
Ontology and Database Systems:
Knowledge Representation and Ontologies

Part 5: Reasoning in the DL-Lite Family

Diego Calvanese

Faculty of Computer Science
European Master in Computational Logic

A.Y. 2014/2015

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Part 5: Reasoning in the DL-Lite family

Part 5

Reasoning in the DL-Lite family

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (1/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning
Preliminaries
Reducing to subsumption
Reducing to ontology unsatisfiability

2 TBox & ABox reasoning and query answering
TBox & ABox Reasoning services
Query answering
Query answering over satisfiable ontologies
Ontology satisfiability
Complexity of reasoning in DL-Lite

3 Beyond DL-Lite
Data complexity of query answering in DLs beyond DL-Lite
NLogSpace-hard DLs
PTime-hard DLs
coNP-hard DLs
Combining functionality and role inclusions
Unique name assumption

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (2/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning
Preliminaries
Reducing to subsumption
Reducing to ontology unsatisfiability

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (3/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Preliminaries Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning
Preliminaries
Reducing to subsumption
Reducing to ontology unsatisfiability

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (4/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Preliminaries Part 5: Reasoning in the DL-Lite family

Remarks

In the following, we make some simplifying assumptions:

We ignore the distinction between objects and values, since it is not
relevant for reasoning. Hence we do not use value domains and attributes.

We do not consider identification constraints.

Notation:

When the distinction between DL-LiteR, DL-LiteF , or DL-LiteA is not
important, we use just DL-Lite.

Q denotes a basic role, i.e., Q −→ P | P−.

R denotes a general role, i.e., R −→ Q | ¬Q.

C denotes a general concept, i.e., C −→ A | ¬A | ∃Q | ¬∃Q,
where A is an atomic concept.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (5/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Preliminaries Part 5: Reasoning in the DL-Lite family

TBox Reasoning services

Concept Satisfiability: C is satisfiable wrt T , if there is a model I of T
such that CI is not empty, i.e., T 6|= C ≡ ⊥

Subsumption: C1 is subsumed by C2 wrt T , if for every model I of T we
have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I of T
we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of T we
have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥

Functionality implication: A functionality assertion (funct Q) is logically
implied by T if for every model I of T , we have that (o, o1) ∈ QI and
(o, o2) ∈ QI implies o1 = o2, i.e., T |= (funct Q).

Analogous definitions hold for role satisfiability, subsumption, equivalence, and
disjointness.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (6/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Preliminaries Part 5: Reasoning in the DL-Lite family

From TBox reasoning to ontology (un)satisfiability

Basic reasoning service:

Ontology satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

In the following, we show how to reduce TBox reasoning to ontology
unsatisfiability:

1 We show how to reduce TBox reasoning services to concept/role
subsumption.

2 We provide reductions from concept/role subsumption to ontology
unsatisfiability.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (7/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Reducing to subsumption Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning
Preliminaries
Reducing to subsumption
Reducing to ontology unsatisfiability

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (8/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Reducing to subsumption Part 5: Reasoning in the DL-Lite family

Concept/role satisfiability, equivalence, and disjointness

Theorem

1 C is unsatisfiable wrt T iff T |= C v ¬C.

2 T |= C1 ≡ C2 iff T |= C1 v C2 and T |= C2 v C1.

3 C1 and C2 are disjoint iff T |= C1 v ¬C2.

Proof (sketch).

1 “⇐” if T |= C v ¬C, then CI ⊆ ∆I \ CI , for every model I = 〈∆I , ·I〉
of T ; but this holds iff CI = ∅.
“⇒” if C is unsatisfiable, then CI = ∅, for every model I of T . Therefore
CI ⊆ (¬C)I .

2 Trivial.

3 Trivial.

Analogous reductions for role satisfiability, equivalence and disjointness.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (9/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Reducing to subsumption Part 5: Reasoning in the DL-Lite family

From implication of functionalities to subsumption

Theorem

T |= (funct Q) iff either

(funct Q) ∈ T (only for DL-LiteF or DL-LiteA), or

T |= Q v ¬Q.

Proof (sketch).

“⇐” The case in which (funct Q) ∈ T is trivial.
Instead, if T |= Q v ¬Q, then QI = ∅ and hence I |= (funct Q), for every
model I of T .

“⇒” When neither (funct Q) ∈ T nor T |= Q v ¬Q, we can construct a
model of T that is not a model of (funct Q).

The interesting part of this result is the “only-if” direction, telling us that in
DL-Lite functionality is implied only in trivial ways.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (10/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Reducing to ontology unsatisfiability Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning
Preliminaries
Reducing to subsumption
Reducing to ontology unsatisfiability

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (11/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Reducing to ontology unsatisfiability Part 5: Reasoning in the DL-Lite family

From concept subsumption to ontology unsatisfiability

Theorem

T |= C1 v C2 iff the ontology OC1vC2 = 〈T ∪ {Â v C1, Â v ¬C2}, {Â(c)}〉
is unsatisfiable, where Â is an atomic concept not in T , and c is a constant.

Intuitively, C1 is subsumed by C2 iff the smallest ontology containing T and
implying both C1(c) and ¬C2(c) is unsatisfiable.

Proof (sketch).

“⇐” Let OC1vC2
be unsatisfiable, and suppose that T 6|= C1 v C2. Then there

exists a model I of T such that CI1 6⊆ CI2 . Hence CI1 \ CI2 6= ∅. We can
extend I to a model of OC1vC2 by taking cI = o, for some o ∈ CI1 \ CI2 , and

ÂI = {cI}. This contradicts OC1vC2 being unsatisfiable.

“⇒” Let T |= C1 v C2, and suppose that OC1vC2 is satisfiable. Then there
exists a model I be of OC1vC2

. Then I |= T , and I |= C1(c) and I |= ¬C2(c),
i.e., I 6|= C1 v C2. This contradicts T |= C1 v C2.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (12/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Reducing to ontology unsatisfiability Part 5: Reasoning in the DL-Lite family

From role subsumption to ont. unsatisfiability for DL-LiteR

Theorem

Let T be a DL-LiteR TBox and R1, R2 two general roles.
Then T |= R1 v R2 iff the ontology
OR1vR2

= 〈T ∪ {P̂ v R1, P̂ v ¬R2}, {P̂ (c1, c2)}〉 is unsatisfiable,

where P̂ is an atomic role not in T , and c1, c2 are two constants.

