2. Conceptual Modeling in UML and First-Order Logic Formalization

Consider the following description of the information of interest about a flight domain.

- The information about each flight includes: code, duration in minutes, airline, airport of departure, and airport of arrival.
- The information about each airport includes: code, name, city (with name and population), and nation.
- The information about each airline includes: name, year of establishment, and city of the head office with its phone number. It is assumed that every office has at least one phone number.
- Charter flights are a special kind of flights that foresee intermediate stops at airports. The order of the stops is of interest (for example, flight 124 starting from "Bolzano Airport" and arriving in "Palermo Punta Raisi" has "Rome Ciampino" as intermediate stop 1 and "Napoli Airport" as intermediate stop 2). What is also of interest is the type of the aircraft.

Given the above description, do the following:
Exercise 2.1 Model the flight domain in UML.

Solution:

Exercise 2.2 Formalize the UML diagram in first-order logic.

Solution:

Class Hierarchies

- $\forall F$. Charter $(F) \rightarrow \operatorname{Flight}(F)$

Attributes

Class City:

- Typing
$-\forall C \forall N$. name $_{\text {city }}(C, N) \rightarrow \operatorname{City}(C) \wedge \operatorname{String}(N)$
- $\forall C \forall P$.population ${ }_{\text {city }}(C, P) \rightarrow \operatorname{City}(C) \wedge \operatorname{Integer}(P)$
$-\forall C \forall N$. nation $_{\text {city }}(C, N) \rightarrow \operatorname{City}(C) \wedge \operatorname{String}(N)$
- Cardinality
$-\forall C \cdot \operatorname{City}(C) \rightarrow\left(1 \leq \#\left\{N \mid\right.\right.$ name $\left.\left._{\text {City }}(C, N)\right\} \leq 1\right)$
- $\forall C \cdot \operatorname{City}(C) \rightarrow(1 \leq \#\{P \mid$ population City $(C, P)\} \leq 1)$
$-\forall C \cdot \operatorname{City}(C) \rightarrow\left(1 \leq \#\left\{N \mid\right.\right.$ nation $\left.\left._{\text {City }}(C, N)\right\} \leq 1\right)$

Association airportCity

- Typing
- $\forall A \forall C$.airportCity $(A, C) \rightarrow \operatorname{Airport}(A) \wedge \operatorname{City}(C)$
- Cardinality
- $\forall A \forall C_{1} \forall C_{2}$.airportCity $\left(A, C_{1}\right) \wedge \operatorname{airportCity}\left(A, C_{2}\right) \rightarrow C_{1}=C_{2}$
- $\forall A$.Airport $(A) \rightarrow \exists C$.airportCity (A, C)

Reification

- Reification: Typing
- $\forall x \cdot \operatorname{ISTOP}(x) . \forall y \cdot r_{2}^{2}(x, y) \rightarrow \operatorname{Airport}(y)$
- $\forall x \cdot \operatorname{ISTOP}(x) . \forall y \cdot r_{1}^{2}(x, y) \rightarrow \operatorname{Charter}(y)$
- Reification: 1.. 1 Cardinalities
- $\forall x \cdot \operatorname{ISTOP}(x) \rightarrow \exists y \cdot r_{2}^{2}(x, y)$

$$
\begin{aligned}
& \forall x \cdot \operatorname{ISTOP}(x) \rightarrow\left(1 \leq \#\left\{y \mid r_{2}^{2}(x, y)\right\}\right) \\
& \forall x .\left(\#\left\{y \mid r_{2}^{2}(x, y)\right\} \leq 1\right)
\end{aligned}
$$

- $\forall x, y, y^{\prime} \cdot r_{2}^{2}(x, y) \wedge r_{2}^{2}\left(x, y^{\prime}\right) \rightarrow y=y^{\prime}$
- Same for r_{1}^{2}
- Reification: Identification
$-\forall y, y^{\prime} .\left(\#\left\{x \mid r_{2}^{2}(x, y) \wedge r_{1}^{2}\left(x, y^{\prime}\right)\right\} \leq 1\right)$
- Association-class Multiplicity
- $\forall y$.Charter $(y) \rightarrow\left(1 \leq \#\left\{x \mid r_{1}^{2}(x, y) \wedge \operatorname{ISTOP}(x)\right)\right\}$

