
MAY 2021 | VOL. 64 | NO. 5 | COMMUNICATIONS OF THE ACM 37

V V
viewpoints

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

methods of comparison, namely inclu-
sion and simulation, can yield mutual-
ly exclusive outcomes. The simplest ex-
ample is the counter machine (a.k.a.
Minsky machine, abacus model). Each
counter holds a natural number that
can be incremented, decremented, and
tested for zero (see the sidebar). With
only two counters, the model is not
even powerful enough to square its in-
put2,20 or recognize primes.15 However,
if we agree to represent a number n as
the exponential 2n (a simpler encoding
than Gödel numbering of expressions),
then, courtesy an ingenious proof by
the late Marvin Minsky,14,17 we find that
two counters suffice to compute every
computable function. This is why one
encounters statements such as:

 ˲ It is well known that a finite-state

W
E HAVE A serious prob-
lem with how we have
been teaching com-
putability theory, a
central component of

the ACM/IEEE computer science cur-
riculum.

Let me explain. For a fair number of
years, I taught a computability course.
Following the standard curriculum
(such as described by Hopcroft and Ull-
man14), and in concert with my col-
leagues in the field, I made claims on
countless occasions that one model of
computation is more powerful than an-
other or that two models have the same
power of computation. In some cases
the argument appealed to ordinary set
inclusion, while at other times it in-
volved a notion of simulation via en-
codings. Imagine my chagrin when I
came to realize these two methods of
comparison are in fact incompatible!

When two models work with the
same entities, simple set inclusion of
formal languages or sets of functions is
employed naturally by everyone. We
teach that finite-state automata recog-
nize the same languages as defined by
regular expressions but are strictly
weaker than pushdown automata, and
we bring palindromes or non-square
words as proof positive.13 Similarly, we
assert that primitive recursion (or,
equivalently, looping via bounded for
loops only) is weaker than general re-
cursion (with while loops, too) because
of the two models, only the latter can
compute the Ackermann function.14

When, on the other hand, the do-
mains of the models under consider-
ation differ, encodings are required

before they can be compared. For ex-
ample, Alan Turing, in an appendix to
his profound landmark 1936 paper,
showed that the lambda-computable
functions and the functions that can
be computed using his Turing ma-
chines are of equivalent computational
power. “Standard” machine descrip-
tions (lists of quintuples) were turned
into decimal numbers, which in turn
were expressed in the lambda calculus
as Church numerals. Turing also
proved that his machines and general
recursion are equipotent.24 To show
that Turing machines can compute all
general recursive functions, numbers
are normally (and wastefully) repre-
sented on the machine tape as a se-
quence of tally marks in unary.14

Unfortunately, the preceding two

Viewpoint
Let’s Be Honest
Seeking to rectify the two mutually exclusive ways
of comparing computational power—encoding and simulation.

DOI:10.1145/3431281 Nachum Dershowitz

http://dx.doi.org/10.1145/3431281
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3431281&domain=pdf&date_stamp=2021-04-26

38 COMMUNICATIONS OF THE ACM | MAY 2021 | VOL. 64 | NO. 5

viewpoints

lating model M′ such that every func-
tion f computed by the former is mir-
rored by a function f ′ computed by the
simulator M′ such that f ′(c(x1),…,c(xn)) =
c(f (x1,…,xn)) for all inputs x1,…,xn com-
ing from the domain of M. The follow-
ing are textbook quotations:

 ˲ To show two models are equiva-
lent, we simply need to show that we
can simulate one by the other … Any
two computational models that satisfy
certain reasonable requirements can
simulate one another and hence are
equivalent in power.22

 ˲ Computability relative to a cod-
ing is the basic concept in comparing
the power of computation models …
Thus, we can compare the power of
computation models using the con-
cept “incorporation relative to some
suitable coding.”23

But what should be deemed “rea-
sonable” or “suitable” lies in the eyes
of the beholder. If we do take this simu-
lation route, and I believe we must, and
if we are to have a mathematically satis-
fying theory of computation, then we
are in dire need of a formal definition
of allowable encodings c.