Intuitively, R1 is subsumed by R2 iff the smallest ontology containing T and
implying both R1(c1, c2) and ¬R2(c1, c2) is unsatisfiable.

Proof (sketch).

Analogous to the one for concept subsumption.

Notice that OR1vR2
is inherently a DL-LiteR ontology.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (13/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Reducing to ontology unsatisfiability Part 5: Reasoning in the DL-Lite family

From role subsumption to ont. unsatisfiability for DL-LiteF

Theorem

Let T be a DL-LiteF TBox, and Q1, Q2 two basic roles such that Q1 6= Q2.
Then,

1 T |= Q1 v Q2 iff Q1 is unsatisfiable iff
either ∃Q1 or ∃Q−1 is unsatisfiable wrt T ,
which can again be reduced to ontology unsatisfiability.

2 T |= ¬Q1 v Q2 iff T is unsatisfiable.

3 T |= Q1 v ¬Q2 iff
either ∃Q1 and ∃Q2 are disjoint, or ∃Q−1 and ∃Q−2 are disjoint, iff
either T |= ∃Q1 v ¬∃Q2, or T |= ∃Q−1 v ¬∃Q

−
2 ,

which can again be reduced to ontology unsatisfiability.

Notice that an inclusion of the form ¬Q1 v ¬Q2 is equivalent to Q2 v Q1, and
therefore is considered in the first item.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (14/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Reducing to ontology unsatisfiability Part 5: Reasoning in the DL-Lite family

From role subsumption to ont. unsatisfiability for DL-LiteA

Theorem

Let T be a DL-LiteA TBox, and Q1, Q2 two basic roles such that Q1 6= Q2.
Then,

1 T |= Q1 v Q2 iff
OQ1vQ2

= 〈T ∪ {P̂ v ¬Q2}, {Q1(c1, c2), P̂ (c1, c2)}〉 is unsatisfiable,

where P̂ is an atomic role not in T , and c1, c2 are two constants.

2 T |= ¬Q1 v Q2 iff
O¬Q1vQ2

= 〈T ∪ {P̂ v ¬Q1, P̂ v ¬Q2}, {P̂ (c1, c2)}〉 is unsatisfiable,

where P̂ is an atomic role not in T , and c1, c2 are two constants.

3 T |= Q1 v ¬Q2 iff
OQ1v¬Q2 = 〈T , {Q1(c1, c2), Q2(c1, c2)}〉 is unsatisfiable,
where c1, c2 are two constants.

Notice that an inclusion of the form ¬Q1 v ¬Q2 is equivalent to Q2 v Q1, and
therefore is considered in the first item.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (15/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Reducing to ontology unsatisfiability Part 5: Reasoning in the DL-Lite family

Summary

The results above tell us that we can support TBox reasoning services by
relying on the ontology (un)satisfiability service.

Ontology satisfiability is a form of reasoning over both the TBox and the
ABox of the ontology.

In the following, we first consider other TBox & ABox reasoning services, in
particular query answering, and then turn back to ontology satisfiability.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (16/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering
TBox & ABox Reasoning services
Query answering
Query answering over satisfiable ontologies
Ontology satisfiability
Complexity of reasoning in DL-Lite

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (17/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

TBox & ABox Reasoning services Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering
TBox & ABox Reasoning services
Query answering
Query answering over satisfiable ontologies
Ontology satisfiability
Complexity of reasoning in DL-Lite

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (18/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

TBox & ABox Reasoning services Part 5: Reasoning in the DL-Lite family

TBox and ABox reasoning services

Ontology Satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

Concept Instance Checking: Verify whether an individual c is an
instance of a concept C in an ontology O, i.e., whether O |= C(c).

Role Instance Checking: Verify whether a pair (c1, c2) of individuals is
an instance of a role R in an ontology O, i.e., whether O |= R(c1, c2).

Query Answering Given a query q over an ontology O, find all tuples ~c of
constants such that O |= q(~c).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (19/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

TBox & ABox Reasoning services Part 5: Reasoning in the DL-Lite family

Query answering and instance checking

For atomic concepts and roles, instance checking is a special case of query
answering, in which the query is boolean and constituted by a single atom in
the body.

O |= A(c) iff q()← A(c) evaluated over O is true.

O |= P (c1, c2) iff q()← P (c1, c2) evaluated over O is true.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (20/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

TBox & ABox Reasoning services Part 5: Reasoning in the DL-Lite family

From instance checking to ontology unsatisfiability

Theorem

Let O = 〈T ,A〉 be a DL-Lite ontology, C a DL-Lite concept, and P an atomic
role. Then:

O |= C(c) iff OC(c) = 〈T ∪ {Â v ¬C}, A ∪ {Â(c)}〉 is unsatisfiable,

where Â is an atomic concept not in O.

O |= ¬P (c1, c2) iff O¬P (c1,c2) = 〈T , A ∪ {P (c1, c2)}〉 is unsatisfiable.

Theorem

Let O = 〈T ,A〉 be a DL-LiteF ontology and P an atomic role.
Then O |= P (c1, c2) iff O is unsatisfiable or P (c1, c2) ∈ A.

Theorem

Let O = 〈T ,A〉 be a DL-LiteR or DL-LiteA ontology and P an atomic role.
Then O |= P (c1, c2) iff OP (c1,c2) = 〈T ∪ {P̂ v ¬P}, A ∪ {P̂ (c1, c2)}〉 is

unsatisfiable, where P̂ is an atomic role not in O.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (21/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering
TBox & ABox Reasoning services
Query answering
Query answering over satisfiable ontologies
Ontology satisfiability
Complexity of reasoning in DL-Lite

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (22/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering Part 5: Reasoning in the DL-Lite family

Certain answers

We recall that

Query answering over an ontology O = 〈T ,A〉 is a form of logical implication:

find all tuples ~c of constants of A s.t. O |= q(~c)

A.k.a. certain answers in databases, i.e., the tuples that are answers to q in all
models of O = 〈T ,A〉:

cert(q,O) = { ~c | ~c ∈ qI , for every model I of O }

Note: We have assumed that the answer qI to a query q over an interpretation
I is constituted by a set of tuples of constants of A, rather than objects in ∆I .

