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Big data

As firms move from siloed, transaction-oriented systems to more integrated,
socially aware ones, they will face challenges related to customer data.
Big data is characterized by increases in data volume, velocity, variety, and
variability. To improve customer engagement, companies must invest in
solutions to effectively manage big data.
[Forrester Research, Inc. June 1, 2012]
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New challenges in information management

Information management is a key challenge in complex systems today:

The volume of information to manage is enormous.
Data increases with incredible velocity.
The variety of information has increased:

structured vs. semi-structured vs. unstructured
data is distributed and heterogeneous
human-processable vs. machine processable

The meaning of data is variable, and depends on the context.
The veracity of the data needs to be questioned and assessed –
incompleteness, inconsistency, lack of precision.
To understand complex data it needs to be visualized.
Data increasingly represents an important value for an organization.

There is an increased need to access data in a uniform and integrated way,
extract information, and perform various forms of analysis on it.

Traditional data management systems are not sufficient anymore to fulfill
today’s information management requirements.
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Example 1: Statoil Exploration

Experts in geology and geophysics develop stratigraphic
models of unexplored areas on the basis of data
acquired from previous operations at nearby
geographical locations.

Facts:

1,000 TB of relational data

using diverse schemata

spread over 2,000 tables, over multiple individual data bases

Data Access for Exploration:

900 experts in Statoil Exploration.

up to 4 days for new data access queries, requiring assistance from
IT-experts.

30–70% of time spent on data gathering.
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Example 2: Siemens Energy Services

Runs service centers for power plants, each responsible
for remote monitoring and diagnostics of many
thousands of gas/steam turbines and associated
components. When informed about potential problems,
diagnosis engineers access a variety of raw and
processed data.

Facts:

several TB of time-stamped sensor data

several GB of event data (“alarm triggered at time T”)

data grows at 30GB per day (sensor data rate 1Hz–1kHz)

Service Requests:

over 50 service centers worldwide

1,000 service requests per center per year

80% of time per request used on data gathering
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Addressing information management challenges

Several efforts come from the area of databases:

New kinds of databases are studied:

XML databases, graph databases
column stores
probabilistic databases
. . .

Information integration

Represents one of the major challenges for the future or IT.
E.g., the market for information integration software has been growing at a
steady rate of +9% per year since 2007.
The overall market value of such software was $ 4 billion in 2012.
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The role of Knowledge Representation in AI

Management of complex kinds of information has traditionally been the concern
of Knowledge Representation (KR) in AI:

Research in AI and KR can bring important insights, solutions, techniques,
and technologies: concern on variability and veracity
However, the other v’s have not received the proper attention so far:
volume, velocity, variety.

The techniques and tools developed in KR need to be adapted and extended
to address the new challenges coming from today’s requirements for information
management.

Emphasis is on the semantics of data!

Fundamental for understanding, sharing, and
reasoning.

Example: Mars climate orbiter case in 1999:
327.6M $ lost because of a metric mixup:
same data, different interpretations!

Mars
Climate
Orbiter 2
by NASA,
JPL, Corby
Waste.
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Ontologies

Ontologies in Computer Science

An ontology is a representation scheme describing a formal conceptualization
of a domain of interest.

The specification of an ontology usually comprises two distinct levels:

Intensional level: specifies a set of conceptual elements and of
constraints/axioms describing the conceptual structures of the domain.

Extensional level: specifies a set of instances of the conceptual elements
described at the intensional level.

Note: an ontology may contain also a meta-level, which specifies a set of modeling

categories of which the conceptual elements are instances.
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Description logic ontologies

The formal foundations for ontology languages are in logic, and specifically in
description logics.

Description logics [Baader et al., 2003] are fragments of first-order logic
specifically tailored towards the representation of structured knowledge.

By grounding the used formalisms in logic, the information is provided with
a formal semantics (i.e., a meaning).

The logic-based formalization allows one to provide automated support
for tasks related to data management, by means of logic-based inference.

Computational aspects are of concern, so that tools can provide
effective support for automated reasoning.

