structure.

8.2. Formal definability. With each structure M = (M,F), we can as-
sociate a vocabulary (signature), with variables over the data sets of M and
the partial functions and partial relations on them, and with constant, function
symbols for the given recursors; and using such a vocabulary, we can then build
formal languages, which codify various notions of definability on M. Simplest
among these is the Formal Language of Recursion FLR, a language of terms and
λ-terms, built up from the vocabulary using (partial) function application (6.3),
definition by cases (conditional), calls to the givens and recursion, in the general
form of 6.4. We will also need the fragment FLI of FLR, obtained by replacing
the general where construct by its special case used in iteration. Table 1 gives a
summary definition of the syntax of these languages, computer science style.32

32The only non-obvious side condition in the syntax is that in the recursion construct for
FLI, the “recursion variable” p occurs only where it is explicitly shown.

On founding the theory of algorithms, Preprint, February 12, 2002. 24

On founding the theory of algorithms 25

Term: A :≡ ff | tt

| p(Z1, . . . , Zn)
| f(Z1, . . . , Zn, π1, . . . , πm)
| if A0 then A1 else A2 fi

(for FLR) | A0 where {p1(~u1) = A1, . . . , pn(~un) = An}

(for FLI) | p(~I) where {p(~s) = if T then O else p(~Z) fi}
Z :≡ u | A

λ-term: π :≡ p | λ(u1, . . . , un)A

Table 1. The syntax of FLR and FLI.

8.3. Algorithmic semantics. The algorithmic or intensional seman-
tics of FLR which concern us here are defined in [11], using the main result of
[10]: Roughly, a recursor

intA = intM

A (8.3)

(the intension of A in M) is naturally associated with each structure M and
term A, in such a way that the domain of intA is a product of the domains of the
givens of M and its data sets, and its transition and value mappings are defined
explicitly and immediately using application, conditionals and calls.33

8.4. Proposal IV: Algorithms are definable recursors. Every algo-

rithm relative to given recursors F is (modeled faithfully by) the intension intA

of some FLR-term A on the structure M with the givens F ; and, conversely,

each intA on M is an algorithm relative to F .

The iterative algorithms of a first order structure M are the M-intensions of

FLI-terms.34

A functional on the data sets is recursive or computable relative to F if it is
computed by an algorithm of M, and it is iteratively computable if it is computed
by an iterative algorithm of M. These are exactly the functionals definable by
FLR- and FLI-terms on M, in the natural, denotational semantics of FLR.

Notice that, in a trivial sense, every recursor α : X W models an algorithm
of some structure, e.g., the structure (X, W, α)! On the other hand, no function
or relation on an arbitrary set M is automatically computable by some algorithm,
not the equality relation x = y on M , not even the identity function f(x) = x.

33The language FLR “evolved” somewhat between [10] and [16], and the intensional seman-
tics are constructed in [11] for a more restricted class of recursors, but none of this is very
important or affects the present discussion. The mapping A 7→ intA is defined (basically) by
recursion on the structure of A, as one might expect. It is not a difficult construction, but it
does involve some subtleties and technicalities (mostly in making precise this “explicitly and
immediately”) which make it impractical to give a useful summary of it here. In addition to
the papers already cited, [14] discusses some applications of intensional semantics to the phi-
losophy of language and establishes the decidability of algorithm identity on any fixed structure
with finitely many givens.

34The notion of an iterative algorithm does not have a clear meaning, except on first order
structures.

To appear in the Proceedings of the September, 1995 Sicily meeting. 25

26 Yiannis N. Moschovakis

It is usual, of course, to include such simple functions among the givens of a
structure, but it is not necessary—and there are examples where it is not natural.

8.5. Implementations of algorithms. Let us say that a structure M is
implementable in a first order structure M

′ and write M ≤i M
′, if every M-

algorithm is reducible to some iterative algorithm of M
′; in standard, computer

science terminology, M ≤i M
′ is expressed by saying that every recursive pro-

gram in M can be simulated by a while-program in M
′. For the integers, N ≤i N,

but it is not generally true of first order structures that M ≤i M, and, in fact,
there are natural (infinite) examples in which not every M-recursive function can
be computed by a while-program of M.35 The standard reductions of recursion
to iteration establish M ≤i M

∗, where M is first order and M
∗ is an expansion

of M by a stack or other, auxiliary data structures.

