
july 2011 | vol. 54 | no. 7 | CoMMunICATIonS oF ThE ACM 5

editor’s letter

DOI:10.1145/1965724.1965725 Moshe Y. Vardi

“Russell’s Paradox,” that Frege’s logi-
cal system was inconsistent. The let-
ter launched a “Foundational Crisis”
in mathematics, triggering an almost
anguished search for proper founda-
tions for mathematics. In 1921, Da-
vid Hilbert, the preeminent German
mathematician, launched a research
program aimed at disposing “the foun-
dational questions once and for all.”
Hilbert’s Program failed; in 1931, Aus-
trian logician Kurt Goedel proved two
incompleteness theorems that proved
the futility of Hilbert’s Program.

One element in Hilbert’s Program
was the mechanization of mathemat-
ics: “Once a logical formalism is estab-
lished one can expect that a systemat-
ic, so-to-say computational, treatment
of logic formulas is possible, which
would somewhat correspond to the
theory of equations in algebra.” In
1928, Hilbert and Ackermann posed
the “Entscheidungsproblem” (Deci-
sion Problem), which asked if there
is an algorithm for checking whether
a given formula in (first-order) logic is
valid; that is, necessarily true. In 1936–
1937, Alonzo Church, an American
logician, and Alan Turing, a British lo-
gician, proved independently that the
Decision Problem for first-order logic
is unsolvable; there is no algorithm
that checks the validity of logical for-
mulas. The Church-Turing Theorem
can be viewed as the birth of theoreti-
cal computer science. To prove the
theorem, Church and Turing intro-
duced computational models, recur-
sive functions, and Turing machines,
respectively, and proved that the

Halting Problem—checking whether
a given recursive function or Turing
machine yields an output on a given
input—is unsolvable.

The unsolvability of the Halting
Problem, proved just as Konrad Zuse
in Germany and John Atanasoff and
Clifford Berry in the U.S. were em-
barking on the construction of their
digital computers—the Z3 and the
Atanasoff-Berry Computer—meant
that computer science was born with
a knowledge of the inherent limitation
of mechanical computation. While
Hilbert believed that “every math-
ematical problem is necessarily capa-
ble of strict resolution,” we know that
the unsolvable is a barrier that cannot
be breached. When I encountered un-
solvability as a fresh graduate student,
it seemed to me an insurmountable
wall. Much of my research over the
years was dedicated to delineating the
boundary between the solvable and
the unsolvable.

It is quite remarkable, therefore,
that the May 2011 issue of Communi-
cations included an article by Byron
Cook, Andreas Podelski, and Andrey
Rybalchenko, titled “Proving Program
Termination” (p. 88), in which they
argued that “in contrast to popular be-
lief, proving termination is not always
impossible.” Surely they got it wrong!
The Halting Problem (termination is
the same as halting) is unsolvable! Of
course, Cook et al. do not really claim
to have solved the Halting Problem.
What they describe in the article is a
new method for proving termination
of programs. The method itself is not

guaranteed to terminate—if it did, this
would contradict the Church-Turing
Theorem. What Cook et al. illustrate
is that the method is remarkably effec-
tive in practice and can handle a large
number of real-life programs. In fact, a
software tool called Terminator, used
to implement their method, has been
able to find some very subtle termina-
tion errors in Microsoft software.

I believe this noteworthy progress
in proving program termination ought
to force us to reconsider the mean-
ing of unsolvability. In my November
2010 editorial, “On P, NP, and Com-
putational Complexity,” I pointed out
that NP-complete problems, such as
Boolean Satisfiability, do not seem as
intractable today as they seemed in
the early 1970s, with industrial SAT
solvers performing impressively in
practice. “Proving Program Termina-
tion” shows that unsolvable problems
may not be as unsolvable as we once
thought. In theory, unsolvabilty does
impose a rigid barrier on computabil-
ity, but it is less clear how significant
this barrier is in practice. Unlike Col-
latz’s Problem, described in the article
by Cook et al., most real-life programs,
if they terminate, do so for rather
simple reasons, because program-
mers almost never conceive of very
deep and sophisticated reasons for
termination. Therefore, it should not
be shocking that a tool such as Termi-
nator can prove termination for such
programs.

Ultimately, software development
is an engineering activity, not a math-
ematical activity. Engineering design
and analysis techniques do not provide
mathematical guarantee, they provide
confidence. We do not need to solve
the Halting Problem, we just need to
be able to reason successfully about
termination of real-life programs. It is
time to give up our “unsolvability pho-
bia.” It is time to solve the unsolvable.

Moshe Y. Vardi, EDIToR-IN-CHIEF

On June 16, 1902, British philosopher
Bertrand Russell sent a letter to Gottlob
Frege, a German logician, in which he
argued, by using what became known as

Solving the unsolvable