In this course:

we are looking into using description logics for data management.
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Conceptual schemas in information systems

Intensional information has traditionally played an important role in information
systems.

Design phase of the information system:

1 Conceptual modeling: from the requirements, a conceptual schema of
the domain of interest is produced.

2 The conceptual schema is used to produce the logical data schema.

3 The data are stored according to the logical schema, and queried through
it.

Conceptual Modeling

The activity of formally describing some aspects of the physical and social world
around us for the purposes of understanding and communication.
[John Mylopoulos]
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Managing complexity ...
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Conceptual schemas used at design-time

Reasoning

Conceptual
Schema /
Ontology

Logical
Schema

Query

Data
Store

Result
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Ontologies in information systems

The role of ontologies in information systems goes beyond that of conceptual
schemas.

Ontologies affect the whole life-cycle of the information system:

Ontologies, with the associated reasoning capabilities and inference tools,
can provide support at design time.

The use of ontologies can significantly simplify maintenance of the
information system’s data assets.

The ontology is used also to support the interaction with the information
system, i.e., at run-time.
; Reasoning to take into account the constraints coming from the
ontology has to be done at run-time.
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Ontologies at the core of information systems

C1

C2 C3

Resource
1

Resource
2

Resource
3

Ontology

Mapping

Resources

The usage of all system resources (data and services) is done through the
domain conceptualization.
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Ontology mediated access to data

Desiderata: achieve logical transparency in access to data:

Hide to the user where and how data are stored.

Present to the user a conceptual view of the data.

Use a semantically rich formalism for the conceptual view.

This setting is similar to the one of Data Integration. The difference is that
here the ontology provides a rich conceptual description of the data managed
by the system.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (21/156)



Introduction to ontologies Using logic for representing knowledge Ontology languages UML Class Diagrams as FOL ontologies References

Ontologies in information systems Part 1: Modeling Information through Ontologies

Ontologies at the core of cooperation

C1

C2 C3

Resource
1

Resource
2

Resource
3

C ′1 C ′2

C ′3 C ′4

Resource
1’

Resource
2’

The cooperation between systems is done at the level of the conceptualization.
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Issues in ontology-based information management

1 Choice of the formalisms to adopt

2 Efficiency and scalability

3 Tool support
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Issue 1: Formalisms to adopt

1 Which is the right ontology language?

many proposals have been made
differ in expressive power and in complexity of inference

2 Which languages should we use for querying?

requirements for querying are different from those for modeling

3 How do we connect the ontology to available information sources?

mismatch between information in an ontology and data in a data source

In this course:

We present and discuss variants of ontology languages, and study their
logical and computational properties.

We study the problem of querying data through ontologies.

We discuss problems and solutions related to the impedance mismatch
between ontologies and data sources.
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Issue 2: Efficiency and scalability

How can we handle large ontologies?

We have to take into account the tradeoff between expressive power and
complexity of inference.

How can we cope with large amounts of data?

What may be good for large ontologies, may not be good enough for large
amounts of data.

Can we handle multiple data sources and/or multiple ontologies?

In this course:

We discuss in depth the above mentioned tradeoff.

We will also pay attention to the aspects related to data management.

We do not deal with the problem of integrating multiple information
sources. This is typically addressed in Information Integration, to which
many of the considerations we make also apply.
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Issue 3: Tools

According to the principle that “there is no meaning without a language
with a formal semantics”, the formal semantics becomes the solid basis for
dealing with ontologies.

Hence every kind of access to an ontology (to extract information, to
modify it, etc.), requires to fully take into account its semantics.

We need tools that perform reasoning over the ontology that is sound and
complete wrt the semantics.

The tools have to be as “efficient” as possible.

In this course:

We discuss the requirements, the principles, and the theoretical
foundations for ontology inference tools.

We also present and use a tool for querying data sources through
ontologies that has been built according to those principles.
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What is a logic?

The main objective of a logic (there is not a unique logic but many) is to
express by means of a formal language the knowledge about certain
phenomena or a certain portion of the world.

