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methods of comparison, namely inclu-
sion and simulation, can yield mutual-
ly exclusive outcomes. The simplest ex-
ample is the counter machine (a.k.a. 
Minsky machine, abacus model). Each 
counter holds a natural number that 
can be incremented, decremented, and 
tested for zero (see the sidebar). With 
only two counters, the model is not 
even powerful enough to square its in-
put2,20 or recognize primes.15 However, 
if we agree to represent a number n as 
the exponential 2n (a simpler encoding 
than Gödel numbering of expressions), 
then, courtesy an ingenious proof by 
the late Marvin Minsky,14,17 we find that 
two counters suffice to compute every 
computable function. This is why one 
encounters statements such as:

 ˲ It is well known that a finite-state 

W
E HAVE A serious prob-
lem with how we have 
been teaching com-
putability theory, a 
central component of 

the ACM/IEEE computer science cur-
riculum.

Let me explain. For a fair number of 
years, I taught a computability course. 
Following the standard curriculum 
(such as described by Hopcroft and Ull-
man14), and in concert with my col-
leagues in the field, I made claims on 
countless occasions that one model of 
computation is more powerful than an-
other or that two models have the same 
power of computation. In some cases 
the argument appealed to ordinary set 
inclusion, while at other times it in-
volved a notion of simulation via en-
codings. Imagine my chagrin when I 
came to realize these two methods of 
comparison are in fact incompatible!

When two models work with the 
same entities, simple set inclusion of 
formal languages or sets of functions is 
employed naturally by everyone. We 
teach that finite-state automata recog-
nize the same languages as defined by 
regular expressions but are strictly  
weaker than pushdown automata, and 
we bring palindromes or non-square 
words as proof positive.13 Similarly, we 
assert that primitive recursion (or, 
equivalently, looping via bounded for 
loops only) is weaker than general re-
cursion (with while loops, too) because 
of the two models, only the latter can 
compute the Ackermann function.14

When, on the other hand, the do-
mains of the models under consider-
ation differ, encodings are required 

before they can be compared. For ex-
ample, Alan Turing, in an appendix to 
his profound landmark 1936 paper, 
showed that the lambda-computable 
functions and the functions that can 
be computed using his Turing ma-
chines are of equivalent computational 
power. “Standard” machine descrip-
tions (lists of quintuples) were turned 
into decimal numbers, which in turn 
were expressed in the lambda calculus 
as Church numerals. Turing also 
proved that his machines and general 
recursion are equipotent.24 To show 
that Turing machines can compute all 
general recursive functions, numbers 
are normally (and wastefully) repre-
sented on the machine tape as a se-
quence of tally marks in unary.14

Unfortunately, the preceding two 
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lating model M′ such that every func-
tion f computed by the former is mir-
rored by a function f ′ computed by the 
simulator M′ such that f ′(c(x1),…,c(xn)) = 
c( f (x1,…,xn)) for all inputs x1,…,xn com-
ing from the domain of M. The follow-
ing are textbook quotations:

 ˲ To show two models are equiva-
lent, we simply need to show that we 
can simulate one by the other … Any 
two computational models that satisfy 
certain reasonable requirements can 
simulate one another and hence are 
equivalent in power.22

 ˲ Computability relative to a cod-
ing is the basic concept in comparing 
the power of computation models … 
Thus, we can compare the power of 
computation models using the con-
cept “incorporation relative to some 
suitable coding.”23

But what should be deemed “rea-
sonable” or “suitable” lies in the eyes 
of the beholder. If we do take this simu-
lation route, and I believe we must, and 
if we are to have a mathematically satis-
fying theory of computation, then we 
are in dire need of a formal definition 
of allowable encodings c.

Hartley Rogers elucidated, “The 
coding is chosen so that it is itself giv-
en by an informal algorithm in the un-
restricted sense.”19 This requirement, 
however valid, is at the same time too 
informal and potentially too generous. 
And it is circular, since our goal is to 
demarcate the limits of effective com-
putation. As Richard Montague com-
plained: “The natural procedure is to 
restrict consideration to those corre-
spondences which are in some sense 
‘effective’ … But the notion of effec-
tiveness remains to be analyzed, and 
would indeed seem to coincide with 
computability.”18 The only way around 
its informality would be to agree some-
how on a uniform, formal notion of 
“effective” algorithm that crosses do-
mains (such as Boker and Dershow-
itz4). Still, an “unrestricted” encoding 
could conceivably enlarge the set of 
functions that can be computed by the 
simulating model, as we saw with 
counter machines and an effective ex-
ponential encoding.