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (23/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering Part 5: Reasoning in the DL-Lite family

Q-rewritability for DL-Lite

We now study rewritability of query answering over DL-Lite ontologies.

In particular we will show that DL-LiteA (and hence DL-LiteF and
DL-LiteR) enjoy FOL-rewritability of answering union of conjunctive
queries.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (24/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering Part 5: Reasoning in the DL-Lite family

Query answering vs. ontology satisfiability

In the case in which an ontology is unsatisfiable, according to the “ex falso
quod libet” principle, reasoning is trivialized.

In particular, query answering is meaningless, since every tuple is in the
answer to every query.

We are not interested in encoding meaningless query answering into the
perfect reformulation of the input query. Therefore, before query
answering, we will always check ontology satisfiability to single out
meaningful cases.

Thus, we proceed as follows:

1 We show how to do query answering over satisfiable ontologies.

2 We show how we can exploit the query answering algorithm also to check
ontology satisfiability.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (25/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering Part 5: Reasoning in the DL-Lite family

Positive vs. negative inclusions

We call positive inclusions (PIs) assertions of the form

A1 v A2

A1 v ∃Q2

∃Q1 v A2

∃Q1 v ∃Q2
Q1 v Q2

We call negative inclusions (NIs) assertions of the form

A1 v ¬A2

A1 v ¬∃Q2

∃Q1 v ¬A2

∃Q1 v ¬∃Q2
Q1 v ¬Q2

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (26/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering
TBox & ABox Reasoning services
Query answering
Query answering over satisfiable ontologies
Ontology satisfiability
Complexity of reasoning in DL-Lite

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (27/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query answering over satisfiable ontologies

Given a CQ q and a satisfiable ontology O = 〈T ,A〉, we compute cert(q,O) as
follows:

1 Using T , rewrite q into a UCQ rq,T (the perfect rewriting of q w.r.t. T).

2 Evaluate rq,T over A (simply viewed as data), to return cert(q,O).

Correctness of this procedure shows FOL-rewritability of query answering in
DL-Lite.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (28/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query rewriting

Consider the query q(x) ← Professor(x)

Intuition: Use the PIs as basic rewriting rules:

AssistantProf v Professor
as a logic rule: Professor(z) ← AssistantProf(z)

Basic rewriting step:

when an atom in the query unifies with the head of the rule,

substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.

In the example, the PI AssistantProf v Professor applies to the atom
Professor(x). Towards the computation of the perfect rewriting, we add to the
input query above, the query

q(x) ← AssistantProf(x)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (29/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query rewriting (cont’d)

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI ∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

The PI applies to the atom Course(y), and we add to the perfect rewriting the
query

q(x) ← teaches(x, y), teaches(z1, y)

Consider now the query q(x) ← teaches(x, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI applies to the atom teaches(x, y), and we add to the perfect rewriting
the query

q(x) ← Professor(x)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (30/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query rewriting – Constants

Conversely, for the query q(x) ← teaches(x, fl)

and the same PI as before Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

teaches(x, fl) does not unify with teaches(z, f(z)), since the skolem term
f(z) in the head of the rule does not unify with the constant fl.
Remember: We adopt the unique name assumption.

In this case, we say that the PI does not apply to the atom teaches(x, fl).

The same holds for the following query, where y is distinguished, since unifying
f(z) with y would correspond to returning a skolem term as answer to the
query:

q(x, y) ← teaches(x, y)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (31/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query rewriting – Join variables

An analogous behavior to the one with constants and with distinguished
variables holds when the atom contains join variables that would have to be
unified with skolem terms.

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI above does not apply to the atom teaches(x, y).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (32/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query rewriting – Reduce step

Consider now the query q(x) ← teaches(x, y), teaches(z, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

This PI does not apply to teaches(x, y) or teaches(z, y), since y is in join, and
we would again introduce the skolem term in the rewritten query.

However, we can transform the above query by unifying the atoms teaches(x, y)
and teaches(z, y). This rewriting step is called reduce, and produces the query

q(x) ← teaches(x, y)

Now, we can apply the PI above, and add to the rewriting the query

q(x) ← Professor(x)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (33/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query rewriting – Summary

Reformulate the CQ q into a set of queries:

Apply to q and the computed queries in all possible ways the PIs in T :

A1 v A2 . . . , A2(x), . . . ; . . . , A1(x), . . .
∃P v A . . . , A(x), . . . ; . . . , P (x,), . . .
∃P− v A . . . , A(x), . . . ; . . . , P (, x), . . .
A v ∃P . . . , P (x,), . . . ; . . . , A(x), . . .
A v ∃P− . . . , P (, x), . . . ; . . . , A(x), . . .
∃P1 v ∃P2 . . . , P2(x,), . . . ; . . . , P1(x,), . . .
P1 v P2 . . . , P2(x, y), . . . ; . . . , P1(x, y), . . .
· · ·

(’ ’ denotes an unbound variable, i.e., a variable that appears only once)

This corresponds to exploiting ISAs, role typing, and mandatory
participation to obtain new queries that could contribute to the answer.

Apply in all possible ways unification between atoms in a query.

Unifying atoms can make rules applicable that were not so before, and is
required for completeness of the method.

The UCQ resulting from this process is the perfect rewriting rq,T .
D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (34/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query rewriting algorithm

Algorithm PerfectRef(Q, TP)
Input: union of conjunctive queries Q, set of DL-LiteA PIs TP
Output: union of conjunctive queries PR
PR := Q;
repeat
PR′ := PR;
for each q ∈ PR′ do

for each g in q do
for each PI I in TP do

if I is applicable to g then PR := PR ∪ {ApplyPI(q, g, I) };
for each g1, g2 in q do

if g1 and g2 unify then PR := PR ∪ {τ(Reduce(q, g1, g2))};
until PR′ = PR;
return PR

Observations:

Termination follows from having only finitely many different rewritings.