Hartley Rogers elucidated, “The
coding is chosen so that it is itself giv-
en by an informal algorithm in the un-
restricted sense.”19 This requirement,
however valid, is at the same time too
informal and potentially too generous.
And it is circular, since our goal is to
demarcate the limits of effective com-
putation. As Richard Montague com-
plained: “The natural procedure is to
restrict consideration to those corre-
spondences which are in some sense
‘effective’ … But the notion of effec-
tiveness remains to be analyzed, and
would indeed seem to coincide with
computability.”18 The only way around
its informality would be to agree some-
how on a uniform, formal notion of
“effective” algorithm that crosses do-
mains (such as Boker and Dershow-
itz4). Still, an “unrestricted” encoding
could conceivably enlarge the set of
functions that can be computed by the
simulating model, as we saw with
counter machines and an effective ex-
ponential encoding.

What other restrictions, then,
should be imposed on encodings? Ob-
viously, we need one and the same en-
coding c to work for all simulated func-
tions f. Were one to examine lone

automaton equipped with two coun-
ters is Turing-complete.9

 ˲ [Minsky proved that a] two-counter
machine is universal, and hence has an
undecidable halting problem.16

Such claims of completeness or uni-
versality would be blatantly false were
one to subscribe to the set-inclusion
sense, whereas they are manifestly true
in the simulation sense, which is in-
deed what Minsky proved. As Rich
Schroeppel expressed it: “Any counter
machine can be simulated by a 2CM,
provided an obscure [sic!] coding is ac-
cepted for the input and output.”20 So, I
take issue with a statement like this:
“The surprising result about counter
machines is that two counters are
enough to simulate a Turing machine
and therefore to accept every recursive-
ly enumerable language.”13 Two-coun-
ter machines do simulate Turing ma-
chines, but they do not “accept” all
recursively enumerable languages in
the usual “as-is,” unencoded sense,
primes being a prime example.

The point is it behooves teachers to
be forthright and forthcoming and to
address this inconsistency. We cannot
carry on oblivious to the fact that by one
of the methods of comparison that we
use in our lectures 2-counter machines
are strictly weaker than (the complete)
3-counter machines, while by a second
method that we also endorse the two
are to be deemed equivalent.

The Solution
All is not lost, thankfully. We can eat
our proverbial cake and still have it,
provided we invest extra effort.

To begin with, it would be an unmit-
igated disaster to abandon simula-
tions, since the idea that all our tradi-
tional unrestrained models are of
equivalent power, despite operating
with different entities, stands at the
core of computability theory, as en-
shrined in the Church-Turing thesis.
Consequently, as painful as it may
seem, we are obliged to give up the in-
clusion notion for paradigms that
compute functions, such as general re-
cursion and primitive recursion—
though not for formal languages, as I
will explain later.

By “simulation” one usually means
there is an (injective, 1-1) encoding c
from the domain of the simulated
model M into the domain of the simu-

For further information
and to submit your

manuscript,
visit health.acm.org

ACM Transactions
on Computing for
Healthcare (HEALTH)
is a multi-disciplinary
journal for the
publication of high-
quality original
research papers,
survey papers, and
challenge papers
that have scienti� c
and technological
results pertaining to
how computing is
improving healthcare.

 ACM Transactions on
Computing for

Healthcare

MAY 2021 | VOL. 64 | NO. 5 | COMMUNICATIONS OF THE ACM 39

viewpoints
I

M
A

G
E

 B
Y

 T
H

P
S

T
O

C
K

tive) encoding that allows one to simu-
late all the computable functions plus
an incomputable one like halting.3 It
turns out, in fact, that simulating the
successor function effectively is neces-
sary and sufficient to guarantee that
Turing machines cannot simulate (un-
der a single-valued encoding) anything
unexpected.4 And this is all we need for
the big picture to remain intact.