What other restrictions, then, 
should be imposed on encodings? Ob-
viously, we need one and the same en-
coding c to work for all simulated func-
tions f. Were one to examine lone 

automaton equipped with two coun-
ters is Turing-complete.9

 ˲ [Minsky proved that a] two-counter 
machine is universal, and hence has an 
undecidable halting problem.16

Such claims of completeness or uni-
versality would be blatantly false were 
one to subscribe to the set-inclusion 
sense, whereas they are manifestly true 
in the simulation sense, which is in-
deed what Minsky proved. As Rich 
Schroeppel expressed it: “Any counter 
machine can be simulated by a 2CM, 
provided an obscure [sic!] coding is ac-
cepted for the input and output.”20 So, I 
take issue with a statement like this: 
“The surprising result about counter 
machines is that two counters are 
enough to simulate a Turing machine 
and therefore to accept every recursive-
ly enumerable language.”13 Two-coun-
ter machines do simulate Turing ma-
chines, but they do not “accept” all 
recursively enumerable languages in 
the usual “as-is,” unencoded sense, 
primes being a prime example.

The point is it behooves teachers to 
be forthright and forthcoming and to 
address this inconsistency. We cannot 
carry on oblivious to the fact that by one 
of the methods of comparison that we 
use in our lectures 2-counter machines 
are strictly weaker than (the complete) 
3-counter machines, while by a second 
method that we also endorse the two 
are to be deemed equivalent.

The Solution
All is not lost, thankfully. We can eat 
our proverbial cake and still have it, 
provided we invest extra effort.

To begin with, it would be an unmit-
igated disaster to abandon simula-
tions, since the idea that all our tradi-
tional unrestrained models are of 
equivalent power, despite operating 
with different entities, stands at the 
core of computability theory, as en-
shrined in the Church-Turing thesis. 
Consequently, as painful as it may 
seem, we are obliged to give up the in-
clusion notion for paradigms that 
compute functions, such as general re-
cursion and primitive recursion—
though not for formal languages, as I 
will explain later.

By “simulation” one usually means 
there is an (injective, 1-1) encoding c 
from the domain of the simulated 
model M into the domain of the simu-
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tive) encoding that allows one to simu-
late all the computable functions plus 
an incomputable one like halting.3 It 
turns out, in fact, that simulating the 
successor function effectively is neces-
sary and sufficient to guarantee that 
Turing machines cannot simulate (un-
der a single-valued encoding) anything 
unexpected.4 And this is all we need for 
the big picture to remain intact.

On the other hand, with just a bit of 
effort, one can devise a recursive func-
tion (a modification of Ackermann’s 
function) that cannot be simulated by 
primitive recursion regardless of the 
encoding.3 So it thankfully remains 
true that primitive recursion is strictly 
weaker than recursion—in the very 
strong sense that no (injective) encod-
ing whatsoever would endow primitive 
recursion with full Turing power. Were 
it not likewise provable that 1-counter 
machines cannot simulate all recur-
sive functions, statements like “Com-
bining these simulations, we see that 
two-counter machines are as powerful 
as arbitrary Turing machines (one-
counter machines are strictly less pow-
erful)”12 would be indefensible.

Turning to formal languages (sets of 
words over some alphabet), the situa-
tion is reversed. Encodings are bad; in-
clusion is good. Homomorphic map-
pings may preserve the relative power 
of most language models (with their 
purely local impact on the structure of 
strings), but more general injections or 
bijections do not. In fact, there is a ne-
farious bijection between the words of 
any (nonsingular) alphabet with the 
disconcerting property that all the reg-
ular plus all the context-free languages 
can be recognized by mere finite-state 
automata. The situation is actually infi-
nitely more intolerable: one can at the 
same time also recognize countably 
many arbitrary undecidable languages 
with vanilla finite automata via such a 
mischievous bijection.10

In the case of languages, then, we 
are compelled to adhere to straightfor-
ward inclusion and ban (even comput-
able) mappings of input strings when 
comparing the power of language 
models. Earlier, when dealing with (all) 
the computable functions, we did have 
the flexibility of simulating via map-
pings, but that was because the same 
mapping is also applied to the full 
range of possible function outputs.5

functions, then it would be easy to 
come up with a bespoken “deviant en-
coding” that makes a single uncomput-
able function appear computable. For 
another thing, we must insist that the 
same encoding c be used both for the 
inputs xi as well as for the output of f, or 
else everything can easily go belly-up 
(pace Butterfield et al.8). Ideally, the re-
strictions would ensure that (unlike for 
counter machines, or the lambda cal-
culus, for that matter) no allowed en-
coding can expand the class of comput-
ed functions. Specifically, we must 
preclude the endowing of Turing’s ma-

chines or the recursive functions with 
superpowers (what is termed “hyper-
computation”). How can we guarantee 
this? Shapiro21 has submitted that for 
an encoding of (Platonic) numbers to 
be “acceptable,” the encoded successor 
function should also be computable by 
M′. In other words, M′ must include a 
function s′: c(n)  c(n + 1) simulating 
successor. I agree. But why successor?