The language of a logic is formal, since it is equipped with:

a formal syntax: it tells one how to write statements in the logic;
a formal semantics: it tells one what the meaning of these statements is.

Considering the formal semantics, one can reason over given knowledge,
and show which knowledge is a logical consequence of the given one.

A logic often allows one to encode with a precise set of deterministic rules,
called inference rules, the basic reasoning steps that are considered to be
correct by everybody (according to the semantics of the logic).

By concatenating applications of simple inference rules, one can construct
logically correct reasoning chains, which allow one to transform the initial
knowledge into the conclusion one wants to derive.
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Real world, language, and mathematical structure

Often we want to describe and reason about real world phenomena:
Providing a complete description of the real world is clearly impossible, and
maybe also useless.
Typically one is interested in a portion of the world, e.g., a particular
physical phenomenon, a social aspect, or modeling rationality of people, . . .

We use sentences of a language to describe objects of the real world, their
properties, and facts that hold.

The language can be:
informal (natural lang., graphical lang., icons, . . . ) or
formal (logical lang., programming lang., mathematical lang., . . . )

It is also possible to have mixed languages, i.e., languages with parts that
are formal, and others that are informal (e.g., UML class diagrams)

If we are also interested in a more rigorous description of the phenomena,
we provide a mathematical model:

Is an abstraction of the portion of the real world we are interested in.
It represents real world entities in the form of mathematical objects, such as
sets, relations, functions, . . .
Is not commonly used in everyday communication, but is commonly
adopted in science, e.g., to show that a certain argumentation is correct.
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Language, real world, and mathematical model – Example

Language

In any right triangle, the area of
the square whose side is the
hypotenuse (the side opposite the
right angle) is equal to the sum of
the areas of the squares whose
sides are the two legs (the two
sides that meet at a right angle).

Real world Mathematical model

Facts about Euclidean geometry can be expressed in terms of natural language, and

they can refer to one or more real world situations. (In the picture it refers to the

composition of the forces in free climbing). However, the importance of the theorem

lays in the fact that it describes a general property that holds in many different

situations. All these different situations can be abstracted in the mathematical

structure which is Euclidean geometry. So indeed the sentence can be interpreted

directly in the mathematical structure. In this example the language is informal but it

has an interpretation in a mathematical structure.
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Language, real world, and math. model – Example 2

Language

In a triangle ABC, if B̂AC is

right, then AB
2

+AC
2

= BC
2
.

Real world Mathematical model

This example is obtained from the previous one by taking a language that is
“more formal”. Indeed the language mixes informal statements (e.g., “if . . .
then . . . ” or “is right”) with some formal notation.

E.g., B̂AC is an unambiguous and compact way to denote an angle.

Similarly AB
2

+AC
2

= BC
2

is a rigorous description of an equation that holds
between the lengths of the triangle sides.
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Language, real world, and math. model – Example 3

Language

x− 2y + 3
x+ y = 0

Real world

Mathematical model

0 1 2 3

In this example the language is purely formal, i.e., the language of arithmetic.
This abstract language is used to represent many situations in the real world (in
the primary school we have many examples about apples, pears, and how they
cost, which are used by teachers to explain to kids the intuitive meaning of the
basic operations on numbers).
The mathematical model in this case is the structure of natural numbers.
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Connections between language, world, and math. model

Language

Real WorldMath. Model

Intuitive Interpretation

Abstraction

Formal Interpretation
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Connections between language, world, and math. model

Intuitive interpretation (or informal semantics)

When you propose a new language (or when you have to learn a new language) it is important
to associate to every element of the language an interpretation in the real world. This is
called the intuitive interpretation (or informal semantics). E.g., in learning a new
programming language, you need to understand what is the effect in terms of execution of all
the languages construct. For this reason the manual, typically, reports in natural language and
with examples, the behavior of the language primitives. This is far to be a formal
interpretation into a mathematical model. Therefore it is an informal interpretation.

