
The Complexity of Theorem-Proving Procedures∗

Stephen A. Cook

University of Toronto

Summary

It is shown that any recognition problem solved by a polynomial time-bounded nondeterministic Turing
machine can be “reduced” to the problem of determining whether a given propositional formula is a
tautology. Here “reduced” means, roughly speaking, that the first problem can be solved determinis-
tically in polynomial time provided an oracle is available for solving the second. From this notion of
reducible, polynomial degrees of difficulty are defined, and it is shown that the problem of determining
tautologyhood has the same polynomial degree as the problem of determining whether the first of two
given graphs is isomorphic to a subgraph of the second. Other examples are discussed. A method of
measuring the complexity of proof procedures for the predicate calculus is introduced and discussed.

Throughout this paper, a set of strings1 means a set of strings on some fixed, large, finite alphabet Σ.
This alphabet is large enough to include symbols for all sets described here. All Turing machines are
deterministic recognition devices, unless the contrary is explicitly stated.

1 Tautologies and Polynomial Re-Reducibility.

Let us fix a formalism for the propositional calculus in which formulas are written as strings on Σ. Since
we will require infinitely many proposition symbols (atoms), each such symbol will consist of a member
of Σ followed by a number in binary notation to distinguish that symbol. Thus a formula of length n can
only have about n/ logn distinct function and predicate symbols. The logical connectives are ∧2 (and),
∨ (or), and ¬ (not).

The set of tautologies (denoted by {tautologies}) is a certain recursive set of strings on this alphabet,
and we are interested in the problem of finding a good lower bound on its possible recognition times. We
provide no such lower bound here, but theorem 1 will give evidence that {tautologies} is a difficult set to
recognize, since many apparently difficult problems can be reduced to determining tautologyhood. By
reduced we mean, roughly speaking, that if tautologyhood could be decided instantly (by an “oracle”)
then these problems could be decided in polynomial time. In order to make this notion precise, we
introduce query machines, which are like Turing machines with oracles in [1].

A query machine is a multitape Turing machine with a distinguished tape called the query tape, and
three distinguished states called the query state, yes state, and no state, respectively. If M is a query
machine and T is a set of strings, then a T -computation of M is a computation of M in which initially M
is in the initial state and has an input string w on its input tape, and each time M assumes the query state

∗Transliteration of the original 1971 typewritten paper by Tim Rohlfs (rev. 3). I transcripted basically exactly as Cook wrote
the text; frequently, I even kept inconsistent punctuation. Whenever my version differs from Cook’s, I give notice. Minor
typesetting issues are corrected without notice.

1Cook underlines phrases he wants to emphasize. I will use italics for this purpose.
2Cook uses & (“et”) instead of ∧. For better readability, I will use ∧, which is common usage.

1

there is a string u on the query tape, and the next state M assumes is the yes state if u ∈ T and the no state
if u /∈ T . We think of an “oracle”, which knows T , placing M in the yes state or no state.

Definition. A set S of strings is P-reducible (P for polynomial) to a set T of strings iff there is some query
machine M and a polynomial Q(n) such that for each input string w, the T -computation of M with input
w halts within Q(|w|) steps (|w| is the length of w) and ends in an accepting state iff w ∈ S.

It is not hard to see that P-reducibility is a transitive relation. Thus the relation E on sets of strings,
given by (S,T) ∈ E iff each of S and T is P-reducible to the other, is an equivalence relation. The
equivalence class containing a set S will be denoted by deg(S) (the polynomial degree of difficulty of S).

Definition. We will denote deg({0}) by L∗, where 0 denotes the zero function.

Thus L∗ is the class of sets recognizable in polynomial time. L∗ was discussed in [2], p. 5, and is the
string analog of Cobham’s3 class L of functions [3].

We now define the following special sets of strings.

1. The subgraph problem is the problem given two finite undirected graphs, determine whether the
first is isomorphic to a subgraph of the second. A graph G can be represented by a string G on
the alphabet {0,1,∗} by listing the successive rows of its adjacency matrix, separated by ∗s. We
let {subgraph pairs} denote the set of strings G1 ∗∗G2 such that G1 is isomorphic to a subgraph of
G2.

2. The graph isomorphism problem will be represented by the set, denoted by {isomorphic graphpairs},
of all strings G1 ∗∗G2 such that G1 is isomorphic to G2.

3. The set {Primes} is the set of all binary notations for prime numbers.

4. The set {DNF tautologies} is the set of strings representing tautologies in disjunctive normal form.

5. The set D3 consists of those tautologies in disjunctive normal form in which each disjunct has at
most three conjuncts (each of which is an atom or negation of an atom).