On the other hand, with just a bit of
effort, one can devise a recursive func-
tion (a modification of Ackermann’s
function) that cannot be simulated by
primitive recursion regardless of the
encoding.3 So it thankfully remains
true that primitive recursion is strictly
weaker than recursion—in the very
strong sense that no (injective) encod-
ing whatsoever would endow primitive
recursion with full Turing power. Were
it not likewise provable that 1-counter
machines cannot simulate all recur-
sive functions, statements like “Com-
bining these simulations, we see that
two-counter machines are as powerful
as arbitrary Turing machines (one-
counter machines are strictly less pow-
erful)”12 would be indefensible.

Turning to formal languages (sets of
words over some alphabet), the situa-
tion is reversed. Encodings are bad; in-
clusion is good. Homomorphic map-
pings may preserve the relative power
of most language models (with their
purely local impact on the structure of
strings), but more general injections or
bijections do not. In fact, there is a ne-
farious bijection between the words of
any (nonsingular) alphabet with the
disconcerting property that all the reg-
ular plus all the context-free languages
can be recognized by mere finite-state
automata. The situation is actually infi-
nitely more intolerable: one can at the
same time also recognize countably
many arbitrary undecidable languages
with vanilla finite automata via such a
mischievous bijection.10

In the case of languages, then, we
are compelled to adhere to straightfor-
ward inclusion and ban (even comput-
able) mappings of input strings when
comparing the power of language
models. Earlier, when dealing with (all)
the computable functions, we did have
the flexibility of simulating via map-
pings, but that was because the same
mapping is also applied to the full
range of possible function outputs.5

functions, then it would be easy to
come up with a bespoken “deviant en-
coding” that makes a single uncomput-
able function appear computable. For
another thing, we must insist that the
same encoding c be used both for the
inputs xi as well as for the output of f, or
else everything can easily go belly-up
(pace Butterfield et al.8). Ideally, the re-
strictions would ensure that (unlike for
counter machines, or the lambda cal-
culus, for that matter) no allowed en-
coding can expand the class of comput-
ed functions. Specifically, we must
preclude the endowing of Turing’s ma-

chines or the recursive functions with
superpowers (what is termed “hyper-
computation”). How can we guarantee
this? Shapiro21 has submitted that for
an encoding of (Platonic) numbers to
be “acceptable,” the encoded successor
function should also be computable by
M′. In other words, M′ must include a
function s′: c(n) c(n + 1) simulating
successor. I agree. But why successor?

Mercifully, encoding turns out not
to be a problem for the usual use cases.
Indeed, no encoding whatsoever can
break the Turing barrier. Specifically,
one can prove that there is no (injec-

Counter machines are one of the very simplest models of computation.
Think of a collection of bowls of marbles, alongside a heap containing an unlimited

supply of more marbles.
An n-counter machine comes with n bowls.
A program consists of a list of instructions of the following five simple types:
(1) Place a marble taken from the pile into bowl X, where X is a particular bowl.
(2) Remove a marble from bowl X, and return it to the pile; do nothing if there is

nothing in the bowl.
(3) Check if there are no marbles in bowl X; if so, continue with instruction K, where

K is the number or label of one of the instructions in the program.
(4) Continue with instruction K, unconditionally.
(5) Halt.
The colors and sizes of the marbles do not matter; only the quantity does.
Initially, the bowls have some given number of marbles as input. When and if a

program halts, the number of marbles in a designated bowl is the program’s output.
For example, the following is a 4-counter program for multiplying the quantities

initially in bowls A and B. Bowls C and D start out empty. The product of A and B will be
in D at the end. Bowl C serves as a holding area.

S: If A is empty, continue at H.
Remove a marble from A.
L: If B is empty, continue at R.
Remove a marble from B.
Place a marble in C.
Place a marble in D.
Continue at L.
R: If C is empty, continue at S.
Remove a marble from C.
Place a marble in B.
Continue at R.
H: Halt.
It is a fact that three bowls suffice to compute any computable single-argument

function over the natural numbers, but to compute them all with only two bowls is only
possible with an encoding such as 2i for i.

Counter Machines

Bespoke Illustration Creative Brief from author:
Also my suggestion for a sidebar image: it could be accompanied with
a picture/illustration of one or more bowls of marbles.

