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ALC and first-order logic Part 6: Reasoning in the ALC family

Recall the definition of ALC – Concept language

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

conjunction C1 u C2 Hum uMale CI1 ∩ CI2
value restriction ∀R.C ∀hasChild.Male {o | ∀o′. (o, o′) ∈ RI → o′ ∈ CI}
negation ¬C ¬∀hasChild.Male ∆I \ CI

(C1, C2 denote arbitrary concepts and R an arbitrary role)

We make also use of the following abbreviations:

Construct Stands for
⊥ A u ¬A (for some atomic concept A)
> ¬⊥

C1 t C2 ¬(¬C1 u ¬C2)
∃R.C ¬∀R.¬C
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ALC and first-order logic Part 6: Reasoning in the ALC family

ALC ontology (or knowledge base)

Def.: ALC ontology

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:

The TBox is a set of inclusion assertions on ALC concepts: C1 v C2

The ABox is a set of membership assertions on individuals:

Membership assertions for concepts: A(c)
Membership assertions for roles: P (c1, c2)

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

Example

TBox: Father ≡ Human uMale u ∃hasChild
HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)

HappyAnc v ∀descendant.HappyFather
Teacher v ¬Doctor u ¬Lawyer

ABox: Teacher(mary), hasFather(mary, john), HappyAnc(john)
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ALC and first-order logic Part 6: Reasoning in the ALC family

From ALC to First Order Logic

We have seen that ALC is a well-behaved fragment of function-free First Order
Logic with unary and binary predicates only (FOLbin).

To translate an ALC TBox to FOLbin we proceed as follows:
1 Introduce: a unary predicate A(x) for each atomic concept A

a binary predicate P (x, y) for each atomic role P
2 Translate complex concepts as follows, using translation functions tx, one

for each variable x:

tx(A) = A(x) tx(C uD) = tx(C) ∧ tx(D)
tx(¬C) = ¬tx(C) tx(C tD) = tx(C) ∨ tx(D)

tx(∃P .C) = (∃y.P (x, y) ∧ ty(C))
tx(∀P .C) = (∀y.P (x, y)→ ty(C)) (with y a new variable)

3 Translate a TBox T =
⋃

i{ Ci v Di } as the FOL theory:

ΓT =
⋃

i{ ∀x. tx(Ci)→ tx(Di) }
4 Translate an ABox A =

⋃
i{ Ai(ci) } ∪

⋃
j{ Pj(c

′
j , c
′′
j ) } as the FOL th.:

ΓA =
⋃

i{ Ai(ci) } ∪
⋃

j{ Pj(c
′
j , c
′′
j ) }
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ALC and first-order logic Part 6: Reasoning in the ALC family

From ALC to First Order Logic – Reasoning

Via the translation to FOLbin, there is a direct correspondence between DL
reasoning services and FOL reasoning services:

C is satisfiable iff its translation tx(C) is satisfiable

C is satisfiable w.r.t. T iff ΓT ∪ { ∃x. tx(C) } is satisfiable

T |=ALC C v D iff ΓT |=FOL
∀x. (tx(C)→ tx(D))

C v D iff |=
FOL

tx(C)→ tx(D)

> v C iff |=FOL tx(C)

(We use |=FOL ϕ to denote that ϕ is a valid FOL formula.)
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ALC and first-order logic Part 6: Reasoning in the ALC family

From First Order Logic to ALC?

Question

Is it possible to define a transformation τ(·) from FOLbin formulas to ALC
concepts and roles such that the following is true?

|=
FOL

ϕ implies > v τ(ϕ)

If yes, we should specify the transformation τ(·).

If not, we should provide a formal proof that τ(·) does not exist.
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Distinguishability of interpretations

Def.: Distinguishing between models

If I and J are two interpretations of a logic L, then we say that I and J are
distinguishable in L if there is a formula ϕ of the language of L such that

I |=L ϕ and J 6|=L ϕ

Proving non equivalence:

To show that two logics L1 and L2 with the same class of interpretations are
not equivalent, it is enough to show that there are two interpretations I and
J that are distinguishable in L1 and not distinguishable in L2.
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Bisimulations Part 6: Reasoning in the ALC family

Bisimulation

The notion of bisimulation in description logics is intended to capture
equivalence of objects and their properties.

Def.: Bisimulation

A bisimulation ∼B between two ALC interpretations I and J is a relation in
∆I ×∆J such that, for every pair of objects o1 ∈ ∆I and o2 ∈ ∆J , if
o1 ∼B o2 then the following hold:

for every atomic concept A: o1 ∈ AI if and only if o2 ∈ AJ
(local condition);

for every atomic role P :

for each o′1 with (o1, o
′
1) ∈ P I , there is an o′2 with (o2, o

′
2) ∈ PJ such that

o′1 ∼B o′2 (forth property);
for each o′2 with (o2, o

′
2) ∈ PJ , there is an o′1 with (o1, o

′
1) ∈ P I such that

o′1 ∼B o′2 (back property).

(I, o1) ∼ (J , o2) means that there is a bisimulation ∼B between I and J such
that o1 ∼B o2.
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Bisimulation and ALC

Lemma

ALC cannot distinguish o1 in interpretation I and o2 in interpretation J when
(I, o1) ∼ (J , o2).
In other words, if (I, o1) ∼ (J , o2), then for every ALC concept C we have that

o1 ∈ CI if and only if o2 ∈ CJ

Proof.

By induction on the structure of concepts. [Exercise]
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Properties of ALC Part 6: Reasoning in the ALC family

Disjoint union model property of ALC

Def.: Disjoint union model

For two interpretations I = (∆I , ·I) and J = (∆J , ·J ), the disjoint union of
I and J is the interpretation:

I ] J = (∆I]J , ·I]J )

where

∆I]J = ∆I ]∆J ;

AI]J = AI ]AJ , for every atomic concept A;

P I]J = P I ] PJ , for every atomic role P .

Exercise

Prove via the bisimulation lemma that, for each pair of ALC concepts C and D:

if I |= C v D and J |= C v D then I ] J |= C v D.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (15/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References
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Tree model property of DLs

Theorem

An ALC concept C is satisfiable w.r.t. a TBox T if and only if there is a
tree-shaped model I of T and an object o such that o ∈ CI .

Proof.

The “if” direction is obvious. For the “only-if” direction, we exploit the fact
that an interpretation and its unraveling into a tree are bisimilar.
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r s

r ts r
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Properties of ALC Part 6: Reasoning in the ALC family

Expressive power of ALC

Exercise

Prove, using tree model property, that the FOLbin formula ∀x.P (x, x) cannot be
translated into ALC. In other words, prove that there is no ALC TBox T such
that

I |=ALC T if and only if I |=
FOL
∀x.P (x, x)

A consequence of the above fact, and of the fact that ALC can be expressed in
FOLbin is that:

Expressive power of ALC
ALC is strictly less expressive than FOLbin.
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From FOLbin to ALC

Def.: Bisimulation invariance

A FOL unary formula ϕ(x) is invariant for bisimulation if for all
interpretations I and J , and all objects o1 and o2 such that (I, o1) ∼ (J , o2)

I, [x→ o1] |= ϕ(x) if and only if J , [x→ o2] |= ϕ(x)

Theorem ([Benthem 1976, 1983])

The following are equivalent for all unary FOLbin ϕ(x):

ϕ(x) is invariant for bisimulation.

ϕ(x) is equivalent to the standard translation of an ALC concept.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Tableau algorithms for DLs

Tableau-based techniques

They try to decide the satisfiability of a formula (or theory) by using rules to
construct (a representation of) a model.

They have been used in FOL and modal logics for many years.

For DLs, they have been extensively explored since the late 1990s [Baader

and Sattler 2001].

They are considered well suited for implementation.

In fact, many of the most successful DL reasoners implement tableau
techniques or variations of them.
E.g.: RACER, FaCT++, Pellet, Hermit, etc.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

A tableau algorithm for ALC concepts – Overview

We describe an algorithm that decides concept satisfiability in ALC.

For an input ALC concept C0, it tries to build a graph representation of a
model I of C0:

It works with labeled, tree-shaped graphs:

the nodes are labeled with concepts, and
the edges are labeled with roles.

At each moment, the algorithm stores a set G of labeled graphs.

It starts with the set G0 containing one graph with just one node labeled
C0.

It uses tableau rules corresponding to the constructors, to infer a new
set G′ of graphs from the previous set G.

Intuitively, each new graph makes explicit some constraint resulting from
C0 that was still implicit in the previous step.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

A tableau algorithm for ALC concepts – Overview (cont’d)

Each rule, when applied to a graph G in the current set G, may:

add new nodes to G, or
add new labels to the existing nodes of G.

The rules are non-deterministic, in general, i.e., they may be applied in
more than one way, resulting in different possible graphs.

If a graph contains a clash, i.e., an explicit contradiction, it is dropped and
not expanded further.

When no rule can be applied anymore to a graph, the graph is called
complete.

The algorithm continues

until some graph G in the current set is complete and clash-free, or
until all graphs contain a clash.

A complete and clash-free graph G represents a model I of C0.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Negation Normal Form

Def.: Negation normal form

A concept C is in negation normal form (NNF) if the ’¬’ operator is applied
only to atomic concepts. Moreover, C does not contain > or ⊥.

Every concept C can be transformed into a concept nnf(C) in NNF, by
pushing inside the ’¬’ operator, using the following equivalences:

¬(C uD) ≡ ¬C t ¬D
¬(C tD) ≡ ¬C u ¬D
¬(¬C) ≡ C

¬∀P .C ≡ ∃P .¬C
¬∃P .C ≡ ∀P .¬C

The translation process terminates in linear time.

C and nnf(C) are equivalent, i.e., CI = nnf(C)I , for every
interpretation I.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Completion graphs

Consider a given concept C0 in NNF.

We denote by sub(C0) the set consisting of all subconcepts of C0 and their
negations in NNF.
(Note that the negations will be needed only later, for reasoning over a TBox.)

Def.: Completion graph

A completion graph for C0 is a labeled graph 〈V,E,L〉, where

V is a finite set of nodes,

E ⊆ V × V is the set of edges, and

L is a labeling function that maps:

each node v ∈ V to a set of concepts L(v) ⊆ sub(C0), and
each edge (v, v′) to a role L(v, v′).

Def.: Initial completion graph

The initial completion graph G0 for C0 is the graph that contains only one
node v0, no edges, and has L(v0) = {C0}.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Complete and clash-free completion graph

The idea of the algorithm is to start from the initial completion graph, and to
apply expansion rules until some graph is reached to which no more rules are
applicable, and which does not contain an explicit contradiction (or clash).

Def.: Clash, clash free completion graph

A completion graph G = 〈V,E,L〉 contains a clash if for some v ∈ V and
some concept C, we have that {C,nnf(¬C)} ⊆ L(v).

A completion graph is called clash-free if it contains no clash.

Def.: Complete completion graph

A completion graph is complete if no expansion rule can be applied to it.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Expansion rules for ALC concepts

Expansion rules for ALC concept satisfiability

u-rule if C1 u C2 ∈ L(v) and {C1, C2} * L(v)
then L(v) := L(v) ∪ {C1, C2}

t-rule if C1 t C2 ∈ L(v) and {C1, C2} ∩ L(v) = ∅
then L(v) := L(v) ∪ {D} for some D ∈ {C1, C2}

∃-rule if ∃P .C ∈ L(v), and
there is no w such that L(v, w) = P and C ∈ L(w)

then create a new node w and an edge (v, w), and
set L(v, w) := P and L(w) := {C}

∀-rule if ∀P .C ∈ L(v), and
there is some w such that L(v, w) = P and C /∈ L(w)

then L(w) := L(w) ∪ {C}
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

The tableau algorithm for ALC concept satisfiability

1 Let G0 = {G0} be the set that contains only the initial completion graph
G0 for C0.

2 For i ≥ 0, obtain the set Gi+1 of all clash-free graphs that can be
obtained by applying an expansion rule to some G ∈ Gi.

3 If for some i ≥ 0 we have that:

there is a complete G ∈ Gi, then the algorithm answers yes;
Gi = ∅, then the algorithm answers no.

Next we show that this yields a sound and complete algorithm for deciding
concept satisfiability.

Theorem

The above procedure terminates, and it answers yes iff C0 is satisfiable.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Tableau for concept satisfiability – Example

Consider concept C0 = (A1 u
C3︷ ︸︸ ︷

∃P .(A2 tA3))︸ ︷︷ ︸
C1

u∀P .¬A2︸ ︷︷ ︸
C2

1 G0 = 〈{x0}, ∅,L0〉, with L0(x0) = {C0}
2 G1 = 〈{x0}, ∅,L1〉, with L1(x0) = {C0, C1, C2} (by u-rule)

3 G2 = 〈{x0}, ∅,L2〉, with L2(x0) = {C0, C1, C2, A1, C3} (by u-rule)

4 G3 = 〈{x0, x1}, {(x0, x1)},L3〉, with L3(x0) = {C0, C1, C2, A1, C3},
L3(x1) = {A2 tA3}, L3(x0, x1) = P (by ∃-rule)

5 G4 = 〈{x0, x1}, {(x0, x1)},L4〉, with L4(x0) = {C0, C1, C2, A1, C3},
L4(x1) = {A2 tA3,¬A2}, L4(x0, x1) = P (by ∀-rule)

6 G5 = 〈{x0, x1}, {(x0, x1)},L5〉, with L5(x0) = {C0, C1, C2, A1, C3},
L5(x1) = {A2 tA3,¬A2, A2}, L5(x0, x1) = P ; clash

G6 = 〈{x0, x1}, {(x0, x1)},L6〉, with L6(x0) = {C0, C1, C2, A1, C3},
L6(x1) = {A2 tA3,¬A2, A3}, L6(x0, x1) = P (by t-rule)
; complete and clash-free
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Termination of the tableau algorithm

Lemma

The tableau algorithm for ALC terminates.

Proof sketch.

Each completion graph G is a finite tree:

its depth is linearly bounded by |C0| (in fact, by the quantifier depth);
its breadth is linearly bounded by |C0| (in fact, by the number of
existentials).