Theorem 1. If a set S of strings is accepted by some nondeterministic Turing machine within polynomial
time, then S is P-reducible to {DNF tautologies}.

Corollary. Each of the sets in definitions 1)–5) is P-reducible to {DNF tautologies}.

This is because each set, or its complement, is accepted in polynomial time by some nondeterministic
Turing machine.

Proof of the theorem. Suppose a nondeterministic Turing machine M accepts a set S of strings within
time Q(n), where Q(n) is a polynomial. Given an input w for M, we will construct a proposition formula
A(w) in conjunctive normal form such that A(w) is satisfiable iff M accepts w. Thus ¬A(w) is easily put
in disjunctive normal form (using De Morgan’s laws), and ¬A(w) is a tautology if and only if w /∈ S.
Since the whole construction can be carried out in time bounded by a polynomial in |w| (the length of
w), the theorem will be proved.

We may as well assume the Turing machine M has only one tape, which is infinite to the right but has
a left-most square. Let us number the squares from left to right 1,2, Let us fix an input w to M of
length n, and suppose w ∈ S. Then there is a computation of M with input w that ends in an accepting
state within T = Q(n) steps. The formula A(w) will be built from many different proposition symbols,
whose intended meanings, listed below, refer to such a computation.

3The paper erroneously refers to “Cabham”.

2

Suppose the tape alphabet for M is {σ1, . . . ,σl} and the set of states is {q1, . . . ,qr}.4 Notice that since
the computation has at most T = Q(n) steps, no tape square beyond T is scanned.

Proposition symbols:

• Pi
s,t for 1≤ i≤ l, 1≤ s, t ≤ T . Pi

s,t is true iff tape square number s at step t contains the symbol σi.

• Qi
t for 1≤ i≤ r, 1≤ t ≤ T . Qi

t is true iff at step t the machine is in state qi.

• Ss,t for 1≤ s, t ≤ T is true iff at time t square number s is scanned by the tape head.

The formula A(w) is a conjunction B∧C∧D∧E ∧F ∧G∧H∧ I formed as follows. Notice A(w) is in
conjunctive normal form.

B will assert that at each step t, one and only one square is scanned. B is a conjunction B1∧B2∧ . . .∧
BT , where Bt asserts that at time t one and only one square is scanned:

Bt = (S1,t ∨S2,t ∨ . . .∨ST,t) ∧

[∧
1≤i< j≤T

(¬Si,t ∨¬S j,t)

]
.

For 1≤ s≤ T and q≤ t ≤ Tj Cs,t asserts that at square s and time t there is one and only one symbol.
C is the conjunction of all the Cs,t .

D asserts that for each t there is one and only one state.
E asserts the initial conditions are satisfied:

E = Q0
1 ∧ S1,1 ∧ Pi1

1,1∧Pi2
2,1∧ . . .∧Pin

n,1 ∧ P1
n+1,1∧ . . .∧P1

T,1

where w = σi1 . . .σin , q0 is the initial state and σ1 is the blank symbol.
F , G, and H assert that for each time t the values of the P’s, Q’s and S’s are updated properly. For

example, G is the conjunction over all t, i, j of Gt
i, j, where Gt

i, j asserts that if at time t the machine is in
state qi scanning symbol σ j, then at time t + 1 the machine is in state qk, where qk is the state given by
the transition function for M.5

Gt
i, j =

T∧
s=1

(
¬Qi

t ∨¬Ss,t ∨¬P j
s,t ∨Qk

t+1

)
.

Finally, the formula I asserts that the machine reaches an accepting state at some time. The machine
M should be modified so that it continues to compute in some trivial fashion after reaching an accepting
state, so that A(w) will be satisfied.

It is now straightforward to verify that A(w) has all the properties asserted in the first paragraph of the
proof.

Theorem 2. The following sets are P-reducible to each other in pairs (and hence each has the same
polynomial degree of difficulty): {tautologies}, {DNF tautologies}, D3, {subgraph pairs}.

Remark. We have not been able to add either {primes} or {isomorphic graphpairs} to the above list.
To show {tautologies} is P-reducible to {primes} would seem to require some deep results in number
theory, while showing {tautologies} is P-reducible to {isomorphic graphpairs} would probably upset a
conjecture of Corneil’s [4] from which he deduces that the graph isomorphism problem can be solved in
polynomial time.

Incidently, it is6 not hard to see from the Davis-Putnam procedure [5] that the set D2 consisting of all
DNF tautologies with at most two conjuncts per disjunct, is in L∗. Hence D2 cannot be added to the list
in theorem 2 (unless all sets in the list are in L∗).