Formal interpretation (or formal semantics)

Is a function that allows one to transform the elements of the language (i.e., symbols, words,
complex sentences, . . . ) into one or more elements of the mathematical structure. It is indeed
the formalization of the intuitive interpretation (or the intuitive semantics).

Abstraction

Is the link that connects the real world with it’s mathematical and abstract representation into
a mathematical structure. If a certain situation is supposed to be abstractly described by a
given structure, then the abstraction connects the elements that participate to the situation,
with the components of the mathematical structure, and the properties that hold in the
situation with the mathematical properties that hold in the structure.
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Logic

Logic is a special case of the framework we have just seen, where the following
important components are defined:

The language is a logical language.

The formal interpretation allows one to define a notion of truth.

It is possible to define a notion of logical consequence between formulas.
I.e., if a set Γ of formulas are true then also ϕ is true.
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Formal language

We are given a non-empty set Σ of symbols called alphabet.

A formal language (over Σ) is a subset L of Σ∗, i.e., a set of finite strings
of symbols in Σ.

The elements of L are called well formed phrases.

Formal languages can be specified by means of a grammar, i.e., a set of
formation rules that allow one to build complex well formed phrases
starting from simpler ones.
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Logical language

A language of a logic, i.e., a logical language is a formal language that has the
following characteristics:

Alphabet: its symbols typically indicate the basic (atomic) components of
the (part of the) world the logic is supposed to describe.
Examples: individuals, functions, operators, truth-values, propositions, . . .

Grammar: contains rules for two types of phrases:

Formulas: denote propositions, i.e., objects that can assume some truth
value (e.g., true, false, true in certain situations, true with probability of
3%, true/false in a period of time, . . . ).

Terms: denote objects of the world (e.g., cats, time points, quantities, . . . ).
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Alphabet

The alphabet of a logical language is composed of two classes of symbols:

Logical constants, whose formal interpretation is constant and fixed by
the logic (e.g., ∧, ∀, =, . . . ).

Non logical symbols, whose formal interpretation is not fixed by the
logic, and must be defined by the “user”.

We can make an analogy with programming languages (say C, C++, python):

Logical constants correspond to reserved words (whose meaning is fixed by
the interpreter/compiler).

Non logical symbols correspond to the identifiers that are introduced by
the programmer for defining functions, variables, procedures, classes,
attributes, methods, . . .
The meaning of these symbols is fixed by the programmer.
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Alphabet: Logical constants – Example

The logical constants depend on the logic we are considering:

Propositional logic: ∧ (conjunction), ∨ (disjunction), ¬ (negation), ⊃
(implication), ≡ (equivalence), ⊥ (falsity).
These are usually called propositional connectives.

Predicate logic: in addition to the propositional connectives, we have
quantifiers:

universal quantifier ∀, standing for “every object is such that . . . ”
existential quantifier ∃, standing for “there is some object that . . . ”

Modal logic: in addition to the propositional connectives, we have modal
operators:

2, standing for “it is necessarily true that . . . ”
�, standing for “it is possibly true that . . . ”.
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Alphabet: Non-logical symbols – Example

Propositional logic: non logical symbols are called propositional
variables, and represent (i.e., have intuitive interpretation) propositions.
The proposition associated to each propositional variable is not fixed by
the logic.

Predicate logic: there are four families of non logical symbols:

Variable symbols, which represent any object.
Constant symbols, which represent specific objects.
Function symbols, which represent transformations on objects.
Predicate symbols, which represent relations between objects.

Modal logic: non logical symbols are the same as in propositional logic,
i.e., propositional variables.
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Example of grammar: Language of propositional logic

Grammar of propositional logic

Allows one to define the unique class of phrases, called formulas (or well
formed formulas), which denote propositions.

Formula −→ P (P is a propositional variable)
| (Formula ∧ Formula)
| (Formula ∨ Formula)
| (Formula → Formula)
| (¬Formula)

Example (Well formed formulas)

(P ∧ (Q→ R)) ((P → (Q→ R)) ∨ P )

These formulas are well formed, because there is a
sequence of applications of grammar rules that
generates them.
Exercise: list the rules in each case.

