\mathcal{T} .

6. Reasoning in Description Logics

Exercise 6.1 Let \mathcal{T} be a TBox consisting of concept inclusions of the form $A_1 \sqsubseteq A_2$ and concept disjointness assertion of the form $A_1 \sqsubseteq \neg A_2$, for atomic concepts A_1 and A_2 .

Describe an algorithm for checking concept satisfiability with respect to \mathcal{T} , i.e., whether for some concept A it holds that A is satisfiable with respect to \mathcal{T} .

What is the complexity of the algorithm?

Solution: Let C be the set of atomic concepts appearing in T. Construct a directed graph $G_T = (N, E)$ as follows:

- the set of nodes is $N = \mathcal{C} \cup \{\neg A \mid A \in \mathcal{C}\};$
- the set of directed edges is $R = \{A_1 \to A_2, \neg A_2 \to \neg A_1 \mid A_1 \sqsubseteq A_2 \in \mathcal{T}\} \cup \{A_1 \to \neg A_2, A_2 \to \neg A_1 \mid A_1 \sqsubseteq \neg A_2 \in \mathcal{T}\}.$

Then one can show that an atomic concept A is unsatisfiable with respect to \mathcal{T} if and only if there is a path from A to $\neg A$. The algorithm for reachability checking can be done in linear time.

NOTE: the reachability checking problem is in NLOGSPACE.

Exercise 6.2 Consider TBoxes \mathcal{T} consisting of axioms of the forms

$$B_1 \sqsubseteq B_2$$
, where $B_1, B_2 ::= A \mid \exists P \mid \exists P^-, R_1 \sqsubseteq R_2$, where $R_1, R_2 ::= P \mid P^-,$

where A denotes an atomic concept, and P an atomic role.

- Describe an algorithm for checking concept subsumption with respect to a given *T*, i.e., whether for two concepts B₁ and B₂ it holds that *T* ⊨ B₁ ⊑ B₂.
- Let $\mathcal{A}_0 = \{A_0(a)\}$, for some atomic concept A_0 and individual a, and let \mathcal{T} be a(n arbitrary) TBox of the above form. Can we determine whether $\langle \mathcal{T}, \mathcal{A}_0 \rangle$ is satisfiable?

Solution: Let C be the set of atomic concepts and \mathcal{R} the set of atomic roles appearing in \mathcal{T} . For an atomic or inverse role R, we use R^- to denote P^- if R is an atomic role P, and to denote P if R is an inverse role P^- .

Construct a directed graph $G_{\mathcal{T}} = (N, E)$ as follows:

- the set of nodes is $N = \mathcal{C} \cup \{\exists P \mid P \in \mathcal{R}\} \cup \{\exists P^- \mid P \in \mathcal{R}\};\$
- the set of directed edges is $R = \{B_1 \rightarrow B_2 \mid B_1 \sqsubseteq B_2 \in \mathcal{T}\} \cup$

$$\{\exists R_1 \to \exists R_2 \mid R_1 \sqsubseteq R_2 \in \mathcal{T}\} \cup \{\exists R_1^- \to \exists R_2^- \mid R_1 \sqsubseteq R_2 \in \mathcal{T}\}$$

Then one can show that $\mathcal{T} \models B_1 \sqsubseteq B_2$ if and only if there is a path from B_1 to B_2 in $G_{\mathcal{T}}$.

The TBox \mathcal{T} does not contain assertions involving negation. Hence, every knowledge base having \mathcal{T} as TBox and an arbitrary ABox (including \mathcal{A}_0) is satisfiable.

Exercise 6.3 Show that concept satisfiability in ALC is NP-hard.

Hint: show the claim by reduction from SAT.

Solution: We provide a (straightforward) reduction φ from SAT to concept satisfiability in \mathcal{ALC} . Given a propositional formula f, we obtain the \mathcal{ALC} concept $\varphi(f)$ by simply viewing every propositional variable in f as an atomic concept, and replacing in f every occurrence of ' \Box ' with ' \wedge ', and every occurrence of ' \Box ' with ' \vee '. Notice that $\varphi(f)$ is an \mathcal{ALC} concept not containing roles.

We now show that $\varphi(f)$ is satisfiable if and only if f is so.

For the "if" direction, let f be satisfiable, and τ a truth value assignment such that $f\tau$ evaluates to true. We construct an interpretation $(\Delta^{\mathcal{I}_{\tau}}, \cdot^{\mathcal{I}_{\tau}})$ of $\varphi(f)$ as follows: $\Delta^{\mathcal{I}_{\tau}} = \{o\}$, and for an atomic concept A, we set

 $A^{\mathcal{I}_{\tau}} = \{o\}$ if $A\tau = true$, and $A^{\mathcal{I}_{\tau}} = \{\}$ if $A\tau = false$. It is easy to show, by induction on the structure of f, that $\varphi(f)^{\mathcal{I}_{\tau}} = \{o\}$, hence $\varphi(f)$ is satisfiable.