4Here, the original paper mentions {q1, . . . ,qs} instead of {q1, . . . ,qr}. There’s a hardly readable, handwritten “r” below the
“s”, and Cook subsequently does not refer to s but to r; so it is likely that qr is correct.

5Following this sentence, the paper contains some handwritten annotation I cannot decipher.
6The original paper contains a typing error here (“it” instead of “it is”).

3

Proof of theorem 2. By the corollary to theorem 1, each of the sets is P-reducible to {DNF tautologies}.
Since obviously {DNF tautologies} is P-reducible to {tautologies}, it remains to show {DNF tautologies}
is P-reducible to D3 and D3 is P-reducible to {subgraph pairs}.

To show {DNF tautologies} is P-reducible to D3, let A be a proposition formula in disjunctive normal
form. Say A = B1∨B2∨ . . .∨Bk, where B1 = R1∧ . . .∧Rs, and each Ri is an atom or negation of an atom,
and s > 3. Then A is a tautology if and only if A′ is a tautology where

A′ = P∧R3∧ . . .∧Rs ∨ ¬P∧R1∧R2 ∨B2∨ . . .∨Bk,

where P is a new atom. Since we have reduced the number of conjuncts in B1, this process may be
repeated until eventually a formula is found with at most three conjuncts per disjunct. Clearly the entire
process is bounded in time by a polynomial in the length of A.

It remains to show that D3 is P-reducible to {subgraph pairs}. Suppose A is a formula in disjunctive
normal form with three conjuncts per disjunct. Thus A =C1∨ . . .∨Ck, where Ci = Ri1∧Ri2∧Ri3, and each
Ri j is an atom or a negation of an atom. Now let G1 be the complete graph with vertices {v1,v2, . . . ,vk},
and let G2 be the graph with vertices {ui j}, 1≤ i≤ k, 1≤ j ≤ 3, such that ui j is connected by an edge to
urs if and only if i 6= r and the two literals (Ri j,Rrs) do not form an opposite pair (that is they are neither
of the form (P,¬P) nor of the form (¬P,P)). Thus there is a falsifying truth assignment to the formula
A iff there is a graph homomorphism φ : G1 → G2 such that for each i, φ(i) = ui j for some j. (The
homomorphism tells for each i which of Ri1,Ri2,Ri3 should be falsified, and the selective lack of edges
in G2 guarantees that the resulting truth assignment is consistently specified.)

In order to guarantee that a one-one homomorphism φ : G1 → G2 has the property that for each i,
φ(i) = ui j for some j, we modify G1 and G2 as follows. We select graphs H1,H2, . . . ,Hk which are
sufficiently distinct from each other that if G′1 is formed from G1 by attaching Hi to vi, 1 ≤ i ≤ k, and
G′2 is formed from G2 by attaching Hi to each of ui1 and ui2 and ui3, 1 ≤ i ≤ k, then every one-one
homomorphism φ : G′1→ G′2 has the property just stated. It is not hard to see such a construction can be
carried out in polynomial time. Then G′1 can be embedded in G′2 if and only if A /∈ D3. This completes
the proof of theorem 2.

2 Discussion

Theorem 1 and its corollary give strong evidence that it is not easy to determine whether a given
proposition formula is a tautology, even if the formula is in normal disjunctive form. Theorems 1 and
2 together suggest that it is fruitless to search for a polynomial decision procedure for the subgraph
problem, since success would bring polynomial decision procedures to many other apparently intractible
problems. Of course the same remark applies to any combinatorial problem to which {tautologies} is
P-reducible.

Furthermore, the theorems suggest that {tautologies} is a good candidate for an interesting set not in
L∗, and I feel it is worth spending considerable effort trying to prove this conjecture. Such a proof would
be a major breakthrough in complexity theory.

In view of the apparent complexity of {DNF tautologies}, it is interesting to examine the Davis-
Putnam procedure [5]. This procedure was designed to determine whether a given formula in conjunctive
normal form is satisfiable, but of course the “dual” procedure determines whether a given formula in
disjunctive normal form is a tautology. I have not yet been able to find a series of examples showing
the procedure (treated sympathetically to avoid certain pitfalls) must require more than polynomial time.
Nor have I found an interesting upper bound for the time required.