40 COMMUNICATIONS OF THE ACM | MAY 2021 | VOL. 64 | NO. 5

viewpoints

only if n = <P> is an encoding of a valid
[self-contained] program P and P ter-
minates) is “undecidable.”7

For your usual, straightforward en-
codings of machine descriptions, the
problem is indeed undecidable, but for
any number of alternative encodings it
becomes decidable. The same goes for
the “universal halting” problem U.

On the other hand, the more basic
halting problem, T(i, j), which asks
about the behavior of the ith machine
on the jth possible input, is undecidable
regardless of how machines are encod-
ed or how inputs are enumerated. Nev-
ertheless, one must be careful how
pairs <i, j> are encoded for models of
computation—such as run-of-the-mill
Turing machines—that allow only a
single input representing both i and j.
Similarly, the “diagonal” language D,
consisting of the indices of those ma-
chines that halt when the input string
has the same index in its enumeration
as does the machine in its encoding, is
not computable for any and all ma-
chine encodings and string enumera-
tions. So it is true that “no encoding [of
all Turing machines as numbers] can
represent a TM M such that L(M) = Ld
[the diagonal language],” as claimed in

Related Concerns
There is another ubiquitous use of
encodings that similarly requires ex-
tra caution. Oftentimes, one wishes
to compute a function on objects oth-
er than strings or numbers, such as
graphs, logical formulae, or computer
programs. For that purpose, one must
somehow represent those objects in
the input/output language of the com-
putational model that is to manipulate
them, typically strings or numerals. To
quote: “A necessary preliminary to apply-
ing our work on computability … is to
code expressions by numbers …. There
are many reasonable ways to code fi-
nite sequences, and it does not really
matter which one we choose.”6

To be “reasonable,” however, one
needs to be sure that the encoding
does not do anything beyond faithfully
representing the input.

For example, it is a trivial matter to
concoct an encoding of Turing ma-
chines that turns an undecidable
problem about machines into a readily
computable one. Let w0, w1, … be an
enumeration of all binary strings (over
the alphabet {0, 1}), and let M0, M1, …
be some enumeration of all Turing
machines (over that input alphabet).
The following are four typical decid-
ability questions:

T(i, j): machine Mi halts on input wj.
H(i): machine Mi halts on input w0.
U(i): machine Mi halts on all inputs

w0, w1 …
D(i): machine Mi halts on input wi.
Halting on a single particular in-

put (like the empty word) is just the
parity problem if one reorders a stan-
dard enumeration of machines so
that the odd-numbered ones halt on
that input while the even ones do not.
The snag with such an encoding of
Turing machines is that it also makes
ordinary tasks incomputable. Specifi-
cally, once could not modify the code
of a given machine to act in some re-
lated but different way, because one
would need to ascertain the termina-
tion behavior of the modified ma-
chine. So whether problem H is decid-
able or not actually depends on
exactly how machines are encoded.

Consider an assertion such as the
following:

 ˲ One of Turing’s key insights was
the Halting Problem H (which takes
an integer n and outputs H(n) = 1 if and

It would be
an unmitigated
disaster to abandon
simulations,
since the idea
that all our traditional
unrestrained models
are of equivalent
power, despite
operating with
different entities,
stands at the core of
computability theory,
as enshrined in the
Church-Turing thesis.

For further information
and to submit your

manuscript,
visit telo.acm.org

ACM Transactions on
Evolutionary Learning
and Optimization (TELO)
publishes high-quality,
original papers in all
areas of evolutionary
computation and related
areas such as population-
based methods,
Bayesian optimization,
or swarm intelligence.
We welcome papers that
make solid contributions
to theory, method
and applications.
Relevant domains
include continuous,
combinatorial or multi-
objective optimization.

ACM Transactions on
Evolutionary Learning

and Optimization
(TELO)

MAY 2021 | VOL. 64 | NO. 5 | COMMUNICATIONS OF THE ACM 41

viewpoints

References
1. Barak, B. Introduction to Theoretical Computer

Science. 2020. Online text (version of Dec. 25, 2020);
https://bit.ly/3bZnLVi

2. Barzdins, J.I. Ob odnom klasse machin turinga
(machiny minskogo) [On one class of Turing machines
(Minsky machines)]. Algebra i Logika [Algebra and
Logic] 1, 6 (1963), 42–51. In Russian.

