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“Russell’s Paradox,” that Frege’s logi-
cal system was inconsistent. The let-
ter launched a “Foundational Crisis” 
in mathematics, triggering an almost 
anguished search for proper founda-
tions for mathematics. In 1921, Da-
vid Hilbert, the preeminent German 
mathematician, launched a research 
program aimed at disposing “the foun-
dational questions once and for all.” 
Hilbert’s Program failed; in 1931, Aus-
trian logician Kurt Goedel proved two 
incompleteness theorems that proved 
the futility of Hilbert’s Program.

One element in Hilbert’s Program 
was the mechanization of mathemat-
ics: “Once a logical formalism is estab-
lished one can expect that a systemat-
ic, so-to-say computational, treatment 
of logic formulas is possible, which 
would somewhat correspond to the 
theory of equations in algebra.” In 
1928, Hilbert and Ackermann posed 
the “Entscheidungsproblem” (Deci-
sion Problem), which asked if there 
is an algorithm for checking whether 
a given formula in (first-order) logic is 
valid; that is, necessarily true. In 1936–
1937, Alonzo Church, an American 
logician, and Alan Turing, a British lo-
gician, proved independently that the 
Decision Problem for first-order logic 
is unsolvable; there is no algorithm 
that checks the validity of logical for-
mulas. The Church-Turing Theorem 
can be viewed as the birth of theoreti-
cal computer science. To prove the 
theorem, Church and Turing intro-
duced computational models, recur-
sive functions, and Turing machines, 
respectively, and proved that the 

Halting Problem—checking whether 
a given recursive function or Turing 
machine yields an output on a given 
input—is  unsolvable.

The unsolvability of the Halting 
Problem, proved just as Konrad Zuse 
in Germany and John Atanasoff and 
Clifford Berry in the U.S. were em-
barking on the construction of their 
digital computers—the Z3 and the 
Atanasoff-Berry Computer—meant 
that computer science was born with 
a knowledge of the inherent limitation 
of mechanical computation. While 
Hilbert believed that “every math-
ematical problem is necessarily capa-
ble of strict resolution,” we know that 
the unsolvable is a barrier that cannot 
be breached. When I encountered un-
solvability as a fresh graduate student, 
it seemed to me an insurmountable 
wall. Much of my research over the 
years was dedicated to delineating the 
boundary between the solvable and 
the unsolvable.

It is quite remarkable, therefore, 
that the May 2011 issue of Communi-
cations included an article by Byron 
Cook, Andreas Podelski, and Andrey 
Rybalchenko, titled “Proving Program 
Termination” (p. 88), in which they 
argued that “in contrast to popular be-
lief, proving termination is not always 
impossible.” Surely they got it wrong! 
The Halting Problem (termination is 
the same as halting) is unsolvable! Of 
course, Cook et al. do not really claim 
to have solved the Halting Problem. 
What they describe in the article is a 
new method for proving termination 
of programs. The method itself is not 

guaranteed to terminate—if it did, this 
would contradict the Church-Turing 
Theorem. What Cook et al. illustrate 
is that the method is remarkably effec-
tive in practice and can handle a large 
number of real-life programs. In fact, a 
software tool called Terminator, used 
to  implement their method, has been 
able to find some very subtle termina-
tion errors in Microsoft software.

I believe this noteworthy progress 
in proving program termination ought 
to force us to reconsider the mean-
ing of unsolvability. In my November 
2010 editorial, “On P, NP, and Com-
putational Complexity,” I pointed out 
that NP-complete problems, such as 
Boolean Satisfiability, do not seem as 
intractable today as they seemed in 
the early 1970s, with industrial SAT 
solvers performing impressively in 
practice. “Proving Program Termina-
tion” shows that unsolvable problems 
may not be as unsolvable as we once 
thought. In theory, unsolvabilty does 
impose a rigid barrier on computabil-
ity, but it is less clear how significant 
this barrier is in practice. Unlike Col-
latz’s Problem, described in the article 
by Cook et al., most real-life programs, 
if they terminate, do so for rather 
simple reasons, because program-
mers almost never conceive of very 
deep and sophisticated reasons for 
termination. Therefore, it should not 
be shocking that a tool such as Termi-
nator can prove termination for such 
programs.

Ultimately, software development 
is an engineering activity, not a math-
ematical activity. Engineering design 
and analysis techniques do not provide 
mathematical guarantee, they provide 
confidence. We do not need to solve 
the Halting Problem, we just need to 
be able to reason successfully about 
termination of real-life programs. It is 
time to give up our “unsolvability pho-
bia.” It is time to solve the unsolvable.
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On June 16, 1902, British philosopher 
Bertrand Russell sent a letter to Gottlob 
Frege, a German logician, in which he 
argued, by using what became known as 
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