Example (Non well formed
formulas)

P (Q→ R)
(P → ∨P )
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Example of grammar: Language of first order logic

Grammar of first order logic

Term −→ x (x is a variable symbol)
| c (c is a constant symbol)
| f(Term, . . . ,Term) (f is a function symbol)

Formula −→ A (A is a propositional symbol)
| P (Term, . . . ,Term) (P is a predicate symbol)
| (Formula ∧ Formula)
| (Formula ∨ Formula)
| (Formula → Formula)
| ¬Formula
| ∀x(Formula) (x is a variable symbol)
| ∃x(Formula) (x is a variable symbol)

The rules define two types of phrases:

terms denote objects (they are like noun phrases in natural language)
formulas denote propositions (they are like sentences in natural language)

Exercise

Give examples of terms and formulas, and of phrases that are neither of the two.
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Example of grammar: Language of a description logic

Grammar of the description logic ALC

Concept −→ A (A is a concept symbol)
| Concept t Concept
| Concept u Concept
| ¬Concept
| ∃Role.Concept
| ∀Role.Concept

Role −→ R (R is a role symbol)

Individual −→ a (a is an individual symbol)

Formula −→ Concept v Concept
| Concept(Individual)
| Role(Individual , Individual)

Example (Concepts and formulas of the DL ALC)

Concepts: A uB, A t ∃R.C, ∀S.(C t ∀R.D) u ¬A
Formulas: A v B, A v ∃R.B, A(a), R(a, b), ∃R.C(a)
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Intuitive interpretation of a logical language

Non logical symbols do not have a fixed formal interpretation, but they usually
have a fixed intuitive interpretation. Consider for instance:

Type Symbol Intuitive interpretation

propositional variable rain it is raining
constant symbol MobyDick the whale of a novel by Melville
function symbol color(x) the color of the object x

predicate symbol Friends(x, y) x and y are friends

The intuitive interpretation of the non logical symbols does not affect the logic
itself.

In other words, changing the intuitive interpretation does not affect the
properties that will be proved in the logic.

Similarly, replacing these logical symbols with less evocative ones, like r,
M , c(x), F (x, y) will not affect the logic.
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Interpretation of complex formulas

The intuitive interpretation of complex formulas is done by combining the
intuitive interpretations of the components of the formulas.

Example

Consider the propositional formula:

(raining ∨ snowing)→ ¬go to the beach

If the intuitive interpretations of the symbols are:

symbol intuitive meaning

raining it is raining
snowing it is snowing
go to the beach we go to the beach
∨ either . . . or . . .
→ if . . . then . . .
¬ it is not the case that . . .

then the above formula intuitively represent the proposition:

if (it is raining or it is snowing) then it is not the case that (we go to the beach)
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Formal model

Class of models: The models in which a logic is formally interpreted are the
members of a class of algebraic structures, each of which is an abstract
representation of the relevant aspects of the (portion of the) world we want to
formalize with this logic.

Models represent only the components and aspects of the world that are relevant
to a certain analysis, and abstract away from irrelevant facts.
Example: if we are interested in the everage temperature of each day, we can
represent time with the natural numbers and use a function that associates to
each natural number a floating point number (the average temperature of the
day corresponding to the point).

Applicability of a model: Since the real world is complex, in the construction of
the formal model, we usually do simplifying assumptions that bound the
usability of the logic to the cases in which these assumptions are verified.
Example: if we take integers as formal model of time, then this model is not
applicable to represent continuous change.

Each model represents a single possible (or impossible) state of the world. The
class of models of a logic will represent all the (im)possible states of the world.
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Formal interpretation

Given a structure S and a logical language L, the formal interpretation
in S of L is a function that associates an element of S to any non logical
symbol of the alphabet.

The formal interpretation in the algebraic structure is the parallel
counterpart (or better, the formalization) of the intuitive interpretation in
the real world.