A serious attempt to defend and support Proposals I – IV requires a detailed
examination of several examples and a comparison of the rigorous theory built
upon them with the “naive” theory of algorithms, as it has been developed
(especially) by complexity theorists, and this I cannot do here. I will confine
myself to a final re-examination of the mergesort, and a brief discussion, in the
next Section, of the infinitary algorithms which arise naturally in this theory.

8.6. The mergesort algorithm. The natural structure for the mergesort
has data sets L and L∗, and the obvious functions for the manipulation of strings
for its givens:

L = (L, L∗, ∅, eq∅, head, tail, append, χ≤), (8.4)

where ∅ is the empty string (as a nullary function); eq∅ : L∗ → {ff , tt} checks for
equality with ∅,

eq∅(u) =

{

tt, if u = ∅,
ff , otherwise;

head(u) and tail(u) are as in Section 1 (with head(∅) = tail(∅) = ∅ to make them
total functions); append : L × L∗ → L∗ prefixes a sequence with an arbitrary
element of L,

append(x, 〈a1, . . . , an−1〉) = 〈x, a1, . . . , an−1〉,

so that, in particular, append(x, ∅) = 〈x〉; and χ≤ is the characteristic function
of the given ordering on L. The basic equations (1.2) and (1.1) refer directly to
several, additional operations on strings, but these can be defined (computed)
from those of L, e.g.,

test1(u) = if eq0(tail(u)) then tt else ff

tests if |u| ≤ 1 or not. This is an explicit definition, while h1(u) and h2(u) are
(easily) defined by recursion, but FLR has a recursive construct and it is quite

35There is a large literature on the reduction of recursion to iteration under various condi-
tions, see for example [19] and the papers cited there.

On founding the theory of algorithms, Preprint, February 12, 2002. 26

On founding the theory of algorithms 27

trivial to write in the end a single FLR term A for the mergesort, with one
free variable, a formal version of (6.7) with imbedded, recursive terms for the
parts f(u, p, q) and g(v, w, p, q). Now the official “model” for the mergesort is
the recursor

msort = intA : L∗
 L∗

which is assigned to this term by the algorithmic semantics of FLR, and it codes
not only how the mergesort depends on the ordering, but the whole “flow of
computation” determined by the equations (1.1), (1.2). By the general theory,

msort(u) = f0(u, ~p) where {p1(~z1) = f1(~z1, ~p), . . . , pn(~zn) = fn(~zn, ~p)}, (8.5)

where each of the functionals fi is defined explicitly and immediately from the
givens of L. I have not repeated this full definition here, but in this case36 it
means that each fi is an application with nesting no more than one-deep, for
example

fi(z1, z2) = pj(pk(z1), z2, z1);

or an immediate conditional, for example

fi(z1, z2) = if pi(z1) then pj(z1, z1, z2) else pk(z2);

or a truth value fi(z1, z2) = ff ; or, finally, a direct call to the givens, for example

fi(z1, z2) = append(z1, z2).

Because the critical given χ≤ occurs only once in the equations (1.1), (1.2) (when
we write them carefully, using the conditional), only one of the fi’s depends on
it; and from this it follows that

msort(u) = α(u, c) where {c(s, t) = χ≤(s, t)}, (8.6)

where, c varies over the set of partial relations (L × L ⇀ {ff , tt}); α(u, c) is
an algorithm of the reduct of L which does not include the ordering χ≤; and
(most significantly) the where notation has been extended to make sense when

it is applied to arbitrary recursors, not just functionals.37 Notice that (8.6) is a
recursor identity ; and once we have it, it is natural to define the dependence of
msort(u) on χ≤ in terms of the dependence of α(u, c) on the partial relation c,
from which point on the proof of the basic property of the mergesort follows by
the arguments of Section 1, as we made them precise in Section 5.