All concepts added to the node labels are subconcepts of C0, and all roles
added to the edge labels occur in C0. Hence the labels are finite.

The graphs grow ’monotonically’: there is no deleting and regenerating of
nodes or labels

Every completion graph G obtained from G0 will eventually be expanded
into some G′ that either (a) contains a clash, or (b) is complete.
Hence, the algorithm will eventually answer yes or no.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Completion graphs as representations of model

A complete and clash-free completion graph represents an interpretation.

Def.: Induced interpretation

Let G = 〈V,E,L〉 be a completion graph.

We define the interpretation IG = (∆IG , ·IG) induced by G as follows:

The domain ∆IG is the set V of nodes of G.

The interpretation function ·IG is given by the labels:

For each atomic concept A, we have AIG = {v | A ∈ L(v)}.
For each (atomic) role P , we have P IG = {(v, w) | L(v, w) = P}.

Then we can prove by induction on the concept structure [Exercise]:

Lemma

Let G be complete and clash-free completion graph. Then, for every node v
and every ALC concept C

C ∈ L(v) if and only if v ∈ CIG .
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Soundness of the tableau algorithm

With the previous lemma, it is easy to show that the algorithm is sound.

Lemma (L1)

Let G be a complete and clash-free completion graph for C0 constructed by the
tableau algorithm. Then IG |= C0.

Proof.

By construction of G, we know that C0 ∈ L(v0). Hence, by the previous lemma, we have that

v0 ∈ C
IG
0 , and thus IG |= C0, as desired.

Corollary (Soundness)

If the tableau algorithm builds a complete and clash-free completion graph for
and ALC concept C0, then C0 is satisfiable.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Simulating models in completion graphs

Towards showing completeness of the tableau algorithm, we need to relate
interpretations to completion graphs.

Def.: Intepretation simulating a completion graph

We say that an interpretation I simulates a completion graph G = 〈V,E,L〉 if
there exists a mapping π : V → ∆I such that:

for each node v ∈ V , if C ∈ L(v) then π(v) ∈ CI .

for each edge (v, w) ∈ E, if P = L(v, w) then (π(v), π(w)) ∈ P I .

Note: A completion graph simulated by an interpretation is always clash-free.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Completeness of the tableau algorithm

Lemma (L2)

If I |= C0, then there exists some i ≥ 0 and some complete and clash-free
G ∈ Gi such that I simulates G.

Proof sketch.

Roughly, we show that:

1 I simulates G0.

2 If some G ∈ Gi is simulated by I and G is not complete, then there is some G′ ∈ Gi+1

that is also simulated by I.

Informal intuition: I shows us how to apply the expansion rules (in particular, the
t-rule) in such a way that the simulation is preserved.

The claim then follows since rule application eventually leads to a complete graph.

Corollary (Completeness)

If C0 is satisfiable, then the algorithm builds a complete and clash-free G for C0.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Tree shaped interpretation

It is not hard to see that the completion graphs generated by the tableau
algorithm, and the interpretations they induce, have a very specific shape.

Def.: Tree shaped interpretation

An interpretation I = (∆I , ·I) is tree-shaped if the graph 〈V,E〉 with
V = ∆I and E = {(d, d′) | (d, d′) ∈ P I for some role P} is a tree.

A simple inspection of the expansion rules reveals that each IG induced from a
constructed completion graph G is tree-shaped.

Formally, we can show:

Lemma (L3)

If IG is an interpretation induced by a completion graph G obtained with the
algorithm above, then it is tree shaped.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Tree model property

We have seen that:

If C0 has a model, then there is a complete and clash-free completion
graph for C0 (which is simulated by that model) [Lemma L3].

If there is a complete and clash-free completion graph for C0, then there is
a tree-shaped model of C0 (induced by that graph) [Lemmas L1, L2].

Hence, putting this together, we get that if C0 has a model, then it has a tree
shaped model.

Theorem (Tree model property)

Every satisfiable ALC concept has a tree shaped model.

Note: this is an alternative proof to the one based on bisimulations.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Tree model property – Computational impact

The tree model property is very important and useful:

We only need to look at tree shaped structures when reasoning about ALC
concepts.

Trees are computationally ’friendly’.

We can apply techniques for trees to obtain algorithms and complexity
bounds.

However, as we have seen using bisimulations, this property also exposes a
limitation in the expressive power of ALC concepts:

Intuitively, they cannot distinguish (non)tree-shapedness.

They cannot describe, for example, structures with cycles.

Note: The tree model property provides a further justification why DLs are a
decidable fragment of FOL.
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Satisfiability of ALC concepts – Exercises

Exercise

Check the satisfiability of the following concepts:

1 ¬(∀R.A t ∃R.(¬A u ¬B))

2 ∃R.(∀S.C) u ∀R.(∃S.¬C)

3 ∃S.C u ∃S.D u ∀S.(¬C t ¬D)

4 ∃S.(C uD) u (∀S.¬C t ∃S.¬D)

5 C u ∃R.A u ∃R.B u ¬∃R.(A uB)

Exercise

Check if the following subsumption is valid:

¬∀R.A u ∀R.((∀R.B) tA) v ∀R.¬(∃R.A) u ∃R.(∃R.B)
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Tableau for concept satisfiability Part 6: Reasoning in the ALC family

Some significant cases of ALC subsumption – Exercises

Which of the following statements is true? Explain your answer.

1 ∀R.(A uB) v ∀R.A u ∀R.B
√

2 ∀R.A u ∀R.B v ∀R.(A uB)
√

3 ∀R.A t ∀R.B v ∀R.(A tB)
√

4 ∀R.(A tB) v ∀R.A t ∀R.B RI = {(x, y), (x, z)}, AI = {y}, BI = {z}

5 ∃R.(A uB) v ∃R.A u ∃R.B
√

6 ∃R.(A tB) v ∃R.A t ∃R.B
√

7 ∃R.A t ∃R.B v ∃R.(A tB)
√

8 ∃R.A u ∃R.B v ∃R.(A uB) RI = {(x, y), (x, z)}, AI = {y}, BI = {z}
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Complexity of concept satisfiability Part 6: Reasoning in the ALC family
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Complexity of concept satisfiability Part 6: Reasoning in the ALC family

Complexity of reasoning in ALC
Exercise

Consider the concept Cn defined inductively as follows;

C1 = ∃P .A u ∃P .¬A
Ci+1 = ∃P .A u ∃P .¬A u ∀P .Ci, for i ∈ {1, . . . , n}

Check the form of the interpretation induced by the completion graph obtained
by starting from Cn(x0).

Solution

Given the input concept Cn, the satisfiability algorithm generates a complete
and clash free completion graph that is a binary tree of depth n, and thus
induces an interpretation with 2n+1 − 1 individuals.

So, in principle, the complexity of checking satisfiability of an ALC concept
might require exponential space.

However, we show that this can be avoided.
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Complexity of concept satisfiability Part 6: Reasoning in the ALC family

Upper bound for concept satisfiability in ALC
Theorem [Schmidt-Schauss and Smolka 1991]

Satisfiability of ALC concepts is in PSpace.

Proof sketch.

We show that if an ALC concept is satisfiable, we can construct a model using
only polynomial space.

Since PSpace = NPSpace, we consider a non-deterministic algorithm
that for each application of the t-rule, chooses the “correct” graph.

Then, the tree model property of ALC implies that the different branches
of the tree model to be constructed by the algorithm can be explored
separately, in a depth-first manner, as follows:

1 Apply exhaustively both the u-rule and (non-deterministically) the t-rule,
and check for clashes.

2 Choose a node x and apply the ∃-rule to generate all necessary direct
successors of x.

3 Apply the ∀-rule to propagate the labels to the newly generated successors.
4 Handle the successors in the same way, one after the other.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (42/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Sources of complexity for reasoning over concepts

We analyze now the intrinsic complexity of reasoning over concept expressions
for various sublanguages of ALC.

Two sources of complexity:

Union (U) (and Booleans in general) require solving propositional
satisfiability ; complexity of type NP.

Interaction between ∃R.C (E) and ∀R.C ; complexity of type coNP.

When they are combined, the complexity jumps to PSpace.

This provides the basis for the hardness results in the following table:

Complexity of concept satisfiability: [Donini, Hollunder, et al. 1992; Donini,

Lenzerini, et al. 1997]

AL, ALN PTime
ALU , ALUN NP-complete
ALE coNP-complete
ALC, ALCN , ALCI, ALCQI PSpace-complete
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Concept satisfiability in ALU is NP-hard (1/2)

We reduce satisfiability of Boolean formulae in CNF to
concept satisfiability in ALU .

For a Boolean formula F in CNF, let ρ(F ) be the ALU concept obtained by:

considering Boolean variables as atomic concepts, and

replacing in F each ∧ with u, and each ∨ with t, and considering ¬ as
concept negation.

Theorem

F is satisfiable iff ρ(F ) is satisfiable.

Proof.

Let F = c1 ∧ · · · ∧ cn be a Boolean formula in CNF over Boolean variables
A1, . . . , Ak.

Then F is satisfiable if and only if one can choose in every clause ci a literal `i
such that {`1, . . . , `n} does not contain Aj and ¬Aj for some variable Aj .

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (45/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Concept satisfiability in ALU is NP-hard (2/2)

Proof (“Only If” Part).

Suppose F is satisfiable. Then there exist `1, . . . , `n as specified above.
Let I be the interpretation with ∆I = {1}, and such that

AI =

{
{1}, if A = `i for some i

∅, otherwise
P I = ∅, for every role P .

Then `Ii = {1}, for i ∈ {1 . . . , n}. Hence (ρ(F ))I = {1}, so ρ(F ) is satisfiable.

Proof (“If” Part).

Suppose ρ(F ) is a satisfiable concept.

Then there exists an interpretation I and an o ∈ ∆I such that o ∈ (ρ(F ))I .

Hence every clause ci contains a literal `i such that o ∈ `Ii .

Thus, for each Boolean variable Aj , {`1, . . . , `n} does not contain Aj and ¬Aj .
This implies that F is satisfiable.
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Concept satisfiability in ALE is coNP-hard

Def.: ExactCover

Let U = {u1, . . . , un} be a finite set, and let M = {M1, . . . ,Mm} be a family
of subsets of U .
An exact cover for (U,M) are sets Mi1 , . . . ,Mi` of M that:

are pairwise disjoint, i.e., Mih ∩Mik = ∅, for h 6= k, and

cover U , i.e., Mi1 ∪ · · · ∪Mi` = U .

The ExactCover problem consists in checking whether there exists an exact
cover for a given (U,M).

ExactCover is NP-complete.

We reduce ExactCover to concept unsatisfiability in ALE .
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Reducing ExactCover to concept unsat. in ALE

Given U = {u1, . . . , un} and M = {M1, . . . ,Mm}, we consider the concept

CM = C1 u · · · u Cm uD

where: Ci = Q1
iP .Q2

iP . · · ·Qn
i P .Q1

iP .Q2
iP . · · ·Qn

i P .>

with Qj
i =

{
∃, if uj ∈Mi

∀, if uj /∈Mi

D = ∀P . · · · ∀P .︸ ︷︷ ︸
2n

⊥

Notice that the quantifier prefix is duplicated, i.e., for every element uj ∈ U
there are two quantifiers in each Ci, one at level j and one at level n+ j.

Theorem

There is an exact cover for (U,M) iff CM is unsatisfiable.
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Reducing ExactCover to ALE concept unsat. – Ex.

Let U = {u1, u2, u3}, and M = {M1,M2,M3}, where

M1 = {u1, u2}, M2 = {u2, u3}, M3 = {u3}

The corresponding ALE-concept is CM = C1 u C2 u C3 uD, where

u1 u2 u3 u1 u2 u3

M1 = {u1, u2} ; C1 = ∃P .∃P .∀P .∃P .∃P .∀P .>
M2 = {u2, u3} ; C2 = ∀P .∃P .∃P .∀P .∃P .∃P .>
M3 = {u3} ; C3 = ∀P .∀P .∃P .∀P .∀P .∃P .>

D = ∀P .∀P .∀P .∀P .∀P .∀P .⊥

Intuitively, the existentials in the Cis force the existence of a P -path of
length 2n, iff (U,M) has an exact cover.

If the existence of such a path is enforced, the presence in CM of D causes
a clash, otherwise CM is satisfiable.

Notice that for the reduction to work correctly, the quantifier prefix needs
to be of length 2n rather than n. Consider e.g., the instance of
ExactCover (U, {M1,M2}), where U , M1, and M2 are as above.
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Concept satisfiability in ALC is PSpace-hard

To show that concept satisfiability in ALC is PSpace-hard, we use a classical
PSpace-hard problem: validity of quantified Boolean formulae.

Def.: Quantified Boolean formulae

A quantified Boolean formula (qbf) has the form

ϕ = Q1x1.Q2x2. · · ·Qnxn.F (x1, . . . , xn)

where each quantifier Qi is either ∀ or ∃, and F (x1, . . . , xn) is a Boolean
formula (in CNF) over Boolean variables x1, . . . , xn.

Intuitively, the formula ϕ is valid if
for every assignment to x1 / there exists an assignment to x1 such that

for every assignment to x2 / there exists an assignment to x2 such that
· · ·
F (x1, . . . , xn) evaluates to true.
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Validity of quantified Boolean formulae – Example

Consider the qbf ϕ = ∀x1.∃x2.∃x3. (¬x1 ∨ (x2 ∧ x3))

To determine the validity of ϕ, we consider the tree of all possible truth value
assignments:

∧

1

∨

1

∨

1

∨

1

∨

1

∨

0

∨

1

1 1 1 1 0 0 0 1

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

(We use 1 for true and 0 for false.)

The qbf ϕ is valid.
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Validity of quantified Boolean formulae

Def.: Validity of quantified Boolean formulae

Validity of the qbf ϕ = Q1x1. · · ·Qnxn.F is defined inductively as follows:

If n = 0 (i.e., F has no variables), then ϕ is valid iff F evaluates to true.