If we let strings represent natural numbers, (or k-tuples of natural numbers) using m-adic or other
suitable notation, then the notions in the preceeding sections can be made to apply to sets of numbers (or
k-place relations on numbers). It is not hard to see that the set of relations accepted in polynomial time
by some nondeterministic Turing machine is precisely the set L + of relations of the form

(∃y≤ gk(x)) R(x,y) (1)

4

where gk(x) = 2(l(maxx))k
, l(z) is the dyadic length of z, and R(x,y) is an L∗ relation, (L + is the class

of extended positive rudimentary relations of Bennett [6]). If we remove the bound on the quantifier
in formula (1), the class L + would become the class of recursively enumerable sets. Thus if L + is
the analog of the class of r.e. sets, then determining tautologyhood is the analog of the halting problem;
since, according to theorem 1, {tautologies} has the complete L + degree just as the halting problem has
the complete r.e. degree. Unfortunately, the diagonal argument which shows the halting problem is not
recursive apparently cannot be adapted to show {tautologies} is not in L∗.

3 The Predicate Calculus

Formulas in the predicate calculus are represented by strings in a manner similar to the propositional
calculus. In addition to the symbols for the latter, we need the quantifier symbols ∀ and ∃, and symbols
for forming an infinite list of individual variables, and infinite lists of function and predicate symbols of
each order (of course the underlying alphabet Σ is still finite).

Suppose Q is a procedure which operates on the above formulas and which terminates on a given input
formula A iff A is unsatisfiable. Since there is no decision procedure for satisfiability in the predicate
calculus, it follows that there is no recursive function T such that if A is unsatisfiable, then Q will
terminate within T (n) steps, where n is the length of A. How then does one appraise the efficiency of the
procedure?

We will take the following approach. Most automatic theorem provers depend on the Herbrand theo-
rem, which states briefly that a formula A is unsatisfiable if and only if some conjunction of substitution
instances of the functional form f n(A) of A is truth functionally inconsistent. Suppose we order the terms
in the Herbrand universe of f n(A) according to rank, and then order in a natural way the substitution
instances of f n(A) from the Herbrand universe. The ordering should be such that in general substitution
instances which use terms with greater rank follow substitution instances which use terms of lesser rank.
Let A1,A2, . . . be these substitution instances in order.

Definition. If A is unsatisfiable, then φ(A) is the least k such that A1∧A2∧ . . .∧Ak is truth-functionally
inconsistent. If A is satisfiable, then φ(A) is undefined.

Now let Q be the procedure which, given A, computes the sequence A1,A2, . . . and for each i, tests
whether A1∧ . . .∧Ai is truth-functionally consistent. If the answer is ever no, the procedure terminates
successfully. Then clearly there is a recursive T (k) such that for all k and all formulas A, if the length
of A ≤ k and φ(A) ≤ k, then Q will terminate within T (k) steps. We suggest that the function T (k) is a
measure of the efficiency of Q.

For convenience, all procedures in this section will be realized on single tape Turing machines, which
we shall call simply machines.

Definition. Given a machine MQ and recursive function TQ(k), we will say MQ is of type Q and runs
within time TQ(k) provided that when MQ starts with a predicate formula A written on its tape, then MQ

halts if and only if A is unsatisfiable, and for all k, if φ(A) ≤ k and |A| ≤ log2 k, then MQ halts within
TQ(k) steps. In this case we will also say that TQ(k) is of type Q. Here |A| is the length of A.

The reason for the condition |A| ≤ log2 k instead of |A| ≤ k, is that with the latter condition, finding a
lower bound for TQ(k) would be nearly equivalent to finding a lower bound for the decision problem for
the propositional calculus. In particular, theorem 3A would become obvious and trivial.

Theorem 3. A) For any TQ(k) of type Q,

TQ(k)√
k/(logk)2

(2)

is unbounded.

5

B) There is a TQ(k) of type Q such that

TQ(k)≤ k 2k(logk)2
.

Outline of proof. A) Given any machine M, one can construct a predicate formula A(M) which is
satisfiable if and only if M never halts when starting on a blank tape. This is done along the lines
described in Wang [7] in the proof which reduces the halting problem to the decision problem for
the predicate calculus. Further, if M halts in s steps, then φ(A(M))≤ s2. Thus, if, contrary to (2),
TQ(k) = O(

√
k/ log2 k), then a modification of MQ could verify in only

O(
√

s2/ log2 s2) = O(s/ log2 s)

steps that M halted in s steps (provided m ≤ logs2, where m is the length of A(M)). A diagonal
argument (see [8] p. 153) shows that this is impossible in general.

B) The machine MQ operates in time TQ by following the procedure outlined at the beginning of
this section. Note that the formula A1∧A2∧ . . .∧Ak has length O(k log2 k), since we can assume
|A| ≤ logk.