NIs or functionalities do not play any role in the rewriting of the query.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (35/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query answering in DL-Lite – Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x, y),Course(y)

Perfect Rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches(, y)
q(x)← teaches(x,)
q(x)← Professor(x)

ABox: teaches(john, fl)
Professor(mary)

It is easy to see that evaluating the perfect rewriting over the ABox viewed as a
database produces as answer {john, mary}.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (36/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query answering in DL-Lite – An interesting example

TBox: Person v ∃hasFather
∃hasFather− v Person

ABox: Person(mary)

Query: q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2,)
� Apply Person v ∃hasFather to the atom hasFather(y2,)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2),Person(y2)
� Apply ∃hasFather− v Person to the atom Person(y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(, y2)
� Unify atoms hasFather(y1, y2) and hasFather(, y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2)
�
· · ·

q(x)← Person(x), hasFather(x,)
� Apply Person v ∃hasFather to the atom hasFather(x,)

q(x)← Person(x)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (37/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query answering over satisfiable DL-Lite ontologies

For an ABox A and a query q over A, let Evalcwa(q,A) denote the evaluation
of q over A considered as a database (i.e., considered under the CWA).

Theorem

Let T be a DL-Lite TBox, TP the set of PIs in T , and q a CQ over T .
Then, for each ABox A such that 〈T ,A〉 is satisfiable, we have that

cert(q, 〈T ,A〉) = Evalcwa(PerfectRef(q, TP),A).

As a consequence, query answering over a satisfiable DL-Lite ontology is
FOL-rewritable.

Notice that we did not use NIs or functionality assertions of T in computing
cert(q, 〈T ,A〉. Indeed, when the ontology is satisfiable, we can ignore NIs
and functionality assertions for query answering.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (38/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Canonical model of a DL-Lite ontology

The proof of the previous result exploits a fundamental property of DL-Lite,
that relies on the following notion.

Def.: Canonical model

Let O = 〈T ,A〉 be a DL-Lite ontology. A model IO of O is called canonical if
for every model I of O there is a homomorphism from IO to I.

Theorem

Every satisfiable DL-Lite ontology has a canonical model.

Properties of the canonical models of a DL-Lite ontology:

A canonical model is in general infinite.

All canonical models are homomorphically equivalent, hence we can do as
if there was a single canonical model.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (39/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Query answering in DL-Lite – Canonical model

From the definition of canonical model, and since homomorphisms are closed
under composition, we get that:

To compute the certain answer to a query q over an ontology O, one could in
principle evaluate q over a canonical model IO of O.

This does not give us directly an algorithm for query answering over an
ontology O = 〈T ,A〉, since IO may be infinite.

However, one can show that evaluating q over IO amounts to evaluating
the perfect rewriting rq,T over A.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (40/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Query answering over satisfiable ontologies Part 5: Reasoning in the DL-Lite family

Using RDBMS technology for query answering

The ABox A can be stored as a relational database in a standard RDBMS:

For each atomic concept A of the ontology:

define a unary relational table tabA,
populate tabA with each 〈c〉 such that A(c) ∈ A.

For each atomic role P of the ontology,

define a binary relational table tabP ,
populate tabP with each 〈c1, c2〉 such that P (c1, c2) ∈ A.

We have that query answering over satisfiable DL-Lite ontologies can be done
effectively using RDBMS technology:

cert(q, 〈T ,A〉) = Eval(SQL(PerfectRef(q, TP)),DB(A))

Where:
– Eval(qs,DB) denotes the evaluation of an SQL query qs over a database DB.
– SQL(q) denotes the SQL encoding of a UCQ q.
– DB(A) denotes the database obtained as above.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (41/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering
TBox & ABox Reasoning services
Query answering
Query answering over satisfiable ontologies
Ontology satisfiability
Complexity of reasoning in DL-Lite

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (42/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

Satisfiability of ontologies with only PIs

Let us now consider the problem of establishing whether an ontology is
satisfiable.

A first notable result tells us that PIs alone cannot generate ontology
unsatisfiability.

Theorem

Let O = 〈T ,A〉 be a DL-Lite ontology where T contains only PIs.
Then, O is satisfiable.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (43/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

Satisfiability of DL-LiteA ontologies

Unsatisfiability in DL-LiteA ontologies can be caused by NIs or by
functionality assertions.

Example

TBox T : Professor v ¬Student
∃teaches v Professor
(funct teaches−)

ABox A: Student(john)
teaches(john, fl)
teaches(michael, fl)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (44/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

Checking satisfiability of DL-LiteA ontologies

Satisfiability of a DL-LiteA ontology O = 〈T ,A〉 is reduced to evaluating over
DB(A) a UCQ that asks for the existence of objects violating the NI and
functionality assertions.

Let TP the set of PIs in T .
We deal with NIs and functionality assertions differently.

For each NI N ∈ T :

1 we construct a boolean CQ qN () such that

〈TP ,A〉 |= qN () iff 〈TP ∪ {N},A〉 is unsatisfiable

2 We check whether 〈TP ,A〉 |= qN () using PerfectRef , i.e., we compute
PerfectRef(qN , TP), and evaluate it over DB(A).

For each functionality assertion F ∈ T :

1 we construct a boolean CQ qF () such that

A |= qF () iff 〈{F},A〉 is unsatisfiable.