If n > 0, then consider ϕtrue = Q2x2. · · ·Qnxn.F [x1/true],
and ϕfalse = Q2x2. · · ·Qnxn.F [x1/false].

If Q1 = ∀, then ϕ is valid iff ϕtrue and ϕfalse are valid.
If Q1 = ∃, then ϕ is valid iff ϕtrue or ϕfalse is valid.

The Quantified Boolean Formulae problem (QBF) consists in checking
whether a given qbf is valid.

QBF is PSpace-complete.

We reduce QBF to concept satisfiability in ALC.
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Reducing QBF to concept satisfiability in ALC
Consider the qbf ϕ = Q1x1 .Q2x2. · · ·Qnxn.F , where F = c1 ∧ · · · ∧ cm is a
Boolean formula in CNF. We construct the concept

Cϕ = D1 u C1
1 u · · · u Cm

1

where in Cϕ all concepts are formed over atomic concept A and atomic role P .

The concept D1 encodes the quantifier prefix, and is defined inductively:

Di =

{
∃P .A u ∃P .¬A u ∀P .Di+1, if Qi = ∀
∃P .> u ∀P .Di+1, if Qi = ∃

for i ∈ {1, . . . , n}

and Dn+1 = >.

Each concept C`
1 encodes a clause c`, and is defined inductively:

C`
i =


∀P .(A t C`

i+1), if xi appears in c`

∀P .(¬A t C`
i+1), if ¬xi appears in c`

∀P .C`
i+1, if xi does not appear in c`

for i ∈ {1, . . . , n}

and C`
n+1 = ⊥.
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Reducing QBF to ALC concept satisfiability – Example

Let ϕ = ∀x.∃y.∀z. (

c1︷ ︸︸ ︷
(¬x ∨ y)∧

c2︷ ︸︸ ︷
(x ∨ ¬y)∧

c3︷ ︸︸ ︷
(¬x ∨ y ∨ ¬z)).

Then Cϕ = D u C1
1 u C2

1 u C3
1 , where

D = ∃P .A u ∃P .¬A u ∀P .(∃P .> u ∀P .(∃P .A u ∃P .¬A u ∀P .>))

C1
1 = ∀P .(¬A t ∀P .( A t ∀P .( ⊥))) ← [ c1 = ¬x ∨ y

C2
1 = ∀P .( A t ∀P .(¬A t ∀P .( ⊥))) ← [ c2 = x ∨ ¬y

C3
1 = ∀P .(¬A t ∀P .( A t ∀P .(¬A t ⊥))) ←[ c3 = ¬x ∨ y ∨ ¬z

Interpretation generated by D:

Model of Cϕ:
1

2

A

3

¬A

4

A

5

¬A

6
A

7
¬A

8
A

9
¬A
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Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Complexity of concept satisfiability and subsumption

The previous reductions give us lower bounds for concept satisfiability.

Since C is satisfiable iff C 6v ⊥, and all three languages can express ⊥,
this gives also complementary lower bounds for concept subsumption.

The tableaux algorithm for ALC, can be refined to work more efficiently
for the cases of ALU and ALE concept satisfiability and subsumption
[Schmidt-Schauss and Smolka 1991; Donini, Hollunder, et al. 1992].

Theorem

Concept satisfiability is:

NP-complete in ALU ,

coNP-complete in ALE ,

PSpace-complete in ALC.

Theorem

Concept subsumption is:

coNP-complete in ALU ,

NP-complete in ALE ,

PSpace-complete in ALC.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (55/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary ontologies
Lower bounds for reasoning over TBoxes

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (56/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

TBox reasoning and ontology reasoning

TBox Satisfiability: T is satisfiable, if it admits at least one model.

Concept Satisfiability w.r.t. a TBox: C is satisfiable w.r.t. T , if there is
a model I of T such that CI is not empty, i.e., T 6|= C ≡ ⊥.

Subsumption: C1 is subsumed by C2 w.r.t. T , if for every model I of T
we have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent w.r.t. T if for every model I of T
we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Ontology Satisfiability: 〈T ,A〉 is satisfiable, if it admits at least one
model.

We can reduce all reasoning tasks to concept satisfiability wrt a TBox, and then
further to ontology satisfiability. [Exercise]
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Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Acyclic TBox

Def.: Concept definition

A definition of an atomic concept A is an assertion of the form A ≡ C, where
C is an arbitrary concept expression in which A does not occur.

Def.: Cyclic concept definitions

A set of concept definitions is cyclic if it is of the form

A1 ≡ C1[A2], A2 ≡ C2[A3], . . . , An ≡ Cn[A1]

where C[A] means that A occurs in the concept expression C.

Def.: Acyclic TBox

A TBox is acyclic if it is a set of concept definitions that neither contains
multiple definitions of the same concept, nor a set of cyclic definitions.
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Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Unfolding w.r.t. an acyclic TBox

Satisfiability of a concept C w.r.t. an acyclic TBox T can be reduced to pure
concept satisfiability by unfolding C w.r.t. T :

1 We start from the concept C to check for satisfiability.

2 Whenever T contains a definition A ≡ C ′, and A occurs in C, then in C
we substitute A with C ′.

3 We continue until no more substitutions are possible.

Theorem

Let UnfoldT (C) be the result of unfolding C w.r.t T .
Then C is satisfiable w.r.t. T iff UnfoldT (C) is satisfiable.

Proof.

By induction on the number of unfolding steps. [Exercise]
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Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Complexity of unfolding w.r.t. acyclic TBoxes

Unfolding a concept w.r.t. an acyclic TBox might lead to an exponential
blow-up.

For each n, let Tn be the acyclic TBox:

A0 ≡ ∀P .A1 u ∀R.A1

A1 ≡ ∀P .A2 u ∀R.A2

...
An−1 ≡ ∀P .An u ∀R.An

It is easy to see that UnfoldTn(A0) grows exponentially with n.
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Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Concept satisfiability w.r.t. acyclic TBoxex

We adopt a smarter strategy: unfolding on demand

Expansion rules for satisfiability of acyclic ALC TBoxes

u-rule if C1 u C2 ∈ L(v) and {C1, C2} * L(v)
then L(v) := L(v) ∪ {C1, C2}

t-rule if C1 t C2 ∈ L(v) and {C1, C2} ∩ L(v) = ∅
then L(v) := L(v) ∪ {D} for some D ∈ {C1, C2}

∃-rule if ∃P .C ∈ L(v), and
there is no w such that L(v, w) = P and C ∈ L(w)

then create a new node w and an edge (v, w), and
set L(v, w) := P and L(w) := {C}

∀-rule if ∀P .C ∈ L(v), and
there is some w such that L(v, w) = P and C /∈ L(w)

then L(w) := L(w) ∪ {C}
T -rule if A ∈ L(v), A ≡ C ∈ T , and nnf(C) /∈ L(v)

then L(v) := L(v) ∪ {nnf(C)}
T -rule if ¬A ∈ L(v), A ≡ C ∈ T , and nnf(¬C) /∈ L(v)

then L(v) := L(v) ∪ {nnf(¬C)}
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Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Concept satisfiability w.r.t. acyclic TBoxex – Complexity

Theorem

In ALC, concept satisfiability w.r.t. acyclic TBoxes is PSpace-complete.

Proof.

For the upper bound, we can make use of the tableau algorithm, adopting the
same strategy for rule application as the one for plain concept satisfiabily.

For the lower bound, it suffices to observe that PSpace-hardness already holds
for plain concept satisfiablity.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

A tableau algorithm for ALC ontologies

We extend our algorithm to decide ontology satisfiability.

The algorithm is essentially the same: we start from the initial completion
graph, and apply expansion rules until some complete and clash-free graph is
reached.

But there are a few differences:

The initial graph is more complex: it is a representation of the ABox.

Edge labels in completion graphs are sets of roles instead of just one role
(to allow for pairs of individuals to be connected by multiple roles).

The labeled graphs we obtain are not trees, but forests.

The expansion rules need slight extension/adaptation.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Initial completion graph

Consider an ALC ontology O = 〈T ,A〉.

Def.: Initial completion graph

The initial completion graph G0 = 〈V,E,L〉 for O = 〈T ,A〉 is defined as
follows:

V contains one node ĉ for each individual c occurring in A.

Each ĉ has the label L(ĉ) = {A | A(c) ∈ A}.
There is an edge (ĉ, d̂) with role P in its label iff P (c, d) ∈ A.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Expansion rule for arbitrary TBox axioms

When the TBox may contain cycles, unfolding cannot be used, since in general
it would not terminate.

Instead, we modify the tableau by relying on the following observations:

C v D is equivalent to > v ¬C tD.
Hence,

⋃
i{Ci v Di} is equivalent to a single inclusion > v

d
i(¬Ci tDi).

Let
CT =

l

CvD∈T

nnf(¬C tD)

Then for every completion graph G generated by the tableau and for every
node v of G, we have to add CT to the label of v.

We can obtain this effect by adding a suitable completion rule:

Expansion rules for satisfiability of ALC ontologies

· · ·
T -rule if CT /∈ L(v)

then L(v) := L(v) ∪ {CT }
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Expansion rule for arbitrary TBox axioms – Example

Exercise

Check whether the ontology O = 〈T ,A〉 is satisfiable, where T = {A v ∃R.A}
and A = {A(x0)}.

Solution (We denote with →X the application of the X-rule.)

We have that CT = ¬A t ∃R.A.

A(x0) →T A(x0), CT (x0)
→t A(x0), CT (x0), (∃R.A)(x0)
→∃ A(x0), . . . , R(x0, x1), A(x1)
→T A(x0), . . . , R(x0, x1), A(x1), CT (x1)
→t A(x0), . . . , R(x0, x1), A(x1), CT (x1), ∃R.A(x1)
→∃ A(x0), . . . , R(x0, x1), A(x1), . . . , R(x1, x2), A(x2)
→T · · ·

(C(v) denotes that the completion graph has a node v labeled with C (similarly for roles).)

Termination is no longer guaranteed!

Due to the application of the T -rule, the nesting of the concepts does not
decrease with each rule-application step.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Blocking

To guarantee termination, we need to understand when it is not necessary
anymore to create new objects.

Idea: to regain termination, avoid generating new successors for nodes that
“behave similarly” to some ancestor (cycle-detection).

Def.: Blocking

Let G = 〈V,E,L〉 be a completion graph.

We say that v ∈ V is directly blocked if it is reachable from a node
w ∈ V with L(v) ⊆ L(w).

If w is the closest such node to v, we say that v is blocked by w.

A node is blocked if it is directly blocked or one of its ancestors is blocked.

We restrict the application of the ∃-rule to nodes that are not blocked.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Expansion rules for ALC ontologies with arbitrary TBoxes

Expansion rules for satisfiability of ALC ontologies

u-rule if C1 u C2 ∈ L(v) and {C1, C2} * L(v)
then L(v) := L(v) ∪ {C1, C2}

t-rule if C1 t C2 ∈ L(v) and {C1, C2} ∩ L(v) = ∅
then L(v) := L(v) ∪ {D} for some D ∈ {C1, C2}

∃-rule if ∃P .C ∈ L(v), v is not blocked, and
there is no w such that P ∈ L(v, w) and C ∈ L(w)

then create a new node w and an edge (v, w), and
set L(v, w) := {P} and L(w) := {C}

∀-rule if ∀P .C ∈ L(v), and
there is some w such that P ∈ L(v, w) and C /∈ L(w)

then L(w) := L(w) ∪ {C}
T -rule if CT /∈ L(v)

then L(v) := L(v) ∪ {CT }
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Blocking – Exercise

Exercise

Check whether the ontology O = 〈T ,A〉 is satisfiable, where T = {A v ∃R.A}
and A = {A(x0)}.

Solution (We denote with →X an application of the X-rule.)

We have that CT = ¬A t ∃R.A.

A(x0) →T A(x0), CT (x0)
→t A(x0), CT (x0), (∃R.A)(x0)
→∃ A(x0), CT (x0), (∃R.A)(x0), R(x0, x1), A(x1)
→T A(x0), CT (x0), (∃R.A)(x0), R(x0, x1), A(x1), CT (x1)
→t A(x0), CT (x0), (∃R.A)(x0), R(x0, x1), A(x1), CT (x1), (∃R.A)(x1)

Now x1 is blocked by x0 since L(x1) = L(x0) = {A,CT , ∃R.A} (hence L(x1) ⊆ L(x0)).
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Tableau algorithm for ALC ontology satisfiability

The rest of the algorithm is exactly as for ALC concepts.

We are going to show that this extended tableau algorithm is a decision
procedure for ontology satisfiability.

Theorem

For an ALC ontology O, the algorithm terminates, and it answers yes if and
only if O is satisfiable.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Tableau algorithm for ALC– Termination

Lemma

The tableau algorithm for ALC ontology satisfiability terminates.

Proof sketch.

Let be O = 〈T ,A〉 be an ALC ontology.
Each completion graph G is a forest:

It has one root node for each individual in A.

Blocking ensures that the depth of each branch is finite (bounded by an
exponential in |O|).

The branching degree of each node is still linearly bounded by |O| (in fact,
by the number of existentials in O).

Hence the generated graphs are always finite.

And as before:

All concepts added to the labels occur in A or in CT .

G is constructed without deleting or regenerating nodes or labels.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (73/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Tableau algorithm for ALC– Soundness

Similarly as before, a complete and clash-free G induces a model IG of O, but
the induced model is slightly different

Def.: Interpretation induced by a completion graph

Let G = 〈V,E,L〉 be a completion graph for O. We define the interpretation
IG = (∆IG , ·IG) as follows:

∆IG = {v | v ∈ V and v is not blocked}
Each Individual c is interpreted as the corresponding initial node, i.e.,
cI = ĉ.

AIG = {v | v ∈ ∆IG and A ∈ L(v)}, for each concept name A.

P IG = {(v, w) | {v, w} ⊆ ∆IG and P ∈ L(x, y)} ∪
{(v, w) | v ∈ ∆IG , P ∈ L(v, w′), and w′ is blocked by w},

for each role name P .
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Tableau algorithm for ALC– Soundness (cont’d)

Lemma

Let O = 〈T ,A〉 be an ALC ontology, and let G be a complete and clash-free
completion graph for O constructed by the tableau algorithm. Then IG |= O.