Theorem 4. If the set S of strings is accepted by a nondeterministic machine within time T (n) = 2n, and
if TQ(k) is an honest (i.e. real-time countable) function of type Q, then there is a constant K so S can be
recognized by a deterministic machine within time TQ(K 8n).

Proof. Suppose M1 is a nondeterministic machine which accepts S in time 2n. Let M2 be a nondeter-
ministic machine which simulates M1 for exactly 2n steps and then halts, unless M1 accepts the input,
in which case M2 computes forever. Thus for all strings w, if w ∈ S then there is a computation for
which M2 with input w fails to halt, and if w /∈ S, then M2 with input w halts within 4n steps for all
computations. Now given w of length n, we may construct a formula A(w) of length O(n) such that A(w)
is satisfiable if and only if M1 accepts w. (A(w) is constructed in a way similar to A(M) in the proof of
3A.)7 Further, if M2 halts within 4n steps for all possible computations, then φ(A(w))≤ K (4n)2 = K 8n.
Thus, a deterministic machine M can be constructed to determine whether w ∈ S by presenting MQ with
input A(w). If no result appears within TQ(K 8n) steps, then w ∈ S, and otherwise w /∈ S.

4 More Discussion

There is a large gap between the lower bound of
√

k/(logk)2 for time functions TQ(k) given in theorem
3A and a possible

TQ(k) = k 2k(logk)2

given in 3B. However, there are reasons for the gap. For example, if we could improve the result in 3B
and find a TQ(k) bounded by a polynomial in k, then by theorem 4 we could simulate a nondeterministic
2n time bounded machine deterministically in time p(2n) for some polynomial p. This is contrary to
experience which indicates deterministic simulation of a nondeterministic T (n) time bounded machine
requires time kT (n) in general.

On the other hand, if we could push up the lower bound given in theorem 3A and show

TQ(k)
2k

is unbounded, then we could conclude {tautologies} /∈L∗, since otherwise the general Herbrand proof
procedure would provide a TQ(k) smaller than 2k. Thus such an improvement in 3A would require a
major breakthrough in complexity theory.

7The paper refers to “1A” here. Since this theorem does not exist, and A(M) only exists in 3A, it seems certain that 3A is
correct.

6

The field of mechanical theorem proving badly needs a basis for comparing and evaluating the dozens
of procedures which appear in the literature. Performance of a procedure on examples by computer
is a good criterion, but not sufficient (unless the procedure proves useful in some practical way). A
theoretical complexity criterion is needed which will bring out fundamental limitations and suggest new
goals to pursue. The criterion suggested here (the function TQ(k)) is probably too crude. For example, it
might be better to make TQ(k) a function of several variables, of which one is φ(A), and another might
be the minimum number of substitution instances of f n(A) needed to form a contradiction (note that in
general not all of A1,A2, . . . ,Aφ(A) are needed).

TQ(k) may be a crude measure, but it does provide a basis for discussion, and, I hope, will stimulate
progress toward finding better complexity measures for theorem provers.

References

[1] D. L. Kreider and R. W. Ritchie: Predictably Computable Functionals and Definitions by Recursion.
Zeitschrift für math. Logik und Grundlagen der Math., Vol. 10, 65–80 (1964).

[2] S. A. Cook: Characterizations of Pushdown Machines in terms of Time-Bounded Computers. J.
Assoc. Computing Machinery, Vol. 18, No. 1, Jan. 1971, pp 4–18.

[3] Cobham, Alan: The intrinsic computational difficulty of functions. Proc. of the 1964 International
Congress for Logic, Methodology, and the Philosophy of Science, North Holland Publishing Co.,
Amsterdam, pp. 24–30.

[4] D. G. Corneil and C. C. Gotlieb: An Efficient Algorithm for Graph Isomorphism. J. Assoc.
Computing Machinery, Vol. 17, No. 1, Jan. 1970, pp 51–64.

[5] M. Davis and H. Putnam: A Computing Procedure for Quantification Theory. J. Assoc. Computing
Machinery, 1960, pp. 201–215.

[6] J. H. Bennett: On Spectra. Doctoral Dissertation, Princeton University, 1962.

[7] Hao Wang: Dominoes and the AEA case of the decision problems. Proc. of the Symposium on
Mathematical Theory of Automata, at Polytechnic Institute of Brooklyn, 1962. pp. 23–55.

[8] John Hopcroft and Jeffrey Ullman: Formal Languages and their Relation to Automata. Addison-
Wesley, 1969.

7