The formal interpretation is specified only for the non logical symbols.

Instead, the formal interpretation of the logical symbols is fixed by the
logic.

The formal interpretation of a complex expression e, obtained as a
combination of the sub-expressions e1, . . . , en, is uniquely determined as a
function of the formal interpretation of the sub-components e1, . . . , en.
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Truth in a structure: Models

As said, the goal of logic is the formalization of what is true/false in a
particular world. The particular world is formalized by a structure, also
called an interpretation.

The main objective of the formal interpretation is that it allows to define
when a formula is true in an interpretation.

Every logic therefore defines the satisfiability relation (denoted by |=)
between interpretations and formulas.

If I is an interpretation and ϕ a formula, then

I |= ϕ

stands for the fact that I satisfies ϕ, or equivalently that ϕ is true in I.

An interpretation M such that M |= ϕ is called a model of ϕ.
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(Un)satisfiability and validity

On the basis of truth in an interpretation (|=) the following notions are defined
in any logic:

ϕ is satisfiable if it has model, i.e., if there is a structure M such that
M |= ϕ.

ϕ is un-satisfiable if it is not satisfiable, i.e., it has no models.

ϕ is valid, denoted |= ϕ, if is true in all interpretations.
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Logical consequence (or implication)

The notion of logical consequence (or implication) is defined on the basis
of the notion of truth in an interpretation.

Intuitively, a formula ϕ is a logical consequence of a set of formulas
(sometimes called assumptions) Γ (denoted Γ |= ϕ) if such a formula is
true under this set of assumptions.

Formally, Γ |= ϕ holds when:

For all interpretations I, if I |= Γ then I |= ϕ.

In words: ϕ is true in all the possible situations in which all the formulas in
Γ are true.

Notice that the two relations, “truth in a model” and “logical
consequence” are denoted by the same symbol |= (this should remind you
that they are tightly connected).
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Difference between |= and implication (→)

At a first glance |= looks like implication (usually denoted by → or ⊃).
Indeed in most of the cases they represent the same relation between formulas.

Similarity

For instance, in propositional logic (but not only) the fact that ϕ is a
logical consequence of the singleton set {ψ}, i.e., {ψ} |= ϕ, can be
encoded in the formula ψ → ϕ.

Similarly, the fact that ϕ is a logical consequence of the set of formulas
{ϕ1, . . . , ϕn}, i.e., {ϕ1, . . . , ϕn} |= ϕ can be encoded by the formula
ϕ1 ∧ · · · ∧ ϕn → ϕ.

Difference

When Γ = {γ1, γ2, . . .} is an infinite set of formulas, the fact that ϕ is a
logical consequence of Γ cannot be represented with a formula
γ1 ∧ γ2 ∧ . . .→ ϕ because this would be infinite, and in logic all the
formulas are finite. (Actually there are logics, called infinitary logics, where
formulas can have infinite size.)
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Logical consequence, validity and (un)satisfiability

Exercise

Show that if Γ = ∅, then Γ |= ϕ ⇐⇒ ϕ is valid.

Solution

(=⇒) Since Γ is empty, every interpretation I satisfies all the formulas in Γ.
Therefore, if Γ |= ϕ, then every interpretation I must satisfy ϕ, hence ϕ is valid.
(⇐=) If ϕ is valid, then every I is such that I |= ϕ. Hence, whatever Γ is (in
particular, when Γ = ∅), every model of Γ is also a model of ϕ, and so Γ |= ϕ.

Exercise

Show that if ϕ is unsatisfiable then {ϕ} |= ψ for every formula ψ.

Solution

If ϕ is unsatisfiable then it has no model, which implies that each interpretation that
satisfies ϕ (namely, none) satisfies also ψ, independently from ψ.
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Properties of logical consequence

Property

Show that the following properties hold for the logical consequence relation
defined above:

Reflexivity: Γ ∪ {ϕ} |= ϕ

Monotonicity: Γ |= ϕ implies that Γ ∪ Σ |= ϕ

Cut: Γ |= ϕ and Σ ∪ {ϕ} |= ψ implies that Γ ∪ Σ |= ψ

Solution

Reflexivity: If I satisfies all the formulas in Γ ∪ {ϕ} then it satisfies also ϕ, and
therefore Γ ∪ {ϕ} |= ϕ.