Proof.

1 As we did before, we show that if G is complete and clash-free, then for
every node v and for every concept C, C ∈ L(v) implies v ∈ CIG .

2 By construction of the initial graph, we know that:

C ∈ L(â), for each C(a) ∈ A, and
P ∈ L(â, b̂), for each P (a, b) ∈ A.

So, by construction of IG and item 1, IG |= A.

3 Since CT ∈ L(v) for every node v, we have CIGT = ∆IG , hence IG |= T .

4 IG |= A and IG |= T imply that IG |= O.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Tableau algorithm for ALC– Soundness (cont’d)

Corollary (Soundness)

If the tableau algorithm builds a complete and clash-free completion graph for
an ALC ontology O, then O is satisfiable.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Tableau algorithm for ALC– Completeness

Lemma (Completeness)

If an ALC ontology O is satisfiable, then the tableau algorithm builds a
complete and clash-free completion graph for O.

Proof sketch.

As before, we show that every model I of O simulates a complete and clash
free completion graph that is constructed by the algorithm.

The notion of simulation π is similar to the case of concept expressions, but it
only needs to map the non-blocked nodes, and additionally we require
π(â) = aI for each initial node â.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Finite model property

From the complete and clash-free completion graph constructed by the tableau
algorithm for a satisfiable ontology, and from the corresponding interpretation,
we can derive some notable model theoretic properties.

Theorem

A satisfiable ALC ontology has a finite model.

Proof.

The model constructed via tableau is finite.
Completeness of the tableau procedure implies that if an ontology is satisfiable,
then the algorithm will find a model, which is indeed finite.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Forest model property

Completion graphs for an ontology are not necessarily tree-shaped, since
arbitrary relations between individuals may hold.

However, a completion graph is composed of a set of trees rooted at the
(possibly interconnected) objects representing the individuals.

Def.: Forest-shaped interpretation

An interpretation I = (∆I , ·I) is forest-shaped if the graph 〈V,E〉 with

V = ∆I , and

E = {(d, d′) | (d, d′) ∈ P I for some role R and
d, d′ /∈ {aI | a an individual}}

is a set of (disconnected) trees.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Forest model property (cont’d)

The model IG obtained from a completion graph is not forest-shaped in general
(the blocked nodes create cycles), but it can be shown that the following
property holds.

Theorem (Forest model property)

Every satisfiable ALC ontology has a forest-shaped model.

Note:

Unlike the case of ALC concepts, trees may now be infinite!.

This property is practically as good (and as restrictive) as the tree-model
property of ALC concepts.

Many DLs have similar tree/forest model properties, but in some cases we
need to adapt slightly the definition of tree/forest shaped models.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (80/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Complexity of ontology satisfiability

The computational complexity of the tableau algorithm is not optimal:

The forest can be very big:

branches in the forest can have exponential depth before blocking occurs;
the whole forest can be double exponentially large.

Hence, the overall algorithm runs no longer in PSpace, and in the worst
case needs non-deterministic double exponential time (in 2NExpTime).

With some adaptations and modified blocking strategies, one can make
forests to be of size at most single exponential.

This provides a non-deterministic exponential upper bound.
In other words, the (improved) tableau algorithm shows that reasoning
over ALC ontologies is in NExpTime.

We will see that reasoning over ALC ontologies is “only” ExpTime-hard.

To obtain worst-case optimal decision procedures we need different
techniques.
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Reasoning w.r.t. arbitrary ontologies Part 6: Reasoning in the ALC family

Complexity of reasoning over DL ontologies

Summing up, reasoning over DL ontologies is much more complex than
reasoning over concept expressions.

Bad news:

without restrictions on the form of TBox assertions, reasoning over DL
ontologies is already ExpTime-hard, even for very simple DLs (see, e.g.,
[Donini 2003]).

Good news:

We can add a lot of expressivity (i.e., essentially all DL constructs seen so
far), while still staying within the ExpTime upper bound [Pratt 1979;

Schild 1991; Calvanese and De Giacomo 2003].

There are DL reasoners that perform reasonably well in practice for such
DLs (e.g, Racer, Pellet, Fact++, . . . ) [Möller and Haarslev 2003].
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Lower bounds for reasoning over ALC ontologies

Theorem

The following problems are ExpTime-hard in ALC:

concept subsumption w.r.t. TBoxes;

concept satisfiability w.r.t. TBoxes;

ontology satisfiability.

Recall that ALC is closed under concept negation and that:

T |= C1 v C2 iff C1 u ¬C2 is unsatisfiable w.r.t. T .

C is satisfiable w.r.t. T iff 〈T ∪ {An v C}, {An(a0)}〉 is satisfiable,
where An is a fresh concept name.

Hence it suffices to prove the hardness result for subsumption w.r.t. TBoxes.

We look at a proof based on encoding the two player corridor tiling problem.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Tiling systems

A tiling system T consists of a finite set of square tile types with horizontal
and vertical adjacency conditions.

The adjacency conditions are sometimes represented by coloring the four
edges of the tiles (assuming that the tiles cannot be flipped or rotated).

0 1 2 3 4 k

. . .

Adjacent tiles must have the same color on touching sides.

A corridor tiling is a tiling of a corridor of width n with tiles of T respecting
the adjacency conditions.

. . .0

. . .1

. . .2

...

1 2 3 4 n

...
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Two player corridor tiling game

A two player corridor tiling game is played by two players, ∀lice and ∃lias:

∀lice and ∃lias alternatively place a tile, row by row, from left to right,
respecting adjacency conditions.

∃lias wins if

he can place a special “winning tile” in the second position of a row, or
∀lice cannot place a tile when it is her turn to move.

In other words, ∀lice wins (i.e., ∃lias loses) if

∃lias cannot place a tile when it is his turn to move, or
the game goes on forever.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Two player corridor tiling problem

Def.: Two player corridor tiling problem

Instance:

A tiling system, expressed as T = (k,H, V ), where

0, 1, . . . , k are the tile types, with k being the winning tile.
H ⊆ [0..k]× [0..k] is the horizontal adjacency relation.
V ⊆ [0..k]× [0..k] is the vertical adjacency relation.

An initial row of tiles t1t2 · · · tn of length n.

Question: Does ∃lias have a winning strategy?
I.e., for every move ∀lice makes, is there a move ∃lias can counter with, in such
a way that he wins?

Theorem

Two player corridor tiling is ExpTime-complete.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Encoding of two player corridor tiling in ALC (1/4)

We show now how to reduce the two player corridor tiling problem to
subsumption w.r.t. an ALC TBox.

The intention is to represent each placed tile by an object.
The object carries the information about the last n moves made.

We use an atomic role next to connect objects representing successive
tiles. We connect an object at the end of a row, to the one at the
beginning of the next row.

We use the following atomic concepts:

Ci, for i ∈ [1..n], denoting that the column of the tile represented by an
object is i.
Lt

i, for each i ∈ [1..n] and each t ∈ [0..k], denoting that the last tile placed
in column i has been tile t.
A, denoting that it is ∀lice’s turn to place the current tile.
W , denoting that ∃lias wins.

We use these concepts and roles to construct an ALC TBox TT that encodes a
tiling problem.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Encoding of two player corridor tiling in ALC (2/4)

We introduce in TT the following concept inclusions to ensure that tilings are
correctly represented.

To encode that each tile is placed in exactly one column in the corridor:

> v C1 t · · · t Cn

Ci v ¬Cj for i, j ∈ [1..n], i 6= j

To encode that the tiles are placed in the correct left-to-right order:

Ci v ∀next .Ci+1 for i ∈ [1..n−1]
Cn v ∀next .C1

To encode that each column has exactly one tile last placed into it:

> v L0
i t · · · t Lk

i for i ∈ [1..n]

Lt
i v ¬Lt′

i for i ∈ [1..n], t, t′ ∈ [0..k], t 6= t′
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Encoding of two player corridor tiling in ALC (3/4)

We introduce in TT the following concept inclusions to encode the adjacency
conditions, by making use of the information carried by the objects.

To encode the vertical adjacency relation V :

Ci u Lt
i v ∀next .

⊔
t′|(t,t′)∈V L

t′

i for i ∈ [1..n], t ∈ [0..k]

To encode the horizontal adjacency relation H:

Ci u Lt
i−1 v ∀next .

⊔
t′|(t,t′)∈H Lt′

i for i ∈ [2..n], t ∈ [0..k]

To encode that in columns where no move is made nothing changes:

¬Ci u Lt
i v ∀next .Lt

i for i ∈ [1..n], t ∈ [0..k]
¬Ci u ¬Lt

i v ∀next .¬Lt
i for i ∈ [1..n], t ∈ [0..k]
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Encoding of two player corridor tiling in ALC (4/4)

We introduce in TT the following concept inclusions to encode the game.

To encode the existence of all possible moves in the game tree, provided
∃lias hasn’t already won:

¬Lk
2 u C1 u Lt

1 v
l

t′ | (t,t′)∈V

∃next .Lt′

1 , for t ∈ [0..k]

¬Lk
2 u Ci u Lt

i u Lt′

i−1 v
l

t′′ | (t,t′′)∈V ∧ (t′,t′′)∈H

∃next .Lt′′

i ,

for i ∈ [2..n], t, t′ ∈ [0..k]

To encode the alternation of moves:

A v ∀next .¬A
¬A v ∀next .A

To encode the winning of ∃lias:

W ≡ (A u Lk
2) t (A u ∀next .W ) t (¬A u ∃next .W )
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

ExpTime-hardness of reasoning over ALC ontologies

Observations:

if ∃lias cannot move when it is his turn, then W is false for the object
representing that tile.

if ∀lice can force the game to go on forever, then there will be models of
TT in which W is false.

Theorem

∃lias has a winning strategy for tiling system T with initial row t1 · · · tn
iff

TT |= A u C1 u Lt1
1 u · · · u Ltn

n vW

Since the size of TT is polynomial in T and n, this shows that concept
subsumption w.r.t. to ALC TBoxes is ExpTime-hard (and hence
ExpTime-complete).
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Hardness proofs using tilings

Tiling problems are a very useful tool for showing complexity results in
description logics, modal logics, and fragments of FOL.

In DLs, they have been used to:

Show NExpTime-hardness (e.g., for ALCIOF and extensions):

Bounded tilings

Deciding the existence of a tiling for

an n× n grid (or torus) is NP-complete.

a corridor of width n is PSpace-complete.

a 2n × 2n grid (or torus) is NExpTime-complete.

Show undecidability (e.g., for DLs with transitive roles in the number
restrictions, role value maps, etc.):

Unbounded tilings

Deciding the existence of a tiling for an unbounded grid is undecidable.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Tiling systems and Turing Machines

Tiling problems are very closely related to Turing Machines (TMs).

A row of tiles corresponds to a configuration of the TM, i.e., to the tape
content, head position, and state.

Successive rows correspond to the evolution over time of the TM
configuration.

The horizontal and vertical adjacency relations essentially encode the
transition function of the TM.

The initial row of tiles corresponds to the input word, initially written on
the tape.

The winning tile corresponds to the final state.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Alternating Turing Machines

The tiling we used in our reduction is related to Alternating Turing Machines.

Def.: Alternating Turing Machine (ATM)

An ATM has the form M = (Σ,Γ, Q∀, Q∃, q0, δ, qf , ␢), where

As for an ordinary Turing Machine:

Σ is the input alphabet, and Γ the tape alphabet;
q0 is the initial state, and qf the final state;
δ : Q× Γ→ Q× Γ× {right, left} is the transition function, where
Q = Q∃ ∪Q∀.

Q∃ is the set of existential states, for which the ATM moves
non-deterministically to some successive configuration.

Q∀ is the set of universal states, for which the ATM moves to all
successive configurations, i.e., it branches off multiple computations.

An ATM accepts an input string w ∈ Σ∗ if, when started in q0 with w on the
tape, all branched off computations lead to an accepting configuration, i.e., one
where the ATM is in qf .
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Two-player tilings and Alternating Turing Machines

A two-player corridor tiling is a simple ‘disguise’ for a PSpace ATM (i.e., and
ATM that runs in polynomial space), for which we want to decide acceptance of
an input word.

The initial row of tiles represents the word initially written on the tape.

Each row of n-tiles corresponds to the tape content, and the width n
accounts for the polynomial space used by the ATM.

The two players ∃lias and ∀lice correspond to existential and universal
states, respectively.

The alternation between the players in the game corresponds to the
alternation between existential and universal moves of the ATM.

However, there are differences between a two-player tiling and an ATM in
the way alternation is handled:

In the two-player tiling, the two players strictly alternate at each placed tile.
In the ATM, there is no strict alternation between existential and universal
states (although one could impose such strict alternation without loss of
generality); moreover, one transition corresponds to placing an entire row of
tiles, as opposed to a single tile.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

ExpTime-hardness of reasoning over AL ontologies

The lower bound for reasoning over ALC TBoxes and ontologies can be
strengthened to weaker DLs.

Theorem

Concept satisfiability and subsumption w.r.t. AL TBoxes, and satisfiability of
AL ontologies are ExpTime-hard.

Recall that:

C is satisfiable w.r.t. T iff T 6|= C v ⊥.
C is satisfiable w.r.t. T iff the ontology 〈T , {C(a0)}〉 is satisfiable.

Hence it suffices to prove the result for concept satisfiability w.r.t. a TBox.

We reduce concept satisfiability w.r.t. ALC TBoxes to
concept satisfiability w.r.t. AL TBoxes.

Note: This reduction is possible only for reasoning w.r.t. a TBox, while (plain)
concept satisfiability or subsumption cannot be reduced from ALC to AL.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Reducing ontology reasoning from ALC to AL

We reduce concept satisfiability w.r.t. ALC TBoxes to concept satisfiability
w.r.t. AL TBoxes in a series of steps:

1 Reduce to satisfiability of atomic concepts w.r.t. TBoxes with primitive
inclusion assertions only.

2 Eliminate nesting of constructs in right hand sides of inclusions by
introducing new assertions.

3 Encode away qualified existential restrictions.

4 Encode away disjunction.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

From ALC to AL: 1. Simplify assertions and concepts

We reduce concept satisfiability w.r.t. a TBox T to satisfiability of an atomic
concept w.r.t. a TBox T1 with primitive inclusion assertions only.