An important aspect of this “finished” analysis of the mergesort is that the
application of the method of parameter variation, which (maybe) seemed a bit
ad hoc in Section 5, arises now naturally from the move from (8.5) to (8.6), one
of the basic, general transformations of the theory.

36In fact, the forms listed describe fully the normal form for intensions in first order
structures.

37This follows from the basic, general facts of the theory of recursors, a natural (and not
very difficult) extension of the fixed-point theory of monotone mappings which keeps track (in
effect) of the recursive definitions, not just their fixed points.

To appear in the Proceedings of the September, 1995 Sicily meeting. 27

28 Yiannis N. Moschovakis

9 Infinitary algorithms

It is clear, from the discussion so far, that, in this approach, there is no absolute
notion of effectively implementable algorithm, just as there is no absolute no-
tion of algorithm, independent of any givens: We can only talk of implementing

an M-algorithm intA in M
′, meaning that we can find an implementation of

intA among the iterative algorithms of M
′. At the same time, the theory makes

room for the infinitary algorithms of 6.6, those with closure ordinal greater than
ω, which cannot be implemented in any structure whatsoever: What are we
to make of them, and do they serve any useful purpose, do they help illumi-
nate our intuitive notion of algorithm? I will consider here, briefly, two ways
in which infinitary algorithms arise naturally, as generalizations of concretely
implementable algorithms and as interesting mathematical objects of study, in
their own right.

9.1. Algorithms on finite structures. If we read (6.10) as the defini-
tion of an FLR-term C on the expansion (G, R, =, ∃G) of an arbitrary graph
(G, R) by = and the existential quantifier, it yields a nullary algorithm of this
structure

connd = intC : I {ff , tt} (9.1)

which like conn of (6.10), computes the connectivity of G,

connd ⇔ tt ⇐⇒ G is connected.

Now connd is somewhat more “detailed” than conn (because it also accounts
for the explicit steps in the computation), but still, there is some number m such
that

||connd|| = diameter of G + m; (9.2)

and so, again, connd is implementable if and only if G has finite diameter, by 7.3.
For finite G, we can easily build real, practical implementations of connd which
can be programmed on a physical processor—even the trivial implementation
suggested in Footnote 31 is not too bad in this case. These implementations are
useful in database theory, but the fact of G’s finiteness is hardly used in their
construction—typically we only appeal to it at the very last moment, to build
up an implementation of the quantifiers. So, would it help to build a conceptual
wall between the implementable and the infinitary definable recursors, fix the
terminology so that the latter would be denied the honorable title of algorithm? I
would argue that the crucial fact about connd is (9.2) and its Corollary (by (7.2))
that every implementation of connd has closure ordinal ≥ diameter of G + m,
and this has nothing to do with the cardinality of G.

The same considerations apply to much of the work in structural complexity,
a flourishing area of research in theoretical computer science. It is traditional
in this field to study only finite structures, but its basic questions are about
algorithms; they often make perfectly good sense on infinite structures as well;
and, it seems to me, the field might gain much in clarity (and perhaps even some
interesting mathematical results) if people seek answers, at least initially, on

On founding the theory of algorithms, Preprint, February 12, 2002. 28

On founding the theory of algorithms 29

arbitrary structures, and put off imposing finiteness conditions until they need
them—typically not until the very end of the argument.

9.2. The Gentzen algorithm. In one of the most celebrated and seminal
results of modern logic, Gentzen [3] showed that every proof38 of predicate logic
can be transformed into a cut free proof of the same conclusion, in a canonical
proof system based on a few, intuitive natural deduction rules. The Gentzen cut

elimination operation is defined recursively, by an equation not unlike that of
the mergesort:

γ(d) = if T1(d) then f1(d)

else if T2(d) then f2(γ(τ (d)))

else f3(γ(σ1(d)), γ(σ2(d))),

where d varies over the set Π of (formal) proofs. The conditions T1, T2 and the
transformations f1 – f3, τ , and σ1, σ2 are complex, but (at least, in principle)
they can be defined explicitly in a natural, first order structure G with data sets
for formulas, variables, proofs, etc., and the usual syntactic operations on these
objects as givens, so that the construction yields a G-algorithm g : Π Π with
g = γ. An implementation of g (or the similar algorithm invented by Herbrand)
is one of the basic routines of every theorem prover.