2 We check whether A |= qF (), by simply evaluating qF over DB(A).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (45/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

Checking violations of negative inclusions

For each NI N in T we compute a boolean CQ qN () according to the following
rules:

A1 v ¬A2 ; qN ()← A1(x), A2(x)
∃P v ¬A or A v ¬∃P ; qN ()← P (x, y), A(x)
∃P− v ¬A or A v ¬∃P− ; qN ()← P (y, x), A(x)
∃P1 v ¬∃P2 ; qN ()← P1(x, y), P2(x, z)
∃P1 v ¬∃P−2 ; qN ()← P1(x, y), P2(z, x)
∃P−1 v ¬∃P2 ; qN ()← P1(x, y), P2(y, z)
∃P−1 v ¬∃P

−
2 ; qN ()← P1(x, y), P2(z, y)

P1 v ¬P2 or P−1 v ¬P
−
2 ; qN ()← P1(x, y), P2(x, y)

P−1 v ¬P2 or P1 v ¬P−2 ; qN ()← P1(x, y), P2(y, x)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (46/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

Checking violations of negative inclusions – Example

PIs TP : ∃teaches v Professor
NIs N : Professor v ¬Student

Query qN : qN ()← Student(x),Professor(x)

Perfect Rewriting: qN ()← Student(x),Professor(x)
qN ()← Student(x), teaches(x,)

ABox A: teaches(john, fl)
Student(john)

It is easy to see that 〈TP ,A〉 |= qN (), and that the ontology
〈TP ∪ {Professor v ¬Student}, A〉 is unsatisfiable.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (47/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

Boolean queries vs. non-boolean queries for NIs

To ensure correctness of the method, the queries used to check for the violation
of a NI need to be boolean.

Example

TBox T : A1 v ¬A0

A1 v A0

∃P v A1

A2 v ∃P−
ABox A: A2(c)

Since A1, P , and A2 are unsatisfiable, also 〈T ,A〉 is unsatisfiable.

Consider the query corresponding to the NI A1 v ¬A0.

qN ()← A1(x), A0(x)

Then PerfectRef(qN , TP) is:

qN ()← A1(x), A0(x)
qN ()← A1(x)
qN ()← P (x,)
qN ()← A2()

We have that 〈TP ,A〉 |= qN ().

q′N (x)← A1(x), A0(x)

Then PerfectRef(q′N , TP) is

q′N (x)← A1(x), A0(x)
q′N (x)← A1(x)
q′N (x)← P (x,)

cert(q′N , 〈TP ,A〉) = ∅, hence q′N (x)
does not detect unsatisfiability.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (48/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

Checking violations of functionality assertions

For each functionality assertion F in T we compute a boolean FOL query
qF () according to the following rules:

(funct P) ; qF ()← P (x, y), P (x, z), y 6= z
(funct P−) ; qF ()← P (x, y), P (z, y), x 6= z

Example

Functionality F : (funct teaches−)

Query qF : qF ()← teaches(x, y), teaches(z, y), x 6= z

ABox A: teaches(john, fl)
teaches(michael, fl)

It is easy to see that A |= qF (), and that 〈{(funct teaches−)},A〉, is
unsatisfiable.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (49/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

From satisfiability to query answering in DL-LiteA

Lemma (Separation for DL-LiteA)

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T such that 〈TP ,A〉 |= qN ().

(b) There exists a functionality assertion F ∈ T such that A |= qF ().

(a) relies on the properties that NIs do not interact with each other, and
that interaction between NIs and PIs is captured through PerfectRef .

(b) exploits the property that NIs and PIs do not interact with
functionalities: indeed, no functionality assertion is contradicted in a DL-LiteA
ontology O, beyond those explicitly contradicted by the ABox.

Notably, to check ontology satisfiability, each NI and each functionality
assertion can be processed individually.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (50/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Ontology satisfiability Part 5: Reasoning in the DL-Lite family

FOL-rewritability of satisfiability in DL-LiteA

From the previous lemma and the theorem on query answering for satisfiable
DL-LiteA ontologies, we get the following result.

Theorem

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T s.t. Evalcwa(PerfectRef(qN , TP),A) returns true.

(b) There exists a func. assertion F ∈ T s.t. Evalcwa(qF ,A) returns true.

Note: All the queries qN () and qF () can be combined into a single UCQ.
Hence, satisfiability of a DL-LiteA ontology is reduced to evaluating a
FOL-query over an ontology whose TBox consists of positive inclusions only
(and hence is satisfiable).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (51/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Complexity of reasoning in DL-Lite Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering
TBox & ABox Reasoning services
Query answering
Query answering over satisfiable ontologies
Ontology satisfiability
Complexity of reasoning in DL-Lite

3 Beyond DL-Lite

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (52/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Complexity of reasoning in DL-Lite Part 5: Reasoning in the DL-Lite family

Complexity of query answering over satisfiable ontologies

Theorem

Query answering over DL-LiteA ontologies is

1 NP-complete in the size of query and ontology (combined complexity).

2 PTime in the size of the ontology (schema+data complexity).

3 AC0 in the size of the ABox (data complexity).

Proof (sketch).

1 Guess together the derivation of one of the CQs of the perfect rewriting,
and an assignment to its existential variables. Checking the derivation and
evaluating the guessed CQ over the ABox is then polynomial in combined
complexity. NP-hardness follows from combined complexity of evaluating
CQs over a database.

2 The number of CQs in the perfect rewriting is polynomial in the size of the
TBox, and we can compute them in PTime.

3 AC0 is the data complexity of evaluating FOL queries over a DB.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (53/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Complexity of reasoning in DL-Lite Part 5: Reasoning in the DL-Lite family

Complexity of ontology satisfiability

Theorem

Checking satisfiability of DL-LiteA ontologies is

1 PTime in the size of the ontology (combined complexity).

2 AC0 in the size of the ABox (data complexity).

Proof (sketch).

We observe that all the queries qN () and qF () checking for violations of
negative inclusions N and functionality assertions F can be combined into a
single UCQ whose size is linear in the TBox, and does not depend on the ABox.
Hence, the result follows directly from the complexity of query answering over
satisfiable ontologies.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (54/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Complexity of reasoning in DL-Lite Part 5: Reasoning in the DL-Lite family

Complexity of TBox reasoning

Theorem

TBox reasoning over DL-LiteA ontologies is PTime in the size of the TBox
(schema complexity).

Proof (sketch).