C is satisfiable w.r.t.
⋃

i{Ci v Di}
iff

AT u C is satisfiable w.r.t. { AT v
d

i(¬Ci tDi) u
d

P ∀P .AT }
iff

AC is satisfiable w.r.t.

 AC v AT u C
AT v

d
i(¬Ci tDi) u

d
P ∀P .AT


with AT and AC fresh atomic concepts.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

From ALC to AL: 2. Eliminate nesting of constructs

To eliminate the nesting of constructs in the right-hand side of inclusion
assertions in T1, we proceed as follows:

1 We transform the concepts into negation normal form, by pushing
negations inside.

2 We replace assertions as follows:

A v C1 u C2 ; A v C1, A v C2

A v C1 t C2 ; A v A1 tA2, A1 v C1, A2 v C2

A v ∀P .C ; A v ∀P .A1, A1 v C
A v ∃P .C ; A v ∃P .A1, A1 v C

where A1, A2 are fresh atomic concepts for each replacement.

The above transformations are satisfiability preserving:

Lemma

Let T2 be obtained from T1 by steps (1) and (2) above. Then we have that:

AC is satisfiable w.r.t. T1 iff AC is satisfiable w.r.t. T2
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

From ALC to AL: 3. Eliminate qualified exist. restr.

To eliminate qualified existential restrictions from the right-hand side of
inclusion assertions in T2, we proceed as follows:

1 For each ∃P .Ai appearing in T2, we introduce a fresh atomic role PAi
.

2 We replace assertions as follows:

A v ∃P .Ai ; A v ∃PAi
u ∀PAi

.Ai

A v ∀P .A′ ; A v ∀P .A′ u
d

PAi
∀PAi

.A′

The above transformations are satisfiability preserving:

Lemma

Let T3 be obtained from T2 by steps (1) and (2) above. Then we have that:

AC is satisfiable w.r.t. T2 iff AC is satisfiable w.r.t. T3

Note: As an intermediate result, we obtain:

Concept satisfiability w.r.t. primitive ALU TBoxes is ExpTime-hard.
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Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

From ALC to AL: 4. Encode away disjunction

To encode away disjunction in the right-hand side of inclusion assertions in T3,
we replace assertions as follows:

A1 v A2 tA3 ; ¬A2 u ¬A3 v ¬A1

The two assertions are logically equivalent.

From this, we obtain the desired result:

Concept satisfiability w.r.t. AL TBoxes is ExpTime-hard.
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Some important extensions of ALC Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC
Some important extensions of ALC
Inverse roles
Number restrictions
Encoding number restrictions
Role constructs
Internalizing TBox assertions

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (104/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Some important extensions of ALC Part 6: Reasoning in the ALC family

Numeric constraints

Functionality restrictions ALCF : allow one to impose that a relation is a
function:

global functionality: > v (≤ 1P ) (equivalent to (funct P ))
Example: > v (≤ 1 hasFather)

local functionality: A v (≤ 1P )
Example: Car v (≤ 1 hasEngine)

(although a ship might have more than one engine)

Number restrictions ALCN : (≤ nP ) and (≥ nP )
Example: Person v (≤ 2 hasParent)

Qualified Number restrictions ALCQ: (≤ nP .C) and (≥ nP .C)
Example: FootballTeam v (≥ 1 hasPlayer. Golly) u

(≤ 1 hasPlayer. Golly) u
(≥ 2 hasPlayer. Defensor) u
(≤ 4 hasPlayer. Defensor)
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Some important extensions of ALC Part 6: Reasoning in the ALC family

Role constructs

Inverse roles ALCI: P−, interpreted as (P−)I = {(y, x) | (x, y) ∈ P I}
Example: we can refer to the parent, by using the hasChild role, e.g.,

∃hasChild−.Doctor.

Transitive roles: (trans P), stating that the relation P I is transitive, i.e.,
{(x, y), (y, z)} ⊆ P I → (x, z) ∈ P I

Example: (trans hasAncestor)

Note: if a role is transitive, then also its inverse is transitive.

Inclusion between roles: R1 v R2, used to state that a relation is
contained in another relation.

Example: hasMother v hasParent
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Inverse roles Part 6: Reasoning in the ALC family
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Inverse roles Part 6: Reasoning in the ALC family

Inverse roles increase the expressive power

Exercise

Prove that the inverse role construct constitutes an effective extension of the
expressive power of ALC, i.e., show that ALC is strictly less expressive than
ALCI.

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that are
bisimilar but distinguishable in ALCI.

I:

P1

P2

J : . . .
P1 P2 P1 P2

∼B ∼B∼B ∼B

|= ∃P1.> v ∃P−2 .>

6|= ∃P1.> v ∃P−2 .>
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Inverse roles Part 6: Reasoning in the ALC family

Modeling with inverse roles

Exercise

Try to model the following facts in ALCI.
Notice that not all the statements are modellable in ALCI.

1 Lonely people do not have friends and are not friends of anybody.

2 An intermediate stop is a stop that has a predecessor stop and a successor
stop.

3 A person is a child of their father.

Solution

1 LonelyPerson v Person u ¬∃hasFriend−.> u ¬∃hasFriend.>
2 IntermediateStop ≡ Stop u ∃next.Stop u ∃next−.Stop

3 This cannot be modeled in ALCI.
Note that Person v ∀hasFather.(∀child.Person) is not enough.
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Inverse roles Part 6: Reasoning in the ALC family

Tree model property of ALCI

Theorem (Tree model property)

If C is satisfiable w.r.t. a TBox T , then it is satisfiable w.r.t. T by a
tree-shaped model whose root is an instance of C.

Proof (outline).

1 Extend the notion of bisimulation to ALCI.

2 Show that if (I, o1) ∼ALCI (J , o2), then o1 ∈ CI iff o2 ∈ CJ , for every
ALCI concept C.

3 For a non tree-shaped model I and some element o1 ∈ CI , generate a
tree-shaped model J rooted at o2 and show that
(I, o1) ∼ALCI (J , o2).
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Inverse roles Part 6: Reasoning in the ALC family

Bisimulation for ALCI (tree model property 1)

Def.: ALCI-Bisimulation

An ALCI-bisimulation between two ALCI interpretations I and J is a
bisimulation ∼B that satisfies the following additional conditions when
o1 ∼B o2:

for each o′1 with (o′1, o1) ∈ P I , there is an o′2 ∈ ∆J with (o′2, o2) ∈ PJ
such that o′1 ∼B o′2.

The same property in the opposite direction.

We call these properties the inverse relation equivalence.

(I, o1) ∼ALCI (J , o2) means that there is an ALCI-bisimulation ∼B between I
and J such that o1 ∼B o2.
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Inverse roles Part 6: Reasoning in the ALC family

ALCI-bisimulation – Example

Example of bisimulation that is not an ALCI-bisimulation, and one that is so.

I:
1 2 3P P

J :
2′ 3′

P

∼B ∼B

I:
1 2 3P P

J ′′:
1′′ 2′′ 3′′

P P

∼B′ ∼B′ ∼B′

We have that (I, 2) ∼ (J , 2′) but not (I, 2) ∼ALCI (J , 2′).

However, we have that (I, 2) ∼ALCI (J ′′, 2′′).
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Inverse roles Part 6: Reasoning in the ALC family

Invariance under ALCI-bisimulation (tree model prop. 2)

Theorem

If (I, o1) ∼ALCI (J , o2), then o1 ∈ CI iff o2 ∈ CJ , for every ALCI concept C.

Proof.

By induction on the structure of C.

The proof is as for ALC, but in addition we have the cases using P−:

C = ∃P−.C1: we show that o1 ∈ (∃P−.C1)I implies o2 ∈ (∃P−.C1)J ;
the other direction is analogous.
Let o1 ∈ (∃P−.C1)I

=⇒ there is o′1 s.t. (o′1, o1) ∈ P I and o′1 ∈ CI1 [Semantics of ∃P .C]

=⇒ there is o′2 s.t. (o′2, o2) ∈ PJ and o′1 ∼B o′2 [Def. of ALCI-bisim.]

=⇒ o′2 ∈ CJ1 [Inductive hypothesis]

=⇒ o2 ∈ (∃P−.C1)J [Semantics of ∃P .C]

C = ∀P−.C1: the proof is similar. [Exercise]
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Inverse roles Part 6: Reasoning in the ALC family

Transformation into tree-shaped ALCI models (t.m.p. 3)

Theorem

If I is a non tree-shaped model, and o is some element of ∆I , then there is a
model J that is tree-shaped and such that (I, o) ∼ALCI (J , o).

Proof.

We define J as follows:

∆J is the set of paths π = (o1, P
(−)
1 , o2, . . . , P

(−)
n−1, on) such that n ≥ 1,

o1 = o, and (oi, oi+1) ∈ P Ii or (oi+1, oi) ∈ P Ii , for i ∈ {1, . . . , n− 1}.
AJ = {πon | on ∈ AI}
PJ = {(πon , πonPon+1) | (on, on+1) ∈ P I} ∪

{(πonP−on+1 , πon) | (on+1, on) ∈ P I}

It is easy to show that J is a tree-shaped model rooted at o.

The ALCI bisimulation ∼B between I and J is defined as oi ∼B πoi.
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Number restrictions Part 6: Reasoning in the ALC family

Number restrictions increase the expressive power

Exercise

Prove that the number restriction construct constitutes an effective extension of
the expressive power of ALC, i.e., show that ALC is strictly less expressive
than ALCN .

Solution

I:
P

J :

P

P

∼B
∼B
∼B

|= > v (≤ 1P )

6|= > v (≤ 1P )
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Number restrictions Part 6: Reasoning in the ALC family

Qualified number restriction

Exercise

Prove that qualified number restrictions are an effective extension of the
expressivity of ALCN , i.e., show that ALCN is strictly less expressive than
ALCQ.

Solution (outline)

1 Define a notion of bisimulation that is appropriate for ALCN .

2 Prove that ALCN is bisimulation invariant for the bisimulation relation
defined in item 1.

3 Prove that ALCN is strictly less expressive than ALCQ.
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Number restrictions Part 6: Reasoning in the ALC family

Bisimulation for ALCN

Def.: ALCN -bisimulation

An ALCN -bisimulation between two ALCN interpretations I and J is a
bisimulation ∼B that satisfies the following additional conditions when
o1 ∼B o2:

if o11, . . . , o
n
1 are all the distinct elements in ∆I such that (o1, o

k
1) ∈ P I ,

for k ∈ {1, . . . , n}, then there are exactly n elements o12, . . . , o
n
2 in ∆J

such that (o2, o
k
2) ∈ PJ , for k ∈ {1, . . . , n}.

The same property in the opposite direction.

We call these properties the relation cardinality equivalence.

(I, o1) ∼ALCN (J , o2) means that there is an ALCN -bisimulation ∼B between
I and J such that o1 ∼B o2.
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Number restrictions Part 6: Reasoning in the ALC family

Invariance under ALCN -bisimulation

Theorem

If (I, o1) ∼ALCN (J , o2), then o1 ∈ CI iff o2 ∈ CJ , for every ALCN concept
C.

Proof.

By induction on the structure of C.

All the cases are as for ALC, and in addition we have the following base case:

If C is of the form (≤ nP ):

If o1 ∈ (≤ nP )I , then there are m ≤ n elements o11, . . . , o
m
1 with

(o1, o
i
1) ∈ P I .

The additional condition on ALCN -bisimulation implies that there are
exactly m elements o12, . . . , o

m
2 in ∆J such that (o2, o

i
2) ∈ PJ .

This implies that o2 ∈ (≤ nP )J .
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Number restrictions Part 6: Reasoning in the ALC family

ALCN is strictly less expressive than ALCQ

We show that in ALCQ we can distinguish two models that are
ALCN -bisimilar, and hence not distinguishable in ALCN .

I: 1

2 A

3 A

4 ¬A

P

P

P

J : 1

2 A

3 ¬A

4 ¬A

P

P

P

∼B

∼B

∼B

|= > v (≤ 1P .¬A)

6|= > v (≤ 1P .¬A)
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Encoding number restrictions Part 6: Reasoning in the ALC family

Encoding ALCN into ALCFI
We encode away number restrictions by using functionality and inverse roles.
To do so, given an ALCN concept C and a TBox T , we define:

a set Tr of ALCFI-axioms, and
a transformation π from ALCN -concepts to ALCFI-concepts

such that:

C is satisfiable w.r.t. T in ALCN iff
π(C) is satisfiable w.r.t. π(T ) ∪ Tr in ALCFI

Intuition

Replace role P with P1, . . . , Pn, which count the number of P -successors.

1

2

3

4

P

P

P

1 |= (≤ 3P )
1 |= ¬(≥ 4P )

1

2

3

4

P1

P2

P3

1 |= ∃P1.>
1 |= ∃P2.>
1 |= ∃P3.>
1 |= ¬∃P4.>
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Encoding number restrictions Part 6: Reasoning in the ALC family

Encoding ALCN into ALCFI – Formal definition

We assume C and all concepts in T to be in NNF, where
nnf(¬(≥ mP )) = (≤ m−1P ) and nnf(¬(≤ mP )) = (≥ m+1P ).

Let nmax be the maximum number occurring in a number restriction of C or T .

We proceed as follows:
1 For every role P , introduce fresh roles P1, . . . , Pnmax+1.
2 For every role Pi, the TBox Tr contains the following axioms:

1 ∃Pi+1.> v ∃Pi.>, for i ∈ {1, . . . , nmax}
2 > v (≤ 1Pi), for i ∈ {1, . . . , nmax} (NB: Pnmax+1 is not functional)
3 > v ∀Pi.∀P−j .⊥, for i, j ∈ {1, . . . , nmax}, i 6= j.