For the "only-if" direction, let $\varphi(f)$ be satisfiable, \mathcal{I} an interpretation such that $(\varphi(f))^{\mathcal{I}} \neq \emptyset$, and $o \in (\varphi(f))^{\mathcal{I}}$. We construct a truth value assignment $\tau_{\mathcal{I}}$ for f as follows: for a propositional variable A in f, we set $A\tau_{\mathcal{I}} = true$ if $o \in A^{\mathcal{I}}$, and $A\tau_{\mathcal{I}} = false$ if $o \notin A^{\mathcal{I}}$. It is easy to show, by induction on the structure of f, that $f\tau_{\mathcal{I}} = true$, hence f is satisfiable. This concludes the proof.

Exercise 6.4 Let q_n , for $n \ge 1$, be a Boolean conjunctive query with n + 1 existential variables of the form $\exists x_0, \ldots, x_n$. $P(x_0, x_1) \land P(x_1, x_2) \land \cdots \land P(x_{n-1}, x_n)$. Given $n \ge 1$:

- 1. construct an \mathcal{ALC} KB \mathcal{K}_n such that $\mathcal{K}_n \models q_n$.
- 2. construct an \mathcal{ALC} KB \mathcal{K}'_{2^n} of size polynomial in n such that $\mathcal{K}'_{2^n} \models q_{2^n}$ and $\mathcal{K}'_{2^n} \nvDash q_{2^n+1}$.

Hint: \mathcal{K}'_{2^n} "implements" a binary counter by means of *n* atomic concepts representing the bits of the counter, and such that the models of \mathcal{K}'_{2^n} contain a *P*-chain of objects of length 2^n .

Solution:

- 1. There are many possible ways to construct $\mathcal{K}_n = \langle \mathcal{T}_n, \mathcal{A}_n \rangle$. We provide a few alternatives:
 - (a) $\mathcal{T}_n = \emptyset$ and $\mathcal{A}_n = \{P(a, a)\};$
 - (b) $\mathcal{T}_n = \{A \sqsubseteq \exists P.A\} \text{ and } \mathcal{A}_n = \{A(c)\};$
 - (c) $\mathcal{T}_n = \emptyset$ and $\mathcal{A}_n = \{ P(c_0, c_1), P(c_1, c_2), \dots, P(c_{n-1}, c_n) \};$
 - (d) $\mathcal{T}_n = \{A \sqsubseteq \exists P \cdot \exists P \cdot \exists P \cdot \exists P \cdot \exists P\}$ and $\mathcal{A}_n = \{A(c)\}$, where the number of (nested) existential restrictions in the right-hand side of the concept inclusion in \mathcal{T}_n is equal to n.
 - (e) $\mathcal{T}_n = \{ A \sqsubseteq \exists P \cdot A_1, A_1 \sqsubseteq \exists P \cdot A_2, \dots, A_{n-2} \sqsubseteq \exists P \cdot A_{n-1}, A_{n-1} \sqsubseteq \exists P \} \text{ and } \mathcal{A}_n = \{ A(c) \}.$

Notice that in alternatives (a) and (b), \mathcal{T}_n and \mathcal{A}_n do not depend on n, and work for every possible value $n \ge 1$.

2. We introduce 2n concepts B_i , \overline{B}_i , $1 \le i \le n$. Intuitively, $B_i(a)$ (resp. $\overline{B}(a)$) says that the *i*-th bit of the number *a* is 1 (resp. 0). $\mathcal{K}'_{2^n} = \langle \mathcal{T}_n, \mathcal{A}_n \rangle$, where \mathcal{T}_n consists of the following axioms:

$$\begin{array}{ccc} \overline{B}_i \sqsubseteq \exists P \boldsymbol{\cdot} \top, & 1 \leq i \leq n \\ \overline{B}_1 \sqsubseteq \forall P \boldsymbol{\cdot} B_1 \\ B_1 \sqcap \overline{B}_i \sqcap \overline{B}_{i+1} \sqsubseteq \forall P \boldsymbol{\cdot} (\overline{B}_1 \sqcap \cdots \sqcap \overline{B}_i \sqcap B_{i+1}) & 1 \leq i \leq n-1 \\ \overline{B}_i \sqcap \overline{B}_j \sqsubseteq \forall P \boldsymbol{\cdot} \overline{B}_j & 1 \leq i < j \leq n \\ \overline{B}_i \sqcap B_j \sqsubseteq \forall P \boldsymbol{\cdot} B_j & 1 \leq i < j \leq n \end{array}$$

and $\mathcal{A}_n = \{\overline{B}_1(a), \dots, \overline{B}_n(a)\}$