For classical proof theory, the most important fact about the Gentzen algo-
rithm is that it yields a (cut-free) value γ(d) of the conclusion of every proof
d, which, together with the special properties of cut-free proofs has numerous
metamathematical consequences. Not far behind it is the upper bound of the
necessary blowup in the size of proofs:

|γ(d)| ≤ e(|d|, |d|), (9.3)

where the size |d| of a proof is (say) the number of symbols in it and e(n, k) is
the iterated exponential,39 defined by the recursion

e(0, k) = k, e(n + 1, k) = 2e(n,k).

Some time after [3], Gentzen [4] extended this theorem to Peano arithmetic,
where, however, matters are considerably more complex, because the Gödel In-
completeness Theorem rules out the possibility of a finitary cut elimination re-
sult. In a modern version of this construction, we introduce an infinitary version
of the Gentzen proof system for arithmetic, whose set Π∗ of “formal” proofs in-
cludes now some infinite objects and admits an infinitary operation, the so-called
ω-rule: (roughly) from the infinitely many premises φ(n), one for each numeral n

38The conclusion of the given proof cannot have free and bound occurrences of the same
variable, but such details are of no consequence for the point I want to make and I will steer
clear of precise definitions and sharp, optimal statements of facts. A good reference for this
discussion is Schwichtenberg’s [18], which explains clearly all the results I will allude to—and
much more.

39The precise result is much better than this, see [18].

To appear in the Proceedings of the September, 1995 Sicily meeting. 29

30 Yiannis N. Moschovakis

naming a number n, infer (∀x)A(x). The extended Gentzen operation is defined
again on Π∗ very much like γ, by a recursive equation of the form

γ∗(d) = if T1(d) then f1(d)

else if T2(d) then f2(γ
∗(τ (d)))

else if T3(d) then f3(γ
∗(σ1(d)), γ∗(σ2(d)))

else f4(λ(n)γ∗(ρ(n, d))),

where f4 is a functional embodying the ω-rule; and this equation, as before,
defines a G

∗-algorithm g
∗, where G

∗ is very much like G, except that it has a
functional embodying the ω-rule. Proofs now have infinite, ordinal length but—
and this is the important fact—the upper bound estimate (9.3) persists, with the
extended, iterated exponential on the ordinals; and so Gentzen shows that every

theorem of Peano arithmetic admits a cut free, infinitary proof of size no more

than

ε0 = the least ordinal closed under + and α 7→ ωα.

There is a large number of metamathematical consequences and by-products of
the proof of this fundamental theorem, which rivals the basic Cut Elimination
Theorem for its importance.

Now, much of this can be done without ever mentioning the word “algo-
rithm”, by dealing directly with the defining, recursive equations, much as we
did in Section 5. But it is not a natural thing to do, and the literature on
Gentzen’s theorems is full of references to “computational procedures,” “con-
structions.” and, in fact, “algorithms.” It seems to me that the finitary, imple-
mentable, g and its infinitary extension g

∗ share so many common properties,
that it is natural and profitable to study the two of them together, within one,
unified theory which takes recursor structure and effective definability rather
than implementability as the key, characteristic features of “algorithms”.

Bibliography

1. Paul Benacerraf. What numbers cannot be. In Paul Benacerraf and Hi-
lary Putnam, editors, Philosophy of Mathematics, Second Edition, pages
272–294. Cambridge University Press, 1983. Originally published in Philo-

sophical Review , 74 (1965).

2. Gottlob Frege. On sense and denotation. In Peter Geach and Max Black,
editors, Translations from the Philosophical Writings of Gottlob Frege. Basil
Blackwell, Oxford, 1952. Originally published in 1892.

3. Gerhard Gentzen. Untersuchungen über das logisches Schliessen. Mathe-

matische Zeitschrift, pages 176–210, 405–431, 1934–1935.