Follows from the previous theorem, and from the fact that all TBox reasoning
tasks can be reduced to ontology satisfiability.
Indeed, the size of the ontology constructed in the reduction is polynomial in
the size of the input TBox.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (55/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite
Data complexity of query answering in DLs beyond DL-Lite
NLogSpace-hard DLs
PTime-hard DLs
coNP-hard DLs
Combining functionality and role inclusions
Unique name assumption

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (56/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Data complexity of query answering in DLs beyond DL-Lite Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite
Data complexity of query answering in DLs beyond DL-Lite
NLogSpace-hard DLs
PTime-hard DLs
coNP-hard DLs
Combining functionality and role inclusions
Unique name assumption

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (57/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Data complexity of query answering in DLs beyond DL-Lite Part 5: Reasoning in the DL-Lite family

Beyond DL-Lite

We consider now DL languages that extend DL-Lite with additional DL
constructs or with combinations of constructs that are not legal in DL-Lite.

We show that (essentially) all such extensions of DL-Lite make it lose its nice
computational properties.

Specifically, we consider the following DL constructs:

Construct Syntax Example Semantics

conjunction C1 u C2 Doctor uMale CI1 ∩ CI2
disjunction C1 t C2 Doctor t Lawyer CI1 ∪ CI2
qual. exist. restr. ∃Q.C ∃child.Male {a | ∃b. (a, b) ∈ QI ∧ b ∈ CI }

qual. univ. restr. ∀Q.C ∀child.Male {a | ∀b. (a, b) ∈ QI → b ∈ CI }

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (58/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Data complexity of query answering in DLs beyond DL-Lite Part 5: Reasoning in the DL-Lite family

Beyond DL-LiteA: results on data complexity

Lhs Rhs Funct.
Role
incl.

Data complexity
of query answering

0 DL-LiteA
√

*
√

* in AC0

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

Notes:

* with the “proviso” of not specializing functional properties.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT tAF suffices! ; No hope of including covering constraints.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (59/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Data complexity of query answering in DLs beyond DL-Lite Part 5: Reasoning in the DL-Lite family

Observations

DL-Lite-family is FOL-rewritable, hence AC0 – holds also with n-ary
relations ; DLR-LiteF and DLR-LiteR.

RDFS is a subset of DL-LiteR ; is FOL-rewritable, hence AC0.

Horn-SHIQ [Hustadt et al., 2005] is PTime-hard even for instance
checking (line 8).

DLP [Grosof et al., 2003] is PTime-hard (line 4)

EL [Baader et al., 2005] is PTime-hard (line 4).

Although used in ER and UML, no hope of including covering
constraints, since we get coNP-hardness for trivial DLs (line 10).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (60/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

NLogSpace-hard DLs Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite
Data complexity of query answering in DLs beyond DL-Lite
NLogSpace-hard DLs
PTime-hard DLs
coNP-hard DLs
Combining functionality and role inclusions
Unique name assumption

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (61/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

NLogSpace-hard DLs Part 5: Reasoning in the DL-Lite family

Qualified existential quantification in the lhs of inclusions

Adding qualified existential on the lhs of inclusions makes instance checking
(and hence query answering) NLogSpace-hard:

Lhs Rhs F R Data complexity

1 A | ∃P .A A − − NLogSpace-hard

Hardness proof is by a reduction from reachability in directed graphs:

ABox A: encodes graph using P and asserts A(d)

TBox T : a single inclusion assertion ∃P .A v A
s

A

d
A

A

A

A

P

PP

P

P
PResult:

〈T ,A〉 |= A(s) iff d is reachable from s in the graph.

Note: Since the reduction has to show hardness in data complexity, the graph
must be encoded in the ABox (while the TBox has to be fixed).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (62/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

NLogSpace-hard DLs Part 5: Reasoning in the DL-Lite family

NLogSpace-hard cases

Instance checking (and hence query answering) is NLogSpace-hard in data
complexity for:

Lhs Rhs F R Data complexity

1 A | ∃P .A A − − NLogSpace-hard

By reduction from reachability in directed graphs.

2 A A | ∀P .A − − NLogSpace-hard

Follows from 1 by replacing ∃P .A1 v A2 with A1 v ∀P−.A2,
and by replacing each occurrence of P− with P ′, for a new role P ′.

3 A A | ∃P .A
√

− NLogSpace-hard

Proved by simulating in the reduction ∃P .A1 v A2

via A1 v ∃P−.A2 and (funct P−),
and by replacing again each occurrence of P− with P ′, for a new role P ′.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (63/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

PTime-hard DLs Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite
Data complexity of query answering in DLs beyond DL-Lite
NLogSpace-hard DLs
PTime-hard DLs
coNP-hard DLs
Combining functionality and role inclusions
Unique name assumption

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (64/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

PTime-hard DLs Part 5: Reasoning in the DL-Lite family

Path System Accessibility

To show PTime-hardness, we use a reduction from a PTime-complete
problem. We use Path System Accessibility.

Instance of Path System Accessibility: PS = (N,E, S, t) with

N a set of nodes

E ⊆ N ×N ×N an accessibility relation

S ⊆ N a set of source nodes

t ∈ N a terminal node

Accessibility of nodes is defined inductively:

each n ∈ S is accessible

if (n, n1, n2) ∈ E and n1, n2 are accessible, then also n is accessible

Given an instance PS of Path System Accessibility, deciding whether t is
accessible, is PTime-complete.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (65/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

PTime-hard DLs Part 5: Reasoning in the DL-Lite family

Reduction from Path System Accessibility

Given an instance PS = (N,E, S, t), we construct an ABox A that:

encodes the accessibility relation using three roles P1, P2, and P3, and
asserts A(s) for each source node s ∈ S.

e1 = (n, . , .)
e2 = (n, s1, s2)
e3 = (n, . , .)

n

A

e1

A

e2

A,B1, B2

e3

s1
A

s2
A

P3 P3 P3

P1 P2

We construct a TBox T consisting of the inclusion assertions:

∃P1.A v B1

∃P2.A v B2

B1 uB2 v A
∃P3.A v A

Result:
〈T ,A〉 |= A(t) iff t is accessible in PS .

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (66/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

coNP-hard DLs Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite
Data complexity of query answering in DLs beyond DL-Lite
NLogSpace-hard DLs
PTime-hard DLs
coNP-hard DLs
Combining functionality and role inclusions
Unique name assumption

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (67/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

coNP-hard DLs Part 5: Reasoning in the DL-Lite family

coNP-hard cases

Are obtained when we can use in the query two concepts that cover another
concept. This forces reasoning by cases on the data.

