6. Reasoning in Description Logics

Exercise 6.1 Let \mathcal{T} be a TBox consisting of concept inclusions of the form $A_{1} \sqsubseteq A_{2}$ and concept disjointness assertion of the form $A_{1} \sqsubseteq \neg A_{2}$, for atomic concepts A_{1} and A_{2}.
Describe an algorithm for checking concept satisfiability with respect to \mathcal{T}, i.e., whether for some concept A it holds that A is satisfiable with respect to \mathcal{T}.
What is the complexity of the algorithm?
Solution: Let \mathcal{C} be the set of atomic concepts appearing in \mathcal{T}. Construct a directed graph $G_{\mathcal{T}}=(N, E)$ as follows:

- the set of nodes is $N=\mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\}$;
- the set of directed edges is $R=\left\{A_{1} \rightarrow A_{2}, \neg A_{2} \rightarrow \neg A_{1} \mid A_{1} \sqsubseteq A_{2} \in \mathcal{T}\right\} \cup$

$$
\left\{A_{1} \rightarrow \neg A_{2}, A_{2} \rightarrow \neg A_{1} \mid A_{1} \sqsubseteq \neg A_{2} \in \mathcal{T}\right\} .
$$

Then one can show that an atomic concept A is unsatisfiable with respect to \mathcal{T} if and only if there is a path from A to $\neg A$. The algorithm for reachability checking can be done in linear time.
NOTE: the reachability checking problem is in NLogSpace.
Exercise 6.2 Consider TBoxes \mathcal{T} consisting of axioms of the forms

$$
\begin{array}{lll}
B_{1} \sqsubseteq B_{2}, & \text { where } & B_{1}, B_{2}::=A|\exists P| \exists P^{-}, \\
R_{1} \sqsubseteq R_{2}, & \text { where } & R_{1}, R_{2}::=P \mid P^{-},
\end{array}
$$

where A denotes an atomic concept, and P an atomic role.

- Describe an algorithm for checking concept subsumption with respect to a given \mathcal{T}, i.e., whether for two concepts B_{1} and B_{2} it holds that $\mathcal{T} \models B_{1} \sqsubseteq B_{2}$.
- Let $\mathcal{A}_{0}=\left\{A_{0}(a)\right\}$, for some atomic concept A_{0} and individual a, and let \mathcal{T} be a(n arbitrary) TBox of the above form. Can we determine whether $\left\langle\mathcal{T}, \mathcal{A}_{0}\right\rangle$ is satisfiable?
Solution: Let \mathcal{C} be the set of atomic concepts and \mathcal{R} the set of atomic roles appearing in \mathcal{T}. For an atomic or inverse role R, we use R^{-}to denote P^{-}if R is an atomic role P, and to denote P if R is an inverse role P^{-}.
Construct a directed graph $G_{\mathcal{T}}=(N, E)$ as follows:
- the set of nodes is $N=\mathcal{C} \cup\{\exists P \mid P \in \mathcal{R}\} \cup\left\{\exists P^{-} \mid P \in \mathcal{R}\right\}$;
- the set of directed edges is $R=\left\{B_{1} \rightarrow B_{2} \mid B_{1} \sqsubseteq B_{2} \in \mathcal{T}\right\} \cup$

$$
\left\{\exists R_{1} \rightarrow \exists R_{2} \mid R_{1} \sqsubseteq R_{2} \in \mathcal{T}\right\} \cup\left\{\exists R_{1}^{-} \rightarrow \exists R_{2}^{-} \mid R_{1} \sqsubseteq R_{2} \in \mathcal{T}\right\}
$$

Then one can show that $\mathcal{T} \models B_{1} \sqsubseteq B_{2}$ if and only if there is a path from B_{1} to B_{2} in $G_{\mathcal{T}}$.
The TBox \mathcal{T} does not contain assertions involving negation. Hence, every knowledge base having \mathcal{T} as TBox and an arbitrary ABox (including \mathcal{A}_{0}) is satisfiable.

Exercise 6.3 Show that concept satisfiability in $\mathcal{A L C}$ is NP-hard.
Hint: show the claim by reduction from SAT.
Solution: We provide a (straightforward) reduction φ from SAT to concept satisfiability in $\mathcal{A L C}$. Given a propositional formula f, we obtain the $\mathcal{A} \mathcal{L C}$ concept $\varphi(f)$ by simply viewing every propositional variable in f as an atomic concept, and replacing in f every occurrence of ' Π ' with ' \wedge ', and every occurrence of ' \sqcup ' with ' \vee '. Notice that $\varphi(f)$ is an $\mathcal{A L C}$ concept not containing roles.
We now show that $\varphi(f)$ is satisfiable if and only if f is so.
For the "if" direction, let f be satisfiable, and τ a truth value assignment such that $f \tau$ evaluates to true. We construct an interpretation $\left(\Delta^{\mathcal{I}_{\tau}}, .^{\mathcal{I}_{\tau}}\right)$ of $\varphi(f)$ as follows: $\Delta^{\mathcal{I}_{\tau}}=\{o\}$, and for an atomic concept A, we set
$A^{\mathcal{I}_{\tau}}=\{o\}$ if $A \tau=$ true, and $A^{\mathcal{I}_{\tau}}=\{ \}$ if $A \tau=$ false. It is easy to show, by induction on the structure of f, that $\varphi(f)^{\mathcal{I}_{\tau}}=\{o\}$, hence $\varphi(f)$ is satisfiable.
For the "only-if" direction, let $\varphi(f)$ be satisfiable, \mathcal{I} an interpretation such that $(\varphi(f))^{\mathcal{I}} \neq \emptyset$, and $o \in$ $(\varphi(f))^{\mathcal{I}}$. We construct a truth value assignment $\tau_{\mathcal{I}}$ for f as follows: for a propositional variable A in f, we set $A \tau_{\mathcal{I}}=$ true if $o \in A^{\mathcal{I}}$, and $A \tau_{\mathcal{I}}=$ false if $o \notin A^{\mathcal{I}}$. It is easy to show, by induction on the structure of f, that $f \tau_{\mathcal{I}}=$ true, hence f is satisfiable. This concludes the proof.