Mercifully, encoding turns out not 
to be a problem for the usual use cases. 
Indeed, no encoding whatsoever can 
break the Turing barrier. Specifically, 
one can prove that there is no (injec-

Counter machines are one of the very simplest models of computation.
Think of a collection of bowls of marbles, alongside a heap containing an unlimited 

supply of more marbles. 
An n-counter machine comes with n bowls.
A program consists of a list of instructions of the following five simple types: 
(1) Place a marble taken from the pile into bowl X, where X is a particular bowl. 
(2) Remove a marble from bowl X, and return it to the pile; do nothing if there is 

nothing in the bowl.
(3) Check if there are no marbles in bowl X; if so, continue with instruction K, where 

K is the number or label of one of the instructions in the program.
(4) Continue with instruction K, unconditionally.
(5) Halt.
The colors and sizes of the marbles do not matter; only the quantity does.
Initially, the bowls have some given number of marbles as input. When and if a 

program halts, the number of marbles in a designated bowl is the program’s output.
For example, the following is a 4-counter program for multiplying the quantities 

initially in bowls A and B. Bowls C and D start out empty. The product of A and B will be 
in D at the end. Bowl C serves as a holding area.

S: If A is empty, continue at H.
Remove a marble from A.
L: If B is empty, continue at R.
Remove a marble from B.
Place a marble in C.
Place a marble in D.
Continue at L.
R: If C is empty, continue at S.
Remove a marble from C.
Place a marble in B.
Continue at R.
H: Halt.
It is a fact that three bowls suffice to compute any computable single-argument 

function over the natural numbers, but to compute them all with only two bowls is only 
possible with an encoding such as 2i for i.

Counter Machines

Bespoke Illustration Creative Brief from author:
Also my suggestion for a sidebar image: it could be accompanied with 
a picture/illustration of one or more bowls of marbles.
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only if n = <P> is an encoding of a valid 
[self-contained] program P and P ter-
minates) is “undecidable.”7

For your usual, straightforward en-
codings of machine descriptions, the 
problem is indeed undecidable, but for 
any number of alternative encodings it 
becomes decidable. The same goes for 
the “universal halting” problem U.

On the other hand, the more basic 
halting problem, T(i, j), which asks 
about the behavior of the ith machine 
on the jth possible input, is undecidable 
regardless of how machines are encod-
ed or how inputs are enumerated. Nev-
ertheless, one must be careful how 
pairs <i, j> are encoded for models of 
computation—such as run-of-the-mill 
Turing machines—that allow only a 
single input representing both i and j. 
Similarly, the “diagonal” language D, 
consisting of the indices of those ma-
chines that halt when the input string 
has the same index in its enumeration 
as does the machine in its encoding, is 
not computable for any and all ma-
chine encodings and string enumera-
tions. So it is true that “no encoding [of 
all Turing machines as numbers] can 
represent a TM M such that L(M) = Ld 
[the diagonal language],” as claimed in 

Related Concerns
There is another ubiquitous use of 
encodings that similarly requires ex-
tra caution. Oftentimes, one wishes 
to compute a function on objects oth-
er than strings or numbers, such as 
graphs, logical formulae, or computer 
programs. For that purpose, one must 
somehow represent those objects in 
the input/output language of the com-
putational model that is to manipulate 
them, typically strings or numerals. To 
quote: “A necessary preliminary to apply-
ing our work on computability … is to 
code expressions by numbers …. There 
are many reasonable ways to code fi-
nite sequences, and it does not really 
matter which one we choose.”6

To be “reasonable,” however, one 
needs to be sure that the encoding 
does not do anything beyond faithfully 
representing the input.