Exercise 2.3 If possible, formalize in first-order logic the following additional constraints (which are not directly expressible in UML):

1. Each flight has a unique code within the airline.
2. Two distinct flights of the same airline must differ either in the airport of arrival or in the airport of departure.
3. A phone number may belong to at most one head office.
4. For each charter flight v with precisely three intermediate stops a_{1}, a_{2}, a_{3}, if o_{1}, o_{2}, o_{3} are the orders associated to a_{1}, a_{2}, a_{3}, respectively, then $\left\{o_{1}, o_{2}, o_{3}\right\}=\{1,2,3\}$.
5. For each charter flight v, if a_{1}, \ldots, a_{n} are all intermediate stops of v, for some $n \geq 0$, and o_{1}, \ldots, o_{n} are the orders associated to a_{1}, \ldots, a_{n}, respectively, then $\left\{o_{1}, \ldots, o_{n}\right\}=\{1, \ldots, n\}$.

Solution:

1. $\forall A \forall F_{1} \forall F_{2} \forall C_{1} \forall C_{2}\left(\right.$ flightAirline $\left(F_{1}, A\right) \wedge$ flightAirline $\left(F_{2}, A\right) \wedge$ flightCode $\left(F_{1}, C_{1}\right) \wedge$ airlineCode $\left.\left(F_{2}, C_{2}\right) \wedge C_{1}=C_{2} \rightarrow F_{1}=F_{2}\right)$
2. $\forall f_{1}, f_{2}, a, l_{1}, l_{2}\left(\operatorname{Flight}\left(x_{1}\right) \wedge \operatorname{Flight}\left(x_{2}\right) \wedge x_{1} \neq x_{2} \wedge \operatorname{airline}\left(x_{1}, a\right) \wedge \operatorname{airline}\left(x_{2}, a\right) \rightarrow\right.$ $\left.\left(\operatorname{dFrom}\left(f_{1}, l_{1}\right) \wedge \operatorname{dFrom}\left(f_{2}, l_{2}\right)\right) \vee\left(\operatorname{arr} \operatorname{In}\left(f_{1}, l_{1}\right) \wedge \operatorname{arr} \operatorname{In}\left(f_{2}, l_{2}\right)\right) \rightarrow l_{1} \neq l_{2}\right)$
3. $\forall p \forall o \forall o^{\prime}\left(\right.$ phone $\left._{\text {Headoffice }}(o, p) \wedge \operatorname{phone}_{\text {Headoffice }}\left(o^{\prime}, p\right) \rightarrow o=o^{\prime}\right)$
4.
```
\forallv(CharterFlight (v)^
        \exists\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\mp@subsup{a}{3}{}(\mp@subsup{r}{1}{2}(\mp@subsup{a}{1}{},v)\wedge\mp@subsup{r}{1}{2}(\mp@subsup{a}{2}{},v)\wedge\mp@subsup{r}{1}{2}(\mp@subsup{a}{3}{},v)\wedge\mp@subsup{a}{1}{}\not=\mp@subsup{a}{2}{}\wedge\mp@subsup{a}{1}{}\not=\mp@subsup{a}{3}{}\wedge\mp@subsup{a}{2}{}\not=\mp@subsup{a}{3}{}\wedge
            \foralla4}(\mp@subsup{r}{1}{2}(\mp@subsup{a}{4}{},v)->\mp@subsup{a}{4}{}=\mp@subsup{a}{1}{}\vee\mp@subsup{a}{4}{}=\mp@subsup{a}{2}{}\vee\mp@subsup{a}{4}{}=\mp@subsup{a}{3}{})
```



```
                o
        )
)
```

5. Compactness violation