Monotonicity: Let I be an interpretation that satisfies all the formulas in Γ ∪ Σ. Then it
satisfies all the formulas in Γ, and if Γ |= ϕ, then I |= ϕ. Therefore, we can
conclude that Γ ∪ Σ |= ϕ.

Cut: Let I be an interpretation that satisfies all the formulas in Γ ∪ Σ. Then it
satisfies all the formulas in Γ, and if Γ |= ϕ, then I |= ϕ. This implies that
I satisfies all the formulas in Σ ∪ {ϕ}. Then, since Σ ∪ {ϕ} |= ψ, we have
that I |= ψ. Therefore we can conclude that Γ ∪ Σ |= ψ.
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Checking logical consequence

Problem

Does there exist an algorithm that checks if a formula ϕ is a logical
consequence of a set of formulas Γ?

Solution 1: If Γ is finite and the set of models of the logic is finite, then it is
possible to directly apply the definition by checking for every
interpretation I, that if I |= Γ then, I |= ϕ.

Solution 2: If Γ is infinite or the set of models is infinite, then Solution 1 is
not applicable as it would run forever.
An alternative solution could be to generate, starting from Γ, all
its logical consequences by applying a set of rules.
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Checking logical consequence

Propositional logic: The method based on truth tables can be used to check
logical consequence by enumerating all the interpretations of Γ and ϕ and
checking if every time all the formulas in Γ are true then ϕ is also true.
This is possible because, when Γ is finite then there are a finite number of
interpretations.

First order logic: A first order language in general has an infinite number of
interpretations. Therefore, to check logical consequence, it is not possible to
apply a method that enumerates all the possible interpretations, as in truth
tables.

Modal logic: presents the same problem as first order logic.
In general for a set of formulas Γ, there is an infinite number of interpretations,
which implies that a method that enumerates all the interpretations is not
effective.
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Checking logical consequence – Deductive methods

An alternative method for determining if a formula is a logical consequence
of a set of formulas is based on inference rules.

An inference rule is a rewriting rule that takes a set of formulas and
transforms it in another formulas.

The following are examples of inference rules.

ϕ ψ

ϕ ∧ ψ
ϕ ψ

ϕ→ ψ

∀x.ϕ(x)

ϕ(c)

∃x.ϕ(x)

ϕ(d)

Differently from truth tables, which apply a brute force exhaustive analysis
not interpretable by humans, the deductive method simulates human
argumentation and provides also an understandable explanation (i.e., a
deduction) of the reason why a formula is a logical consequence of a set
of formulas.
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Inference rules to check logical consequence – Example

Let Γ = {p→ q,¬p→ r, q ∨ r → s}.

The following is a deduction (an explanation of) the fact that s is a logical
consequence of Γ, i.e., that Γ |= s, which uses the following inference rules:

ϕ→ ψ ¬ϕ→ ϑ

ψ ∨ ϑ
(∗) ϕ ϕ→ ψ

ψ
(∗∗)

Example of deduction

(1) p→ q Belongs to Γ.
(2) ¬p→ r Belongs to Γ.
(3) q ∨ r By applying (*) to (1) and (2).
(4) q ∨ r → s Belongs to Γ.
(5) s By applying (**) to (3) and (4).
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Hilbert-style inference methods

In a Hilbert-style deduction system, a formal deduction is a finite sequence of
formulas

ϕ1

ϕ2

ϕ3

...
ϕn

where each ϕi

is either an axiom, or

it is derived from previous formulas ϕj1 , . . . , ϕjk with j1, . . . , jk < i, by
applying the inference rule

ϕj1 , . . . , ϕjk
ϕi
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Hilbert axioms for classical propositional logic