For example, it is a trivial matter to 
concoct an encoding of Turing ma-
chines that turns an undecidable 
problem about machines into a readily 
computable one. Let w0, w1, … be an 
enumeration of all binary strings (over 
the alphabet {0, 1}), and let M0, M1, … 
be some enumeration of all Turing 
machines (over that input alphabet). 
The following are four typical decid-
ability questions:

T(i, j): machine Mi halts on input wj.
H(i): machine Mi halts on input w0.
U(i): machine Mi halts on all inputs 

w0, w1 …
D(i): machine Mi halts on input wi.
Halting on a single particular in-

put (like the empty word) is just the 
parity problem if one reorders a stan-
dard enumeration of machines so 
that the odd-numbered ones halt on 
that input while the even ones do not. 
The snag with such an encoding of 
Turing machines is that it also makes 
ordinary tasks incomputable. Specifi-
cally, once could not modify the code 
of a given machine to act in some re-
lated but different way, because one 
would need to ascertain the termina-
tion behavior of the modified ma-
chine. So whether problem H is decid-
able or not actually depends on 
exactly how machines are encoded.

Consider an assertion such as the 
following:

 ˲ One of Turing’s key insights was 
the Halting Problem H (which takes 
an integer n and outputs H(n) = 1 if and 
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Hopcroft et al.,13 but the same immu-
nity to encoding does not hold true for 
the collection of machines that accept 
nothing (Le).13 Regrettably, no textbook 
I have seen clarifies which encodings 
of machines are valid and for what pur-
pose and why. Nothing in the following 
remark, for example, precludes a rep-
resentation from incorporating a finite 
amount of uncomputable information 
about the represented machine, such 
as whether it always terminates or halts 
on a specific input:

 ˲ The details of the representation 
scheme of Turing machines as strings 
are immaterial [as long as]: (1) We can 
represent every Turing machine as a 
string. (2) Given the string representa-
tion of a Turing machine M and an in-
put x, we can simulate M’s execution 
on the input x.1

The standard part of a malicious 
string encoding would allow one to 
simulate execution as usual, while 
tacked-on extras can allow an algo-
rithm to decide otherwise undecidable 
questions about them. Overzealous 
encoding is not, however, a problem in 
programming languages that pass un-
adulterated programs as arguments, 
sans encoding.

As a final comment, when it comes 
to complexity comparisons, everyone 
realizes that representation is an issue 
to be taken into account, but the re-
quirements remain vague: “The in-
tractability of a problem turns out to 
be essentially independent of the par-
ticular encoding scheme … used for 
determining time complexity … It 
would be difficult to imagine a ‘rea-
sonable’ encoding scheme for a prob-
lem that differs more than polynomi-
ally from the standard ones … What 
we mean here by ‘reasonable’ cannot 
be formalized …”11

It would seem to me that standard 
string and image compression schemes 
are perfectly reasonable encodings, de-
spite reducing size exponentially in 
many cases. In any event, a formal, 
principled definition of “reasonable-
ness” is still sorely lacking for the theo-
ry of complexity. (But see Boker and 
Dershowitz5 for one proposal.)

Takeaway
To recapitulate the main points of the 
problem raised here:

 ˲ Every single course in automata or 

computability utilizes set inclusion as 
the means of comparing the computa-
tional power of different formalisms 
for language definition.

 ˲ Virtually every such course claims 
equivalence of a wide variety of mod-
els of computation in support of the 
Church-Turing thesis, an equivalence 
that is based on mutual simulations.

 ˲  These two notions are logically in-
compatible as we have witnessed.

 ˲ No textbook nor any instructor 
I have encountered recognizes, let 
alone addresses, this fundamental in-
consistency.

At a bare minimum, then, we must 
make the following changes in the man-
ner this subject is traditionally taught:

 ˲ One should use set inclusion only 
as a means to compare classes of for-
mal languages, such as in the demon-
stration that context-free grammars 
are a strictly more inclusive formal-
ism than are regular expressions.

 ˲ We should never use set inclu-
sion to compare the power of primi-
tive recursion with general recursion, 
or for-loop programs with while-loop 
ones, or one-counter machines with 
two counters, without mentioning 
that it has in fact been demonstrated 
that the one can also not simulate all 
of the other.

 ˲ Instructors ought to emphasize 
that one must always be careful with 
encodings, as they easily alter com-
putational power, while pointing out 
it has been proved this is not an issue 
for the usual use case of Turing-level 
computability.

 ˲ One should definitely avoid us-
ing halting-on-empty-tape, or empty-
language acceptance, or similar prob-
lems as fundamental examples of 
undecidability, as their decidability is 
encoding-dependent. Instead, we need 
to explicate the subtle role of input en-
codings when reducing the standard 
two-input halting problem to those 
other problems.

 ˲ We should be cautious to never say 
or imply that two-counter machines 
recognize all recursively enumerable 
languages (they do not), nor that they 
compute (as opposed to simulate) all 
Turing-computable functions.

 ˲ One should not choose the lambda 
calculus as a primary exemplar of a fully 
empowered computational model (since 
it simulates more than it computes). 