3 π(C) is defined by induction on the structure of C:

π(A) = A
π(¬A) = ¬A

π((≥ mP )) = ∃Pm.>
π(∃P .C) = ∃P1.π(C) t · · · t ∃Pnmax+1.π(C)
π(∀P .C) = ∀P1.π(C) u · · · u ∀Pnmax+1.π(C)

π(C1 u C2) = π(C1) u π(C2)
π(C1 t C2) = π(C1) t π(C2)
π((≤ mP )) = ∀Pm+1.¬>

4 π(T ) =
⋃

CvD∈T {π(C) v π(D)}
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Encoding number restrictions Part 6: Reasoning in the ALC family

Encoding ALCN into ALCFI – Soundness

We have to prove that if C is satisfiable w.r.t. T , then π(C) is satisfiable w.r.t.
Tr ∪ π(T ).

1 If C is satisfiable in ALCN , then it has a tree-shaped model I.

2 Extend I into J with the interpretation of P1, . . . , Pnmax+1 as follows.
For each o ∈ ∆I , let P I(o) = {o1, . . . , om, . . . } be the set of P -successors
of o in I. Then:

if |P I(o)| < nmax , then add (o, oi) to PJi , for i ∈ {1, . . . , |P I(o)|}.
if |P I(o)| ≥ nmax , then add (o, oi) to PJi , for i ∈ {1, . . . , nmax}, and also
add (o, oj) to PJnmax+1 for j ≥ nmax + 1

3 Prove that J is a model of Tr ∪ π(T ). [Exercise]

4 Prove that J is a model of π(C). [Exercise]
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Encoding number restrictions Part 6: Reasoning in the ALC family

Encoding ALCN into ALCFI – Completeness

Finally we have to prove that if π(C) is satisfiable w.r.t. Tr ∪ π(T ), then C is
satisfiable wrt T .

1 Let J be a tree-shaped model of Tr ∪ π(T ) that satisfies π(C).

2 Let I be obtained by extending J with the interpretation of each role P as
follows:

P I = P I1 ∪ · · · ∪ P In+1

3 Prove by structural induction that I is a model of T that satisfies C.
[Exercise]
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Role constructs Part 6: Reasoning in the ALC family

Role hierarchy: H

Def.: Role Hierarchy

A role hierarchy H is a finite set of role inclusion assertions, i.e., expressions
of the form

R1 v R2

for roles R1 and R2.
We say that R1 is a subrole of R2.

Exercise

Explain why the role inclusion R1 v R2 cannot be axiomatized by the concept
inclusions:

∃R1.> v ∃R2.>
∃R−1 .> v ∃R−2 .>
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Role constructs Part 6: Reasoning in the ALC family

Transitive roles: S

Def.: Transitive roles

(trans P ) declares a role to be transitive. I |= (trans P ) if P I is a transitive
relation, i.e., for all x, y, z ∈ ∆I , if {(x, y), (y, z)} ⊆ P I , then (x, z) ∈ P I .

Note: if a role P is transitive, also P− is transitive. Hence, we can restrict
transitivity assertions to atomic roles only without losing expressive power.

Exercise

Explain why transitive roles cannot be axiomatized by the inclusion assertion

∃P .(∃P .A) v ∃P .A

Solution

1

2 3 A

4 A

P
P

P
This interpretation satisfies the assertion
∃P .(∃P .A) v ∃P .A, but P is not transitive.
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Role constructs Part 6: Reasoning in the ALC family

Regular expressions over roles: ·reg
When the name of a DL contains ·reg , (usually) the DL allows for constructing
roles that are regular expressions over role names (and their inverses).

This means that the logic is equipped with the following role constructs:

Role Construct Syntax Semantics

atomic role P P I ⊆ ∆I ×∆I

inverse role R− { (o, o′) | (o′, o) ∈ RI }
role union R1 ∪R2 RI1 ∪RI2
role concatenation R1 ◦R2 { (o, o′) | ∃o′′. (o, o′′) ∈ RI1 ∧ (o′′, o′) ∈ RI2 }
role closure R∗ (RI)∗

test C? { (o, o) | o ∈ CI }

Notes:

R∗ denotes the smallest relation including RI and closed under reflexivity
and transitivity. R∗ is not expressible in FOL.

R− is present only if the DL includes inverse roles.

C? allows for testing whether a node along a path is an instance of C.
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Internalizing TBox assertions Part 6: Reasoning in the ALC family

Internalizing TBox assertions

Until now we have distinguished between the following two problems:

Satisfiability of a concept C, and

Satisfiability of a concept C w.r.t. a TBox T .

Clearly the first problem is a special case of the second.

Certain (expressive) concept languages allow for reducing reasoning w.r.t. TBox
assertions to reasoning over a concept expression.

Def.: Internalization of TBox assertions

For a description logic L, let T0 ] Tint be an L-TBox.
We say that Tint can be internalized, if the following holds:
One can construct an L-concept Cint such that, for every L-concept C, we
have that C is satisfiable w.r.t. T0 ] Tint iff C u Cint is satisfiable w.r.t. T0.

Note: This is similar to propositional or first order logic, where the problem of
checking Γ |= φ (validity under a finite set of axioms Γ) reduces to the problem
of checking the validity of a single formula, i.e.,

∧
Γ→ φ.
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Internalizing TBox assertions Part 6: Reasoning in the ALC family

Internalizing concept inclusions for logics including SHI
A role hierarchy and transitive roles allow for internalizing concept inclusions.

Theorem (Internalization of concept inclusions for SHI)

Let T = {C1 v D1, . . . , Cn v Dn} be a finite set of ALCI concept inclusion
assertions, and let

CT =
dn

i=1(¬Ci tDi)

Let P be the set of role names appearing in T , let U be a fresh role, and let

RU = {(trans U)} ∪
⋃

P∈P{P v U, P− v U}

Then, for every ALCI concept C using only roles in P, we have that:

C is satisfiable w.r.t. T iff
(C is satisfiable w.r.t. T ∪ RU iff)

C u CT u ∀U .CT is satisfiable w.r.t. RU .

Exercise

Sketch the proof of the above theorem.
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Internalizing TBox assertions Part 6: Reasoning in the ALC family

TBox Internalization for ALCIreg

Also regular expressions over roles allow for internalizing concept inclusions.

Theorem (TBox internalization for ALCIreg)

Let T = {C1 v D1, . . . , Cn v Dn} be an ALCI TBox, and let

CT =
dn

i=1(¬Ci tDi)

Let P = {P1, . . . , Pn} be the set of role names appearing in T , and let

U = (P1 ∪ · · · ∪ Pn ∪ P−1 ∪ · · · ∪ P−n )∗

Then, for every ALCI concept C using only roles in P, we have that:

C is satisfiable w.r.t. T iff C u ∀U .CT is satisfiable.

We will see later a further internalization mechanism that exploits nominals.
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Reasoning in ALCI Part 6: Reasoning in the ALC family

Expansion rules for ALCI
We need to extend the expansion rules dealing with quantification over roles to
the case where the role might be an inverse.

Expansion rules for satisfiability of ALCI ontologies

u-rule if C1 u C2 ∈ L(v) and {C1, C2} * L(v)
then L(v) := L(v) ∪ {C1, C2}

t-rule if C1 t C2 ∈ L(v) and {C1, C2} ∩ L(v) = ∅
then L(v) := L(v) ∪ {D} for some D ∈ {C1, C2}

∃-rule if ∃P .C ∈ L(v), v is not blocked, and
there is no w such that P ∈ L(v, w) and C ∈ L(w)

then create a new node w and an edge (v, w), and
set L(v, w) := {P} and L(w) := {C}

∃−-rule if ∃P−.C ∈ L(v), v is not blocked, and
there is no w such that P ∈ L(w, v) and C ∈ L(w)

then create a new node w and an edge (w, v), and
set L(w, v) := {P} and L(w) := {C}

∀-rule if ∀P .C ∈ L(v), and there is some w such that P ∈ L(v, w) and C /∈ L(w)
then L(w) := L(w) ∪ {C}

∀−-rule if ∀P−.C ∈ L(v), and there is some w such that P ∈ L(w, v) and C /∈ L(w)
then L(w) := L(w) ∪ {C}

T -rule if CT /∈ L(v)
then L(v) := L(v) ∪ {CT }

In addition, we need to adopt a suitable blocking strategy, given that we are
dealing with an arbitrary set of inclusion assertions.
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Reasoning in ALCI Part 6: Reasoning in the ALC family

Tableau for ALCI – Example

Example

Satisfiability of C0 = A u ∃P .A u ∀P−.¬A w.r.t. the TBox T = {> v B}.

Let us try to adopt the same blocking condition as for ALC TBoxes

x L(x) = {C0, A, ∃P .A, ∀P−.¬A, B}

y L(y) = {A, B}, and y is blocked by x

P

Resulting interpretation:

x

A, B

∃P .A, ∀P−.¬A
P

Problem: in the resulting interpretation, x is not an instance of the concept
∀P−.¬A, hence we have not obtained a model of C.

The reason for the problem is that we have adopted a too weak blocking
strategy.
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Reasoning in ALCI Part 6: Reasoning in the ALC family

Blocking strategy for ALCI

For ALCI, subset-blocking, where the blocking condition is L(x) ⊆ L(y), is no
longer sufficient. We need to adopt a stronger blocking strategy.

Def.: Equality blocking

A node v is called directly blocked if it has an ancestor w with L(v) = L(w).

For the previous example

x L(x) = {C0, A, ∃P .A, ∀P−.¬A, B}

y L(y) = {A, B}, y is not blocked by x

P
x

A, B

∃P .A,
∀P−.¬A

y

A, B
P
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Reasoning in ALCI Part 6: Reasoning in the ALC family

Decidability of ALCI

Theorem

Let O = 〈T ,A〉 be an ALCI ontology, where T is a general TBox. Then:

1 The tableau algorithm terminates when applied to O.

2 The rules can be applied such that they generate a clash-free and complete
completion tree iff O is satisfiable.

Corollary

Satisfiability of ALCI ontologies is decidable.

ALCI has the finite model property.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (139/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCI Part 6: Reasoning in the ALC family

Correctness of tableau algorithm for ALCI

Termination: As for ALC.

Soundness: If the algorithm generates a complete and clash-free
completion graph G = 〈V,E,L〉 for O, then O is satisfiable.

Indeed, the following interpretation IG = (∆IG , ·IG) is a model of O:

∆IG = {v | v ∈ V and v is not blocked}
Each Individual c is interpreted as the corresponding initial node, i.e.,
cI = ĉ.
AIG = {v | v ∈ ∆IG and A ∈ L(v)}, for each concept name A.
P IG = {(v, w) | {v, w} ⊆ ∆IG and P ∈ L(x, y)} ∪

{(v, w) | v ∈ ∆IG , P ∈ L(v, w′), and w′ is blocked by w} ∪
{(v, w) | w ∈ ∆IG , P ∈ L(v′, w), and v′ is blocked by v},

for each role name P .

Completeness: Given a model I of O, we can use it to steer the
application of the non-deterministic rule for t.
At the end we obtain a complete and clash-free completion graph that
generates a model J that is bisimilar to the initial model I.
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Reasoning in ALCQI Part 6: Reasoning in the ALC family

ALCQI and finite models

ALCQI with general TBoxes does not have the finite model property.

Example (ALCQI ontology satisfiable only in infinite models)

Consider satisfiability of the ontology O = 〈T ,A〉, where A = {¬A(x0)} and
T = {> v ∃P .A u (≤ 1P−)}.

O is satisfied only in an infinite model.

0

¬A
1

A
P

P this would violate the condition (≤ 1P−)

2

A
P . . .P
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Reasoning in ALCQI Part 6: Reasoning in the ALC family

Completion rules for number restrictions – Intuition

Consider a completion graph G = 〈V,E,L〉, and a (direct or inverse) role R.
An R-neighbour of a node v ∈ V is a node w ∈ V such that:

if R = P , then (v, w) ∈ E and P ∈ L(v, w), and
if R = P−, then (w, v) ∈ E and P ∈ L(w, v).

To deal with:

(≥ nR.C): If a node v does not have n R-neighbours satisfying C, new
nodes satisfying C are created and made R-neighbours of v.

(≤ nR.C): If a node has more than n R-neighbours satisfying C, then two
of them are non-deterministically chosen and merged by
merging their labels and the subtrees in the completion tree
rooted at these nodes.

The correct form of the completion rules is complicated by the following facts:

They need to take into account blocking.
For a node it might not be known whether it actually satisfies C or not.
One needs to avoid jumping back and forth between merging and creating
new nodes in the presence of potentially conflicting number restrictions.
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Reasoning in ALCQI Part 6: Reasoning in the ALC family

Expansion rules for qualified number restrictions

Let us consider the following two rules:

≥-rule if (≥ nR.C) ∈ L(v), v is not blocked, and
there are less than n R-neighbours w such that C ∈ L(w)

then create n new nodes w1, . . . , wn, make them R-neighbours of v, and
set L(wi) := {C}, for 1 ≤ i ≤ n

≤-rule if (≤ nR.C) ∈ L(v), v is not indirectly blocked,
there are n+ 1 R-neighbours w0, . . . , wn of v
with C ∈ L(wi), for 0 ≤ i ≤ n, and
there are i, j such that wj is not an ancestor of wi

then set L(wi) := L(wi) ∪ L(wj),
for each edge (wj , z), add an edge (wi, z) with L(wi, z) := L(wj , z),
and remove wj from the tree

However, the rules in this form are problematic, since they might cause nodes
to be repeatedly created and merged (“yoyo”-effect).
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Reasoning in ALCQI Part 6: Reasoning in the ALC family

Dealing with “yoyo”-effect

To prevent the “yoyo”-effect, the algorithm maintains also a set of explicit
inequalities between nodes:

≥-rule if (≥ nR.C) ∈ L(v), v is not blocked, and
there are less than n R-neighbours w such that C ∈ L(w)

then create n new nodes w1, . . . , wn, make them R-neighbours of v,
set L(wi) := {C}, for 1 ≤ i ≤ n, and
set wi 6= wj , for 1 ≤ i < j ≤ n

≤-rule if (≤ nR.C) ∈ L(v), v is not indirectly blocked,
there are n+ 1 R-neighbours w0, . . . , wn of v
with C ∈ L(wi), for 0 ≤ i ≤ n, and
there are i, j such that wj is not an ancestor of wi and not wi 6= wj

then set L(wi) := L(wi) ∪ L(wj),
for each edge (wj , z), add an edge (wi, z) with L(wi, z) := L(wj , z),
for each node z with wj 6= z, add wi 6= z, and
remove wj from the tree
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Reasoning in ALCQI Part 6: Reasoning in the ALC family

Clash for number restrictions

Number restrictions may give rise to an additional form of immediate
contradiction. Hence, we add to the clash conditions also the following one:

Def.: Clash for number restrictions

A node v contains a clash if

(≤ nR.C) ∈ L(v), and

v has more than n R-neighbours w0, . . . , wn with C ∈ L(wi) for
0 ≤ i ≤ n, and wi 6= wj for 0 ≤ i < j ≤ n.