Exercise 6.4 Let q_{n}, for $n \geq 1$, be a Boolean conjunctive query with $n+1$ existential variables of the form $\exists x_{0}, \ldots, x_{n} . P\left(x_{0}, x_{1}\right) \wedge P\left(x_{1}, x_{2}\right) \wedge \cdots \wedge P\left(x_{n-1}, x_{n}\right)$. Given $n \geq 1$:

1. construct an $\mathcal{A L C}$ KB \mathcal{K}_{n} such that $\mathcal{K}_{n} \models q_{n}$.
2. construct an $\mathcal{A L C}$ KB $\mathcal{K}_{2^{n}}^{\prime}$ of size polynomial in n such that $\mathcal{K}_{2^{n}}^{\prime} \models q_{2^{n}}$ and $\mathcal{K}_{2^{n}}^{\prime} \not \vDash q_{2^{n}+1}$.

Hint: $\mathcal{K}_{2^{n}}^{\prime}$ "implements" a binary counter by means of n atomic concepts representing the bits of the counter, and such that the models of $\mathcal{K}_{2^{n}}^{\prime}$ contain a P-chain of objects of length 2^{n}.

Solution:

1. There are many possible ways to construct $\mathcal{K}_{n}=\left\langle\mathcal{T}_{n}, \mathcal{A}_{n}\right\rangle$. We provide a few alternatives:
(a) $\mathcal{T}_{n}=\emptyset$ and $\mathcal{A}_{n}=\{P(a, a)\}$;
(b) $\mathcal{T}_{n}=\{A \sqsubseteq \exists P . A\}$ and $\mathcal{A}_{n}=\{A(c)\}$;
(c) $\mathcal{T}_{n}=\emptyset$ and $\mathcal{A}_{n}=\left\{P\left(c_{0}, c_{1}\right), P\left(c_{1}, c_{2}\right), \ldots, P\left(c_{n-1}, c_{n}\right)\right\}$;
(d) $\mathcal{T}_{n}=\{A \sqsubseteq \exists P \cdot \exists P \ldots \exists P \cdot \exists P\}$ and $\mathcal{A}_{n}=\{A(c)\}$, where the number of (nested) existential restrictions in the right-hand side of the concept inclusion in \mathcal{T}_{n} is equal to n.
(e) $\mathcal{T}_{n}=\left\{A \sqsubseteq \exists P . A_{1}, A_{1} \sqsubseteq \exists P . A_{2}, \ldots, A_{n-2} \sqsubseteq \exists P . A_{n-1}, A_{n-1} \sqsubseteq \exists P\right\}$ and $\mathcal{A}_{n}=\{A(c)\}$.

Notice that in alternatives (a) and (b), \mathcal{T}_{n} and \mathcal{A}_{n} do not depend on n, and work for every possible value $n \geq 1$.
2. We introduce $2 n$ concepts $B_{i}, \bar{B}_{i}, 1 \leq i \leq n$. Intuitively, $B_{i}(a)$ (resp. $\bar{B}(a)$) says that the i-th bit of the number a is 1 (resp. 0). $\mathcal{K}_{2^{n}}^{\prime}=\left\langle\mathcal{T}_{n}, \mathcal{A}_{n}\right\rangle$, where \mathcal{T}_{n} consists of the following axioms:

$$
\begin{array}{cl}
\bar{B}_{i} \sqsubseteq \exists P . \top, & 1 \leq i \leq n \\
\bar{B}_{1} \sqsubseteq \forall P \cdot B_{1} & \\
B_{1} \sqcap \cdots \sqcap B_{i} \sqcap \bar{B}_{i+1} \sqsubseteq \forall P \cdot\left(\bar{B}_{1} \sqcap \cdots \sqcap \bar{B}_{i} \sqcap B_{i+1}\right) & 1 \leq i \leq n-1 \\
\bar{B}_{i} \sqcap \bar{B}_{j} \sqsubseteq \forall P \cdot \bar{B}_{j} & 1 \leq i<j \leq n \\
\bar{B}_{i} \sqcap B_{j} \sqsubseteq \forall P \cdot B_{j} & 1 \leq i<j \leq n
\end{array}
$$

and $\mathcal{A}_{n}=\left\{\bar{B}_{1}(a), \ldots, \bar{B}_{n}(a)\right\}$