3. Boker, U. and Dershowitz, N. Comparing computational
power. Logic Journal of the IGPL 14, 5 (2006),
633–648; https://bit.ly/3cEzd99

4. Boker, U. and Dershowitz, N. The Church-Turing thesis
over arbitrary domains. In A. Avron, N. Dershowitz,
and A. Rabinovich, Eds., Pillars of Computer Science,
Essays Dedicated to Boris (Boaz) Trakhtenbrot on the
Occasion of His 85th Birthday, volume 4800 of Lecture
Notes in Computer Science, Springer, Berlin, 2008,
199–229; https://bit.ly/3eUun99

5. Boker, U. and Dershowitz, N. Honest computability
and complexity. In E. Omodeo and A. Policriti, Eds.,
Martin Davis on Computability, Computational Logic &
Mathematical Foundations, volume 10 of Outstanding
Contributions to Logic Series, Springer, Cham,
Switzerland, 2017, 153–175; https://bit.ly/3cH8589

6. Boolos, G.S., Burgess, J.P., and Jeffrey, R.C.
Computability and Logic. Cambridge University Press,
Cambridge, U.K., 4th edition, 2002.

7. Braverman, M. Computing with real numbers, from
Archimedes to Turing and beyond. Commun. ACM 56,
9 (Sept. 2013), 74–83.

8. Butterfield, A., Ngondi, G.E., and Kerr, A., Eds. Machine
simulation entry. A Dictionary of Computer Science.
Oxford University Press, Oxford, U.K., 7th edition, 2016.

9. D’Souza, D. and Shankar, P. Modern Applications of
Automata Theory. World Scientific, River Edge, NJ, 2011.

10. Endrullis, J., Grabmayer, C., and Hendriks, D. Regularity
preserving but not reflecting encodings. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science
(LICS) (Kyoto, Japan, July 2015. IEEE Computer
Society), 535–546; https://bit.ly/3cDSR3M

11. Garey, M.R. and Johnson, D.S. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, NY, 1979.

12. Harel, D., Kozen, D., and Tiuryn, J. Dynamic Logic. MIT
Press, Cambridge, MA, 2000.

13. Hopcroft, J.E., Motwani, R., and Ullman, J.D.
Introduction to Automata Theory, Languages, and
Computation. Pearson Education, Boston, MA, 3rd
edition, 2007.

14. Hopcroft, J.E. and Ullman, J.D. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, MA, 1979.

15. Ibarra, O.S. and Trân, N.Q. A note on simple programs
with two variables. Theor. Comput. Sci. 112, 2 (1993),
391–397.

16. Lipton, R.J. and Regan, K.W. Minsky the theorist. (Jan.
27, 2016); https://bit.ly/2P45zRn

17. Minsky, M.L. Computation: Finite and Infinite
Machines. Prentice-Hall, Englewood Cliffs, NJ, 1967.

18. Montague, R. Towards a general theory of
computability. Synthese 12, 4 (1960), 429–438.

19. Rogers, Jr., H. Theory of Recursive Functions and Effective
Computability. McGraw-Hill, New York, NY, 1966.

20. Schroeppel, R. A two counter machine cannot
calculate 2N. Technical report, Massachusetts
Institute of Technology, Artificial Intelligence
Laboratory, Cambridge, MA, 1972;
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-257.pdf

21. Shapiro, S. Acceptable notation. Notre Dame Journal
of Formal Logic 23, 1 (1982), 14–20.

22. Sipser, M. Introduction to the Theory of Computation.
Thomson, Boston, MA, 2nd edition, 2006.

23. Sommerhalder, R. and van Westrhenen, S.C. The
Theory of Computability: Programs, Machines,
Effectiveness and Feasibility. Addison-Wesley,
Workingham, England, 1988.