However, this does not suffice!

E.g., (≤ 1R.A) u (≤ 1R.¬A) u (≥ 3R.B) is unsatisfiable, but the algorithm
would answer “satisfiable”.

Reason: if (≤ nR.C) ∈ L(x) and x has an R-neighbour y, we need to know
whether y is an instance of C or of ¬C.
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Reasoning in ALCQI Part 6: Reasoning in the ALC family

Choice rule

To solve the problem, we proceed as follows:

1 We extend the set of node labels to

Cl(C0, T ) = sub(C0, T ) ∪ {¬̇C | C ∈ sub(C0, T )},

where:

¬̇C denotes the NNF of ¬C, and
sub(C0, T ) denotes the set of subconcepts of C0 and of all concepts in T .

2 We add an additional non-deterministic expansion rule: the choice rule:

?-rule: if (≤ nR.C) ∈ L(v), v is not indirectly blocked, and
there is an R-neighbour w of v with {C, ¬̇C} ∩ L(w) = ∅

then L(w) := L(w) ∪ {E} for some E ∈ {C, ¬̇C}

However, this still does not suffice!

The reason is that equality blocking is too weak.
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Reasoning in ALCQI Part 6: Reasoning in the ALC family

Problem with blocking strategy – Example

Consider the tableau for satisfiability of C0 w.r.t. a TBox T , where
C0 = ¬A u ∃P .D
D = A u (≤ 1P−) u ∃P−.¬A
T = {> v ∃P .D}

x L(x) = {C0, ¬A, ∃P .D}

y L(y) = {D, A, (≤ 1P−), ∃P−.¬A, ∃P .D}

P

z L(z) = {D, A, (≤ 1P−), ∃P−.¬A, ∃P .D}

P

P

P

z

L(z) = L(y), so y would block z. But we cannot construct a model from this.
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Reasoning in ALCQI Part 6: Reasoning in the ALC family

Blocking strategy and tableau algorithm for ALCQI

Let G = 〈V,E,L〉 be the expansion graph constructed by the tableau algorithm.

Def.: Double blocking

A node w is directly blocked if there are ancestors v, v′, and w′ of w such that:

v is predecessor of w, and v′ is predecessor of y′.

L(v, w) = L(v′, w′),

L(v) = L(v′), and L(w) = L(w′).

Lemma

Let O = 〈T ,A〉 be an ALCQI ontology (where T is a general TBox). Then:

1 The tableau algorithm terminates when applied to O.

2 The rules can be applied such that they generate a clash-free and complete
completion forest iff O is satisfiable.
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Reasoning in ALCQI Part 6: Reasoning in the ALC family

Tableau algorithm for ALCQI – Correctness

Termination: The tree is no longer built monotonically, but 6= prevents
“yoyo”-effect.

Soundness: a complete, clash-free tree can be “unravelled” into an (infinite
tree) model.

Elements of the model are paths starting from the root.
Instead of going to a blocked node, go to its blocking node.
p ∈ AI if A ∈ L(Tail(p))
Roughly speaking, set (p, p|w) ∈ P I if w is a P -successor of Tail(p) (and
similar for inverse roles), taking care of blocked nodes.

Danger: assume two successors w, w′ of v are blocked by the same node
x:

Standard unravelling yields one path [. . . vx] for both nodes.
Hence, [. . . v] might not have enough P -successors for some
(≥ nR.C) ∈ L(v).
Solution: annotate points in the path with blocked nodes:
[. . . v

v
x
w

] 6= [. . . v
v

x
w′ ]

Completeness: Identical to the proof for ALCI, but for stricter invariance
condition on mapping π from model to tableau.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (150/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Tableau algorithm for SHIQ
SHIQ extends ALCI with role hierarchies and transitive roles:

Roles in number restrictions are simple, i.e., don’t have transitive subroles.

If (trans S) and R v S, then SI is a transitive relation containing RI .

The additional constructs need to be taken into account in the tableau
algorithm:

The relational structure of the completion tree is only a “skeleton” (Hasse
Diagram) of the relational structure of the model to be built.
Specifically, transitive edges are left out.

Also edges in the tree-shaped part are labeled with sets of role names.
Example: Consider {S1 v P, S2 v P} ⊆ T . A node satisfying
(≤ 1P ) u (≥ 1S1.A) u (≥ 1S2.B) must have an outgoing edge labeled
both with S1 and with S2.

To deal with transitivity, it suffices to propagate ∀ restrictions.
Specifically, if ∀S.C ∈ L(x), R ∈ L(x, y), R v S, and (trans R), then
∀R.C ∈ L(y).
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Nominals Part 6: Reasoning in the ALC family

Nominals (a.k.a. objects) O

In many cases it is convenient to define a set (concept) by explicitly
enumerating its members.

Example

WeekDay ≡ { friday,monday, saturday, sunday,
thursday, tuesday,wednesday }

Def.: Nominals

A nominal is a concept representing a singleton set.

If o is an individual, the expression {o} is a concept, called nominal.

The expression {o1, . . . , on} for n ≥ 0 denotes:

⊥, if n = 0, and
{o1} t · · · t {on}, if n > 0.
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Nominals Part 6: Reasoning in the ALC family

Semantics of nominals

The interpretation of a nominal, i.e., {o}I , is the singleton set {oI}.
As a consequence:

{o1, . . . , on}I = {oI1 , . . . , oIn}

Exercise (Modeling with Nominals:)

Express, in term of subsumptions between concepts, the following statements,
using nominals, and all the DL constructs you studied so far:

1 There are exactly 195 Countries.

2 Alice loves Bob or Calvin.

3 Either John or Mary is a spy.

4 Everything is created by God.

5 Every person drives on the left or every person drives on the right.

6 (∃x.A(x))→ (∀x.B(x)).
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Nominals Part 6: Reasoning in the ALC family

Exercise on nominals

1 There are exactly 195 Countries.

Country ≡ {afghanistan, albania, . . . , zimbabwe}
{afghanistan} v ¬{albania}, . . . , {afghanistan} v ¬{zimbabwe}
{albania} v ¬{algeria}, . . . , {albania} v ¬{zimbabwe}
. . .

2 Alice loves Bob or Calvin.

{alice} v ∃loves.{bob, calvin}

3 Either John or Mary is a spy (but not both of them).

{john} v ¬{mary}
{johnOrMary} v {john,mary}
{johnOrMary} v Spy

{johnOrMary} v ¬{johnOrMary2}
{johnOrMary2} v {john,mary}
{johnOrMary2} v ¬Spy
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Nominals Part 6: Reasoning in the ALC family

Exercise on nominals (cont’d)

4 Everything is created by God.

> v ∃creates−.{god}

In this case god is called spy point, as every object of the domain can be
observed (and predicated) by “god” through the relation “creates”. Spy
points allows for universal/existential quantification over the full domain.

5 Every person drives on the left or every person drives on the right.

LeftDriver v ¬RightDriver
> v ∃creates−.{god}

{god} v ∀creates.(¬Person t LeftDriver) t
∀creates.(¬Person t RightDriver)

6 (∃x.A(x))→ (∀x.B(x))

> v ∃creates−.{god}
{god} v ¬∃creates.A t ∀creates.B
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Nominals Part 6: Reasoning in the ALC family

Encoding ABoxes into TBoxes

Using nominals, one can immediately encode an ABox into a TBox:

C(a) becomes {a} v C.

R(a, b) becomes {a} v ∃R.{b}.

Note:

Reasoning with nominals is in general much more complicated than
reasoning with an ABox.

State-of-the-art DL reasoners that are able to deal with nominals, process
anyway ABox assertions in a very different way than TBox assertions
involving nominals.

However, this simple encoding of an ABox into a TBox is useful for
theoretical purposes, and applies essentially to all DLs.
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Boolean TBoxes Part 6: Reasoning in the ALC family

Boolean TBoxes

Def.: Boolean TBox

A Boolean TBox is a propositional formula whose atomic components are
concept inclusions. More formally:

C v D is a boolean TBox, for every pair of concepts C and D.

If α and β are boolean TBoxes, then so are ¬α, α ∧ β, α ∨ β and α→ β.

Example

¬(Driver v Pilot) ∧ ((Driver v LeftDriver) ∨ (Driver v RightDriver))

This Boolean TBox states that not all drivers are pilots and that either all
drivers drive on the left or all drivers drive on the right side of the road.
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Boolean TBoxes Part 6: Reasoning in the ALC family

Internalizing boolean TBoxes using nominals

Theorem

In ALCOI, a boolean TBox ϕ can be transformed into an equivalent standard
TBox Tϕ.

Proof.

W.l.o.g., we can assume that ϕ is in CNF (w.r.t. the boolean operators),
i.e., ϕ is a conjunction of clauses, where each clause c in ϕ is of the form:

c =

n∨
i=1

(Ci v C′i) ∨
m∨

j=1

¬(Dj v D′j)

Let Pcr be a new role and spy a new object, not appearing in ϕ.
Tϕ is the TBox that contains the inclusion > v ∃P−cr.{spy} (i.e., spy is a spy point)
and the following inclusion, for every clause c in ϕ:

{spy} v
n⊔

i=1

(∀Pcr.(¬Ci t C′i)) t
m⊔

j=1

(∃Pcr.(Dj u ¬D′j))
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Boolean TBoxes Part 6: Reasoning in the ALC family

SHIQ is strictly less expressive than SHOIQ

Exercise

Show that boolean TBoxes cannot be represented in SHIQ.
[Hint: use the fact that SHIQ is invariant under disjoint union of models.]

Theorem

SHIQ is strictly less expressive than SHOIQ.

Proof.

Boolean SHIQ TBoxes can be encoded in standard SHOIQ TBoxes.
But these cannot be represented in SHIQ.
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Reasoning with nominals Part 6: Reasoning in the ALC family

Nominals and tree model property

The tree model property is a key property that makes modal logics, and hence
description logics, robustly decidable [Vardi 1997].

The tree model property fails for DLs with nominals.

The concept {a} u ∃R.{a} is satisfied only by a model containing a cycle on a.

The interaction between nominals, number restrictions, and inverse roles:

leads to the almost complete loss of the tree model property;

causes the complexity of the ontology satisfiability problem to jump from
ExpTime to NExpTime [Tobies 2000];

makes it difficult to extend the SHIQ tableaux algorithm to SHOIQ.

Example

Consider the TBox T that contains:

> v ∃P−.{o} {o} v (≤ 20P .A)
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Reasoning with nominals Part 6: Reasoning in the ALC family

Completion Graph

Def.: Completion graph

Let R be an RBox (i.e., a role hierarchy) and C0 a SHOIQ-concept in NNF.
A completion graph for C0 with respect to R is a directed graph

G = 〈V,E,L, 6=〉

where:

L(v) ⊆ Cl(C0) ∪NI ∪
{(≤ mR.C) | (≤ nR.C) ∈ Cl(C0) and m < n}

L(v, w) ⊆ {R | R is a role of C0}
6= ⊆ V × V

Cl(C0) is the syntactic closure of C0, and is constituted by C0 all its
subconcepts.

NI is the set of all individuals.
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Reasoning with nominals Part 6: Reasoning in the ALC family

Clash

Def.: Clash

A completion graph G contains a clash if:

1 {A,¬A} ⊆ L(x) for some A and x; (ALC)

2 (≤ nS.C) ∈ L(x) and there are n+ 1 S-neighbours y0, . . . , yn of x
with C ∈ L(yi), and yi 6= yj for 0 ≤ i < j ≤ n (ALCQ)

3 o ∈ L(x) ∩ L(y), and x 6= y for some nodes x, y and nominal o.
(SHOIQ)
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Reasoning with nominals Part 6: Reasoning in the ALC family

Blockable nodes

Def.: Nominal node

A nominal node is a node x, such that L(x) contains a nominal o.

Def.: Blockable node

A blockable node is any node that is not a nominal node.