4. Gerhard Gentzen. Beweisbarkeit und Undbeweisbarkeit von anfangsfällen
des transfiniten Induktion in der reinen Zahlentheorie. Mathematische An-

nallen, 119:140–161, 1943.

5. A. J. C. Hurkens, Monica McArthur, Yiannis N. Moschovakis, Lawrence

On founding the theory of algorithms, Preprint, February 12, 2002. 30

On founding the theory of algorithms 31

Moss, and Glen T. Whitney. The logic of recursive equations. To appear in
the Journal of Symbolic Logic.

6. Stephen Cole Kleene. Introduction to metamathematics. van Nostrand,
Princeton, 1952.

7. D. E. Knuth. The Art of Computer Programming. Fundamental Algorithms,
volume 1. Addison-Wesley, second edition, 1973.

8. Wolfgang Maass. Combinatorial lower bound arguments for deterministic
and nondeterministic turing machines. Transactions of the American Math-

ematical Society, 292:675–693, 1985.

9. Yiannis N. Moschovakis. Abstract recursion as a foundation of the theory of
algorithms. In M. M. Richter et al., editors, Computation and Proof Theory,
volume 1104, pages 289–364. Springer-Verlag, Berlin, 1984. Lecture Notes
in Mathematics.

10. Yiannis N. Moschovakis. The formal language of recursion. The Journal of

Symbolic Logic, 54:1216–1252, 1989.

11. Yiannis N. Moschovakis. A mathematical modeling of pure, recursive al-
gorithms. In A. R. Meyer and M. A. Taitslin, editors, Logic at Botik ’89,
volume 363, pages 208–229. Springer-Verlag, Berlin, 1989. Lecture Notes in
Computer Science.

12. Yiannis N. Moschovakis. A model of concurrency with fair merge and full
recursion. Information and Computation, 93:114–171, 1991.

13. Yiannis N. Moschovakis. Notes on set theory. Undergraduate Texts in
Mathematics. Springer-Verlag, New York, Berlin, 1994.

14. Yiannis N. Moschovakis. Sense and denotation as algorithm and value. In
J. Väänänen and J. Oikkonen, editors, Logic Colloquium ’90, volume 2,
pages 210–249. Springer-Verlag, Berlin, 1994. Lecture Notes in Logic.

15. Yiannis N. Moschovakis. Computable concurrent processes. Theoretical

Computer Science, 139:243–273, 1995.

16. Yiannis N. Moschovakis. The logic of functional recursion. To appear in the
Proceedings of the International Congress for Logic, Methodoloy and the
Philosophy of Science held in Florence, 1995.

17. Yiannis N. Moschovakis and Glen T. Whitney. Powerdomains, powerstruc-
tures and fairness. In L. Pacholski and J. Tiuryn, editors, Computer Science

Logic, number 933 in Lecture Notes in Computer Science, pages 382–396.
Springer-Verlag, Berlin, 1995.

18. Helmut Schwichtenberg. Proof theory: Some applications of cut-elimination.
In Jon Barwise, editor, Handbook of Mathematical Logic, pages 867–895.
North -Holland, Amsterdam, New York, London, 1977.

19. Jerzy Tiuryn. A simplified proof of ddl < dl. Information and Computation,
81:1–12, 1989.

20. Mathison Turing, Alan. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,

To appear in the Proceedings of the September, 1995 Sicily meeting. 31

32 Yiannis N. Moschovakis

42:230–265, 1936–37.

21. Ernst Zermelo. Über Grenzzahlen und Mengenbereiche: Neue Untersuchun-
gen über die Grundlagen der Mengenlehre. Fundamenta Mathematicae,
16:29–47, 1930.

22. Ernst Zermelo. Investigations in the foundations of set theory. In From

Frege to Gödel. Harvard University Press, Cambridge, Massachusetts, 1967.
Originally published in 1908.

23. Ernst Zermelo. Proof that every set can be well-ordered. In From Frege to

Gödel, pages 139–141. Harvard University Press, Cambridge, Massachusetts,
1967. Originally published in 1904.

email : ynm@math.ucla.edu

On founding the theory of algorithms, Preprint, February 12, 2002. 32

