4. Basics of Description Logics

Exercise 4.1 Translate the following DL expressions and axioms into first-order logic:

1. Father $\sqcap \forall$ child. (Doctor $\sqcup \exists$ managedBy ${ }^{-}$. (Company $\sqcap(\leq 3$ employs. Doctor $\left.)\right)$)
2. Person $\sqcap \forall$ child.HappyPerson $\sqsubseteq \exists$ child. \forall child.HappyPerson
3. Person $\sqcap \exists$ child.HappyPerson \sqsubseteq Happy \sqcap (Father \sqcup Mother)

Exercise 4.2 Translate the following sentences and first-order logic formulas into DL syntax, if possible:

1. Only humans have children that are humans.
2. A node cannot have two distinct P-successors, such that one is a B and the second one is not a B.
3. $\forall x_{1}, x_{2}, y_{1}, y_{2} . P\left(x_{1}, y_{1}\right) \wedge P\left(x_{1}, y_{2}\right) \wedge P\left(x_{2}, y_{2}\right) \rightarrow x_{1}=x_{2} \vee y_{1}=y_{2}$
4. $\forall x, y, z . P(x, y) \wedge P(y, z) \wedge P(z, x) \rightarrow A(x)$
5. $\forall x, y, z . P(x, y) \wedge Q(y, z) \rightarrow R(x, z)$
6. $\forall x, y, z \cdot P(x, y) \wedge Q(y, z) \rightarrow \exists w \cdot R(x, w) \wedge S(w, z)$
7. $\neg(\forall x . A(x) \rightarrow B(x)) \vee(\forall x . A(x) \rightarrow C(x))$
8. $\exists x . \forall y \cdot R(x, y) \vee S(x, y)$

Exercise 4.3 Compute the certain answers to the query q over the $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$.

1. $q(x)=B(x), \quad \mathcal{A}=\{A(a), B(b), C(c)\}, \quad \mathcal{T}=\left\{A \sqsubseteq B, C \sqsubseteq \exists R, \exists R^{-} \sqsubseteq B\right\}$.
2. $q()=\exists x . B(x), \quad \mathcal{A}=\{A(a)\}$,
(a) $\mathcal{T}=\left\{A \sqsubseteq \exists R, \quad \exists R^{-} \sqsubseteq B\right\}$.
(b) $\mathcal{T}=\left\{A \sqsubseteq \exists R \sqcup \exists S, \quad \exists R^{-} \sqsubseteq B\right\}$.
(c) $\mathcal{T}=\left\{A \sqsubseteq \exists R \sqcap(\exists S \sqcup \exists Q), \quad \exists R^{-} \sqsubseteq B, \quad \exists Q^{-} \sqsubseteq B\right\}$.
(d) $\mathcal{T}=\left\{A \sqsubseteq \exists R \sqcup \exists S, \quad \exists R^{-} \sqsubseteq B, \quad \exists S^{-} \sqsubseteq \exists R \sqcup \exists Q, \quad \exists Q^{-} \sqsubseteq \exists R\right\}$.
3. $q(x)=\exists y \cdot R(x, y), \quad \mathcal{A}=\{A(a), R(b, c)\}, \quad \mathcal{T}$ as in Item 2 .
4. $q(x)=\exists y \cdot R(x, y), \quad \mathcal{A}=\{A(a), R(a, c)\}, \quad \mathcal{T}$ as in Item 2.