Def.: Safe neighbours

An R-neighbour y of a node x is safe if

x is blockable, or

x is a nominal node and y is not blocked.
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Reasoning with nominals Part 6: Reasoning in the ALC family

Expansion rules for SHOIQ (1/2)

u-rule if 1. C1 u C2 ∈ L(v), v is not indirectly blocked, and
2. {C1, C2} * L(v)

then L(v) := L(v) ∪ {C1, C2}
t-rule if 1. C1 t C2 ∈ L(v), v is not indirectly blocked, and

2. {C1, C2} ∩ L(v) = ∅
then L(v) := L(v) ∪ {D} for some D ∈ {C1, C2}

∃-rule if 1. ∃S.C ∈ L(v), v is not blocked, and
2. v has no safe S-neighbour w such that C ∈ L(w),

then create a new node w with L(v, w) = {S} and L(w) = {C}

∀-rule if 1. ∀S.C ∈ L(v), v is not indirectly blocked, and
2. there is an S-neighbour w of v with C /∈ L(w)

then L(w) := L(w) ∪ {C}

∀+-rule if 1. ∀S.C ∈ L(v), v is not indirectly blocked, and
2. there is some R with (trans R) and R v∗ S, and
3. there is an R-neighbour w of v with ∀R.C /∈ L(w)

then L(w) := L(w) ∪ {∀R.C}
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Reasoning with nominals Part 6: Reasoning in the ALC family

Expansion rules for SHOIQ (2/2)

?-rule if 1. (≤ nS.C) ∈ L(v), v is not indirectly blocked, and
2. there is an S-neighbour w of x with {C, ¬̇C} ∩ L(w) = ∅

then L(w) := L(w) ∪ {D} for some D ∈ {C, ¬̇C}

≥-rule if 1. (≥ nS.C) ∈ L(v), x is not blocked, and
2. there are not n safe S-neighbors w1, . . . , wn of x with

C ∈ L(wi) and wi 6= wj for 1 ≤ i < j ≤ n
then create n new nodes w1, . . . , yn with L(v, wi) = {S},

L(wi) = {C}, and wi 6= wj for 1 ≤ i < j ≤ n

≤-rule if 1. (≤ nS.C) ∈ L(v), v is not indirectly blocked, and
2. #SG(v, C) > n and there are two S-neighbours x, y of v

with C ∈ L(x) ∩ L(y), and not x 6= y
then 1. if x is a nominal node, then Merge(y, x)

2. else if y is a nominal node or an ancestor of x, then Merge(x, y)
3. else Merge(y, x)

Note: we use ¬̇C to denote nnf(¬C).
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Reasoning with nominals Part 6: Reasoning in the ALC family

Blocking strategy in SHOIQ

The blocking strategy is the same as in SHIQ, namely double-blocking, but
restricted to the non-nominal nodes (i.e., blockable nodes).

Def.: Blocking in SHOIQ
A node x is directly blocked if it has ancestors x′, y and y′ such that

1 x is a successor of x′ and y is a successor of y′,

2 y, x and all nodes on the path from y to x are blockable,

3 L(x) = L(y) and L(x′) = L(y′), and

4 L(x′, x) = L(y′, y).

A node is indirectly blocked if it is blockable and its predecessor is directly
blocked.

A node is blocked if it is directly or indirectly blocked.
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Reasoning with nominals Part 6: Reasoning in the ALC family

Merging nodes

Merge(y, x) is obtained by

adding L(y) to L(x);

redirecting to x all the edges leading to y;

redirecting all the edges leading from y to nominal nodes so that they lead
from x to the same nominal nodes;

removing y (and blockable sub-trees below y).
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Reasoning with nominals Part 6: Reasoning in the ALC family

Expansion rules for SHOIQ (rules for nominals)

o-rule if for some nominal o there are 2 nodes v, w with
o ∈ L(v) ∩ L(w) and not v 6= w

then Merge(v, w)

o?-rule if 1. (≤ nS.C) ∈ L(v), v is a nominal node, and
there is a blockable S-neighbour w of v such that
{C} ∈ L(w) and v is a successor of w and

2. there is no m ∈ {1, . . . , n} with (≤ mS.C) ∈ L(v)
and there are m nominal S-neighbours z1, . . . zm of v
with C ∈ L(zi) and zi 6= zj for all 1 ≤ i < j ≤ m

then 1. guess m ≤ n and set L(v) := L(v) ∪ {(≤ mS.C)}
2. create m new nodes w1, . . . , wm with

L(v, wi) := {S}, L(wi) := {C, oi} for oi ∈ NI new in G,
and wi 6= wj for all 1 ≤ i < j ≤ m
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Enhancing role expressivity Part 6: Reasoning in the ALC family

More expressive role constructs

SROIQ [Horrocks et al. 2006], at the basis of the OWL 2 language, and its
extension SROIQB [Rudolph et al. 2008] allow for more expressive RBoxes.

Note: We need to distinguish between:

arbitrary roles R: are those implied by role composition;

simple roles S: may be used in number restrictions and with booleans.

Role composition: R1 ◦R2 in the left-hand-side of role inclusions.
Example: hasParent ◦ hasBrother v hasUncle

Role properties: Direct statements about (simple) roles, such as (trans R),
(sym R), (asym S), (refl R), (irrefl S), (funct S),
(invFunct S), and (disj S1 S2)

Example: (trans hasAncestor), (sym spouse), (asym hasChild),
(refl hasRelative), (irrefl parentOf), (funct hasHusband),
(invFunct hasHusband), (disj hasSibling hasCousin)

Boolean combination of simple roles (in SROIQB): ¬S, S1 t S2, S1 u S2

Example: hasParent ≡ hasMother u hasFather, ¬likes
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Enhancing role expressivity Part 6: Reasoning in the ALC family

The description logic SROIQB
Construct Syntax Semantics

inverse role R− {(o, o′) | (o′, o) ∈ RI}
universal role U ∆I ×∆I

role negation ¬S (∆I ×∆I) \ SI
role conjunction S1 u S2 SI1 ∩ SI2
role disjunction S1 t S2 SI1 ∪ SI2
top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
nominal {a} {aI}
value restriction ∀R.C {o | ∀o′. (o, o′) ∈ RI → o′ ∈ CI}
existential restr. ∃R.C {o | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI}
Self concept ∃S.Self {o | (o, o) ∈ SI}
qualified number (≥ nS.C) {o | #{o′ | (o, o′) ∈ SI ∧ o′ ∈ CI} ≥ n}
restrictions (≤ nS.C) {o | #{o′ | (o, o′) ∈ SI ∧ o′ ∈ CI} ≤ n}
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Dealing with complex role inclusion axioms (RIAs)

Unrestricted use of role composition in RIAs causes undecidability.
To regain decidability, we need to impose some restrictions.

Role inclusion axioms as a grammar

A set R of RIAs can be seen as a context-free grammar:

R1 ◦ · · · ◦Rn v R =⇒ R −→R R1 · · ·Rn

We can consider the language that the grammar for R associates to a role R:

LR(R) = {R1 · · ·Rn | R
∗−→R R1 · · ·Rn}

Regular RIAs

The tableaux algorithm for SROIQ is based on using finite-state automata for
LR(R). Hence, decidability can be obtained by restricting to RBoxes
corresponding to regular context free grammars.
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Regular RIAs – Examples

Example (Regular RIAs)

R ◦ S v R
S ◦R v R

Generates the language S∗RS∗, which is regular.

Example (Non regular RIAs)

S ◦R ◦ S v R

Generates the language SnRSn, which is not regular.
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Ensuring decidability in SROIQ

Checking if a context-free grammar is regular is undecidable, hence one cannot
check regularity of a set of RIAs.

SROIQ provides a sufficient condition for the regularity of RIAs.

Def.: Regular RIAs

A role inclusion assertion is ≺-regular if it has one of the forms:

R ◦R v R
R− v R

S1 ◦ · · · ◦ Sn v R
R ◦ S1 ◦ · · · ◦ Sn v R
S1 ◦ · · · ◦ Sn ◦R v R

where ≺ is a strict partial order on direct and inverse roles such that

S ≺ R iff S− ≺ R, and

Si ≺ R, for 1 ≤ i ≤ n.

A set R of RIAs is regular if there is a ≺ s.t. all RIAs in R are ≺-regular.
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Regular RIAs – Examples

Exercise

Check whether the following set R1 of RIAs satisfies regularity of SROIQ:

isProperPartOf v isPartOf
isPartOf ◦ isPartOf v isPartOf

isPartOf ◦ isProperPartOf v isPartOf
isProperPartOf ◦ isPartOf v isPartOf

Then define LR1
(isPartOf).

Exercise

Check whether the following set R2 of RIAs satisfies regularity of SROIQ:

R ◦R v R
S v R

R ◦ S v S
S ◦R v S

Then define LR2
(R) and LR2

(S) and check if they are regular languages.
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Reasoning in SROIQ – Overview

To reason in SROIQ, one can proceed as follows:

1 Eliminate role assertions of the form (funct S), (invFunct S), (sym R),
(trans R), (irrefl R).

2 Eliminate the universal role.

3 Reduce reasoning w.r.t. an ontology consisting of TBox+ABox+RBox to
reasoning w.r.t. an RBox only.
The resulting RBox is of a simplified form and is called a reduced RBox.

4 Provide tableaux rules that are able to check concept satisfiability w.r.t. a
reduced RBox.

We look at these steps a bit more in detail.
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Reasoning in SROIQ – 1. Eliminating role assertions

We have the following equivalences that allow us to eliminate some of the role
assertions:

(funct S) is equivalent to the concept inclusion > v (≤ 1S).

(invFunct S) is equivalent to the concept inclusion > v (≤ 1S−).

(sym R) is equivalent to the role inclusion R v R−.

(trans R) is equivalent to the role inclusion R ◦R v R.

(irrefl R) is equivalent to the concept inclusion > v ¬∃R.Self.

Notice also that (refl R) is equivalent to the concept inclusion > v ∃R.Self.
However, this concept inclusion can only be used when R is a simple role, and
hence does not allow us to eliminate (refl R) in general.
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Reasoning in SROIQ – 2. Eliminating universal role

To eliminate the universal role:

1 Consider U as any other role (without special interpretation).

2 Define the following concept:

CT ≡ ∀U .(
l

CvD∈T

¬C tD) u
l

o∈N
∃U .{o}.

3 Extend the RBox with the following assertions: R v U , (trans U),
(sym U), and (refl U).

This encoding is correct, since one can show that a satisfiable SROIQ
ontology has a nominal connected model, i.e., a model that is a union of
connected components, where each such component contains a nominal, and
where any two elements of a connected component are connected by a role
path over the roles occurring in the ontology.
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Reasoning in SROIQ – 3. Internalizing ABox and TBox

We have already seen that using nominals we can:

1 encode an ABox by means of TBox assertions, and

2 internalize a (boolean) TBox and reduce concept satisfiability and
subsumption w.r.t. a TBox to satisfiability of a single (nominal) concept.

Hence, it suffices to consider only (un)satisfiability of SROIQ concepts w.r.t.
RBoxes that:

do not contain the universal role,

contain a regular role hierarchy, and

contain only role assertions of the form (refl R), (asym R), and
(disj S1 S2).

We call such RBoxes reduced.
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Reasoning in SROIQ – 4. Additional tableaux rules

The tableaux algorithm uses for each (direct or inverse) role S a
non-deterministic finite state automaton BS defined by the reduced RIAs
R.
L(B) denotes the regular language accepted by an NFA B.
For a state p of B, B(p) denotes the NFA identical to B but with initial
state p.

Self-Ref- if ∃S.Self ∈ L(x) or (refl S) ∈ R, x is not blocked, and S /∈ L(x, x)
rule then add an edge (x, x) if it does not yet exist, and

set L(x, x) := L(x, x) ∪ {S}

∀1-rule if ∀S.C ∈ L(x), x is not indirectly blocked, and ∀BS .C /∈ L(x)
then L(x) := L(x) ∪ {∀BS .C}

∀2-rule if 1. ∀B(p).C ∈ L(x), x is not indirectly blocked, p
S→ q in B(p), and

2. there is an S-neighbour y of x with ∀B(q).C /∈ L(y)
then L(y) := L(y) ∪ {∀B(q).C}

∀3-rule if ∀B.C ∈ L(x), x is not indirectly blocked, ε ∈ L(B), and C /∈ L(x)
then L(x) := L(x) ∪ {C}
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Decidability of reasoning in SROIQ

Theorem (Termination, Soundness, and Completeness of SROIQ tableaux)

Let C0 be a SROIQ concept in NNF and R a reduced RBox.

1 The tableaux algorithm terminates when started with C0 and R.

2 The tableaux rules can be applied to C0 and R so as to yield a complete
and clash-free completion graph iff there is a tableau for C0 w.r.t. R.

From the previous encodings, we obtain decidability of reasoning in SROIQ.

Theorem (Decidability of SROIQ)

The tableaux algorithm decides satisfiability and subsumption of SROIQ
concepts with respect to ABoxes, RBoxes, and TBoxes.

Note:

The NFA constructed from a set R of regular RIAs may be exponential in
the size of R. This blowup is essentially unavoidable [Kazakov 2008].

The tableaux algorithm is not computationally optimal.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (185/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

References I

[1] Johan van Benthem. “Modal Correspondence Theory”. PhD thesis.
Mathematish Instituut and Instituut voor Grondslagenonderzoek,
University of Amsterdam, 1976.

[2] Johan van Benthem. Modal Logic and Classical Logic. Bibliopolis, Napoli,
1983.

[3] Franz Baader and Ulrike Sattler. “An Overview of Tableau Algorithms for
Description Logics”. In: Studia Logica 69.1 (2001), pp. 5–40.

[4] Manfred Schmidt-Schauss and Gert Smolka. “Attributive Concept
Descriptions with Complements”. In: Artificial Intelligence 48.1 (1991),
pp. 1–26.

[5] Francesco M. Donini, Bernhard Hollunder, Maurizio Lenzerini,
Alberto Marchetti Spaccamela, Daniele Nardi, and Werner Nutt. “The
Complexity of Existential Quantification in Concept Languages”. In:
Artificial Intelligence 2–3 (1992), pp. 309–327.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (186/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

References II

[6] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and
Werner Nutt. “The Complexity of Concept Languages”. In: Information
and Computation 134 (1997), pp. 1–58.

[7] Francesco M. Donini. “Complexity of Reasoning”. In: The Description
Logic Handbook: Theory, Implementation and Applications. Ed. by
Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider. Cambridge University Press, 2003. Chap. 3,
pp. 96–136.

[8] Vaugham R. Pratt. “Models of Program Logic”. In: Proc. of the 20th
Annual Symp. on the Foundations of Computer Science (FOCS 1979).
1979, pp. 115–122.

[9] Klaus Schild. “A Correspondence Theory for Terminological Logics:
Preliminary Report”. In: Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI 1991). 1991, pp. 466–471.

Diego Calvanese (unibz) ODBS – Knowledge Representation and Ontologies Eur. MSc in Comp. Logic – 2017/2018 (187/189)



ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

References III

[10] Diego Calvanese and Giuseppe De Giacomo. “Expressive Description
Logics”. In: The Description Logic Handbook: Theory, Implementation
and Applications. Ed. by Franz Baader, Diego Calvanese,
Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider.
Cambridge University Press, 2003. Chap. 5, pp. 178–218.
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