Query answering is coNP-hard in data complexity for:

Lhs Rhs F R Data complexity

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

All three cases are proved by adapting the proof of coNP-hardness of instance
checking for ALE by [Donini et al., 1994].

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (68/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

coNP-hard DLs Part 5: Reasoning in the DL-Lite family

2+2-SAT

2+2-SAT: satisfiability of a 2+2-CNF formula, i.e., a CNF formula where each
clause has exactly 2 positive and 2 negative literals.

Example: ϕ = c1 ∧ c2 ∧ c3, with
c1 = v1 ∨ v2 ∨ ¬v3 ∨ ¬v4
c2 = false ∨ false ∨ ¬v1 ∨ ¬v4
c3 = false ∨ v4 ∨ ¬true ∨ ¬v2

2+2-SAT is NP-complete [Donini et al., 1994].

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (69/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

coNP-hard DLs Part 5: Reasoning in the DL-Lite family

Reduction from 2+2-SAT

We construct a TBox T and a query q() over concepts L, T , F and roles P1,
P2, N1, N2.

TBox T = { L v T t F }
q()← P1(c, v1), P2(c, v2), N1(c, v3), N2(c, v4),

F (v1), F (v2), T (v3), T (v4)

Given a 2+2-CNF formula ϕ = c1 ∧ · · · ∧ ck over vars v1, . . . , vn, true, false,
we construct an ABox Aϕ using individuals c1, . . . ck, v1, . . . , vn, true, false:

for each propositional variable vi: L(vi)

for each clause cj = vj1 ∨ vj2 ∨ ¬vj3 ∨ ¬vj4 :
P1(cj , vj1), P2(cj , vj2), N1(cj , vj3), N2(cj , vj4)

T (true), F (false)

Note: the TBox T and the query q do not depend on ϕ, hence this reduction
works for data complexity.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (70/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

coNP-hard DLs Part 5: Reasoning in the DL-Lite family

Reduction from 2+2-SAT (cont’d)

Lemma

〈T , Aϕ〉 6|= q() iff ϕ is satisfiable.

Proof (sketch).

“⇒” If 〈T , Aϕ〉 6|= q(), then there is a model I of 〈T , Aϕ〉 s.t. I 6|= q(). We
define a truth assignment αI by setting αI(vi) = true iff vIi ∈ T I . Notice that,
since L v T t F , if vIi /∈ T I , then vIi ∈ F I .
It is easy to see that, since q() asks for a false clause and I 6|= q(), for each
clause cj , one of the literals in cj evaluates to true in αI .
“⇐” From a truth assignment α that satisfies ϕ, we construct an interpretation
Iα with ∆Iα = {c1, . . . , ck, v1, . . . , vn, t, f}, and:

cIαj = cj , vIαi = vi, trueIα = t, falseIα = f

T Iα = {vi | α(vi) = true} ∪ {t}, F Iα = {vi | α(vi) = false} ∪ {f}
It is easy to see that Iα is a model of 〈T , Aϕ〉 and that Iα 6|= q().

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (71/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Combining functionality and role inclusions Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite
Data complexity of query answering in DLs beyond DL-Lite
NLogSpace-hard DLs
PTime-hard DLs
coNP-hard DLs
Combining functionality and role inclusions
Unique name assumption

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (72/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Combining functionality and role inclusions Part 5: Reasoning in the DL-Lite family

Combining functionalities and role inclusions

Let DL-LiteFR be the DL that is the union of DL-LiteF and DL-LiteR, i.e.,
the DL-Lite logic that allows for using both role functionality and role inclusions
without any restrictions.

Due to the unrestricted interaction of functionality and role inclusions
DL-LiteFR is significantly more complicated than the logics of the DL-Lite
family:

One can force the unification of existentially implied objects
(i.e., separation does not hold anymore).

Additional constructs besides those present in DL-Lite can be simulated.

The computational complexity of reasoning increases significantly.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (73/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Combining functionality and role inclusions Part 5: Reasoning in the DL-Lite family

Unification of existentially implied objects – Example

TBox T : A v ∃P P v S
∃P− v A (funct S)

ABox A: A(c1), S(c1, c2), S(c2, c3), . . . , S(cn−1, cn)

A(c1), A v ∃P |= P (c1, x), for some x
P (c1, x), P v S |= S(c1, x)

S(c1, x), S(c1, c2), (funct S) |= x = c2
P (c1, c2), ∃P− v A |= A(c2)

A(c2), A v ∃P . . .
|= A(cn)

Hence, we get:

If we add B(cn) and B v ¬A, the ontology becomes inconsistent.

Similarly, the answer to the following query over 〈T ,A〉 is true:

q() ← A(z1), S(z1, z2), S(z2, z3), . . . , S(zn−1, zn), A(zn)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (74/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Combining functionality and role inclusions Part 5: Reasoning in the DL-Lite family

Unification of existentially implied objects

Note: The number of unification steps above depends on the data. Hence
this kind of deduction cannot be mimicked by a FOL (or SQL) query, since it
requires a form of recursion. As a consequence, we get:

Combining functionality and role inclusions is problematic.

It breaks separability, i.e., functionality assertions may force existentially
quantified objects to be unified with existing objects.