24. Turing, A.M. Computability and λ-definability. The
Journal of Symbolic Logic 2, 4 (1937), 153–163;
https://bit.ly/3eOJEbF

Nachum Dershowitz (nachum@tau.ac.il) is a Professor
(Emeritus) in the School of Computer Science, Tel Aviv
University, Ramat Aviv, Israel.

The author thanks Jörg Endrullis for his perceptive
comments and Centrum Wiskunde and Informatica (CWI)
for its hospitality.

Copyright held by author.

Hopcroft et al.,13 but the same immu-
nity to encoding does not hold true for
the collection of machines that accept
nothing (Le).13 Regrettably, no textbook
I have seen clarifies which encodings
of machines are valid and for what pur-
pose and why. Nothing in the following
remark, for example, precludes a rep-
resentation from incorporating a finite
amount of uncomputable information
about the represented machine, such
as whether it always terminates or halts
on a specific input:

 ˲ The details of the representation
scheme of Turing machines as strings
are immaterial [as long as]: (1) We can
represent every Turing machine as a
string. (2) Given the string representa-
tion of a Turing machine M and an in-
put x, we can simulate M’s execution
on the input x.1

The standard part of a malicious
string encoding would allow one to
simulate execution as usual, while
tacked-on extras can allow an algo-
rithm to decide otherwise undecidable
questions about them. Overzealous
encoding is not, however, a problem in
programming languages that pass un-
adulterated programs as arguments,
sans encoding.

As a final comment, when it comes
to complexity comparisons, everyone
realizes that representation is an issue
to be taken into account, but the re-
quirements remain vague: “The in-
tractability of a problem turns out to
be essentially independent of the par-
ticular encoding scheme … used for
determining time complexity … It
would be difficult to imagine a ‘rea-
sonable’ encoding scheme for a prob-
lem that differs more than polynomi-
ally from the standard ones … What
we mean here by ‘reasonable’ cannot
be formalized …”11

It would seem to me that standard
string and image compression schemes
are perfectly reasonable encodings, de-
spite reducing size exponentially in
many cases. In any event, a formal,
principled definition of “reasonable-
ness” is still sorely lacking for the theo-
ry of complexity. (But see Boker and
Dershowitz5 for one proposal.)

Takeaway
To recapitulate the main points of the
problem raised here:

 ˲ Every single course in automata or

computability utilizes set inclusion as
the means of comparing the computa-
tional power of different formalisms
for language definition.

 ˲ Virtually every such course claims
equivalence of a wide variety of mod-
els of computation in support of the
Church-Turing thesis, an equivalence
that is based on mutual simulations.

 ˲ These two notions are logically in-
compatible as we have witnessed.

 ˲ No textbook nor any instructor
I have encountered recognizes, let
alone addresses, this fundamental in-
consistency.

At a bare minimum, then, we must
make the following changes in the man-
ner this subject is traditionally taught:

 ˲ One should use set inclusion only
as a means to compare classes of for-
mal languages, such as in the demon-
stration that context-free grammars
are a strictly more inclusive formal-
ism than are regular expressions.

 ˲ We should never use set inclu-
sion to compare the power of primi-
tive recursion with general recursion,
or for-loop programs with while-loop
ones, or one-counter machines with
two counters, without mentioning
that it has in fact been demonstrated
that the one can also not simulate all
of the other.

 ˲ Instructors ought to emphasize
that one must always be careful with
encodings, as they easily alter com-
putational power, while pointing out
it has been proved this is not an issue
for the usual use case of Turing-level
computability.

 ˲ One should definitely avoid us-
ing halting-on-empty-tape, or empty-
language acceptance, or similar prob-
lems as fundamental examples of
undecidability, as their decidability is
encoding-dependent. Instead, we need
to explicate the subtle role of input en-
codings when reducing the standard
two-input halting problem to those
other problems.

 ˲ We should be cautious to never say
or imply that two-counter machines
recognize all recursively enumerable
languages (they do not), nor that they
compute (as opposed to simulate) all
Turing-computable functions.

 ˲ One should not choose the lambda
calculus as a primary exemplar of a fully
empowered computational model (since
it simulates more than it computes).