Note: the problems are caused by the interaction among:

an inclusion P v S between roles,

a functionality assertion (funct S) on the super-role, and

a cycle of concept inclusion assertions A v ∃P and ∃P− v A.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (75/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Combining functionality and role inclusions Part 5: Reasoning in the DL-Lite family

Simulation of constructs using funct. and role inclusions

In fact, by exploiting the interaction between functionality and role inclusions,
we can simulate typical DL constructs not present in DL-Lite:

Simulation of A v ∃R.C: (Note: this does not require functionality)

A v ∃RC RC v R ∃R−C v C

Simulation of A1 uA2 v C:

A1 v ∃R1 A2 v ∃R2

R1 v R12 R2 v R12 (funct R12)

∃R−1 v ∃R
−
3

∃R3 v C

R3 v R23 R2 v R23 (funct R−23)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (76/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Combining functionality and role inclusions Part 5: Reasoning in the DL-Lite family

Simulation of constructs (cont’d)

Simulation of A v ∀R.C:

We use reification of roles:
R S1 S2

S1,C v S1 S1,¬C v S1 (funct S1)

S2,C v S2 S2,¬C v S2 (funct S2)

∃S1,C ≡ ∃S2,C ∃S1,¬C ≡ ∃S2,¬C

∃S2 v ∃S2,C t ∃S2,¬C

∃S−2,C v C ∃S−2,¬C v ¬C
A v ¬∃S−1,¬C

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (77/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Combining functionality and role inclusions Part 5: Reasoning in the DL-Lite family

Complexity of DL-Lite with functionality and role inclusions

We can exploit the above constructions that simulate DL constructs to show
lower bounds for reasoning with both functionality and role inclusions.

Theorem [Artale et al., 2009]

For DL-LiteFR ontologies:

TBox reasoning is ExpTime-complete in the size of the TBox.

Checking satisfiability of the ontology is

PTime-complete in the size of the ABox (data complexity).
ExpTime-complete in the size of the ontology (combined complexity).

Query answering is

PTime-complete in the size of the ABox (data complexity).
ExpTime-complete in the size of the ontology.
in 2ExpTime in the size of the query and the ontology (combined com.).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (78/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Combining functionality and role inclusions Part 5: Reasoning in the DL-Lite family

Combining functionalities and role inclusions

We have seen that:

By including in DL-Lite both functionality of roles and role inclusions
without restrictions on their interaction, query answering becomes
PTime-hard.

When the data complexity of query answering is NLogSpace or above,
the DL does not enjoy FOL-rewritability.

As a consequence of these results, we get:

To preserve FOL-rewritability, the restriction on the interaction of functionality
and role inclusions of DL-LiteA is necessary.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (79/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Unique name assumption Part 5: Reasoning in the DL-Lite family

Outline of Part 5

1 TBox reasoning

2 TBox & ABox reasoning and query answering

3 Beyond DL-Lite
Data complexity of query answering in DLs beyond DL-Lite
NLogSpace-hard DLs
PTime-hard DLs
coNP-hard DLs
Combining functionality and role inclusions
Unique name assumption

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (80/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Unique name assumption Part 5: Reasoning in the DL-Lite family

Dropping the unique name assumption

Recall: the unique name assumption (UNA) states that different individuals
must be interpreted as different domain objects.

We reconsider the complexity of query evaluation in DL-LiteF , and show that
without the UNA the data complexity increases.

We show how to reduce reachability in directed graphs to instance
checking in DL-LiteF without the UNA. This gives us an NLogSpace
lower bound.

We assume that the graph is represented through the first-child and
next-sibling functional relations:

v0

v1 v2 vn

. . .

E E E

v0

v1 v2 vn

. . .

F

S
N
S

N N
S

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (81/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Unique name assumption Part 5: Reasoning in the DL-Lite family

Dropping the unique name assumption (cont’d)

From G and two vertexes s and t of G, we define Ouna = 〈Tuna ,AG〉:
TBox uses an atomic concept A, and atomic roles P0, PF , PN , PS :

Tuna = {(funct P0)} ∪ {(funct PR) | R ∈ {F,N, S}}.

ABox is defined from G and the two vertexes s and t:

AG = {PR(a1, a2), PR(a′1, a
′
2) | (a1, a2) ∈ R, for R ∈ {F,N, S}} ∪

{A(t), P0(ainit , s), P0(ainit , s
′)}

G

G′

ainit

s

s′

t

t′

P0

P0

This means that we encode in AG two copies of G.

Note: AG depends on G, but Tuna does not.

We can show by induction on the length of paths from s that . . .

t is reachable from s in G if and only if Ouna |= A(t′).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (82/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Unique name assumption Part 5: Reasoning in the DL-Lite family

Dropping the unique name assumption – Complexity

The previous reduction shows that instance checking in DL-LiteF (and hence
also DL-LiteA) without the UNA is NLogSpace-hard.

With a more involved reduction, one can show an even stronger lower bound,
that turns out to be tight.

Theorem [Artale et al., 2009]

Instance checking in DL-LiteF and DL-LiteA without the UNA is
PTime-complete in data complexity.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (83/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Unique name assumption Part 5: Reasoning in the DL-Lite family

References I

[Artale et al., 2009] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael
Zakharyaschev.

The DL-Lite family and relations.

J. of Artificial Intelligence Research, 36:1–69, 2009.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and Carsten Lutz.

Pushing the EL envelope.

In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 364–369,
2005.

[Donini et al., 1994] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf.

Deduction in concept languages: From subsumption to instance checking.

J. of Logic and Computation, 4(4):423–452, 1994.

[Grosof et al., 2003] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.

Description logic programs: Combining logic programs with description logic.

In Proc. of the 12th Int. World Wide Web Conf. (WWW 2003), pages 48–57, 2003.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (84/85)

TBox reasoning TBox & ABox reasoning and query answering Beyond DL-Lite

Unique name assumption Part 5: Reasoning in the DL-Lite family

References II

[Hustadt et al., 2005] Ullrich Hustadt, Boris Motik, and Ulrike Sattler.

Data complexity of reasoning in very expressive description logics.

In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 466–471,
2005.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (85/85)

	Part 5: Reasoning in the DL-Lite family
	TBox reasoning
	Preliminaries
	Reducing to subsumption
	Reducing to ontology unsatisfiability

	Lecture 27-28 (13/04/2015)
	TBox & ABox reasoning and query answering
	TBox & ABox Reasoning services
	Query answering
	Query answering over satisfiable ontologies

	Lecture 29-30 (15/04/2015)
	Ontology satisfiability
	Complexity of reasoning in DL-Lite

	Beyond DL-Lite
	Data complexity of query answering in DLs beyond DL-Lite
	NLogSpace-hard DLs

	Lecture 31-32 (20/04/2015)
	PTime-hard DLs
	coNP-hard DLs
	Combining functionality and role inclusions

	Lecture 33-34 (22/04/2015)
	Unique name assumption