Axioms

A1 ϕ→ (ψ → ϕ)
A2 (ϕ→ (ψ → θ))→ ((ϕ→ ψ)→ (ϕ→ θ))
A3 (¬ψ → ¬ϕ)→ ((¬ψ → ϕ)→ ψ)

Inference rule(s)

MP
ϕ ϕ→ ψ

ψ

Example (Proof of A→ A)

1. A1 A→ ((A→ A)→ A)
2. A2 (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))
3. MP(1,2) (A→ (A→ A))→ (A→ A)
4. A1 (A→ (A→ A))
5. MP(4,3) A→ A
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Refutation

Reasoning by refutation is based on the principle of “Reductio ad absurdum”.

Reductio ad absurdum

In order to show that a proposition ϕ is true, we assume that it is false (i.e.,
that ¬ϕ holds) and try to infer a contradictory statement, such as A ∧ ¬A
(usually denoted by ⊥, i.e., the false statement).

Reasoning by refutation is one of the most important principles for building
automated decision procedures. This is mainly due to the fact that, proving
a formula ϕ corresponds to the reduction of ¬ϕ to ⊥.
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Propositional resolution

Propositional resolution is the most simple example of reasoning via refutation.
The procedure can be described as follows:

Propositional resolution

INPUT: a propositional formula ϕ
OUTPUT: |= ϕ or 6|= ϕ

1 Convert ¬ϕ to conjunctive normal form, i.e., to a set C of formulas (called
clauses) of the form

p1 ∨ · · · ∨ pk ∨ ¬pk+1 ∨ · · · ∨ ¬pn
that is logically equivalent to ϕ.

2 Apply exhaustively the following inference rule

c ∨ p ¬p ∨ c′

c ∨ c′ Resolution

and add c ∨ c′ to C

3 if C contains two clauses p and ¬p then return |= ϕ otherwise return 6|= ϕ
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Inference based on satisfiability checking

In order to show that |= ϕ (i.e., that ϕ is valid) we search for a model of ¬ϕ,
i.e., we show that ¬ϕ is satisfiable.

If we are not able to find such a model, then we can conclude that there is no
model of ¬ϕ, i.e., that all the models satisfy ϕ, which is: that ϕ is valid.
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Inference based on satisfiability checking

There are two basic methods of searching for a model for ϕ:

SAT based decision procedures

This method incrementally builds a model.

At every stage it defines a “partial model” µi and does an early/lazy check
if ϕ can be true in some extension of µi.

At each point the algorithm has to decide how to extend µi to µi+1 until
constructs a full model for ϕ.

Tableaux based decision procedures

This method builds the model of ϕ via a “top down” approach.

I.e., ϕ is decomposed in its sub-formulas ϕ1, . . . , ϕn and the algorithm
recursively builds n models M1, . . . ,Mn for them.

The model M of ϕ is obtained by a suitable combination of M1, . . . ,Mn.
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SAT based decision procedure – Example

We illustrate a SAT based decision procedure on a propositional logic example.

To find a model for (p ∨ q) ∧ ¬p, we proceed as follows:

Partial model lazy evaluation result of lazy evaluation

µ0 = {p = true} (true ∨ q) ∧ ¬true false (backtrack)

µ1 = {p = false} (false ∨ q) ∧ ¬false q (continue)

µ2 = {p = false

q = true}
(false ∨ true) ∧ ¬false true (success!)
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Soundness and Completeness

Let R be an inference method, and let `R denote the corresponding inference
relation.

Definition (Soundness of an inference method)

An inference method R is sound if

`R ϕ =⇒ |= ϕ
Γ `R ϕ =⇒ Γ |= ϕ (strongly sound)

Definition (Completeness of an inference method)

An inference method R is complete if

|= ϕ =⇒ `R ϕ
Γ |= ϕ =⇒ Γ `R ϕ (strongly complete)
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Elements of an ontology language

Syntax

Alphabet
Languages constructs
Sentences to assert knowledge

Semantics

Formal meaning

Pragmatics

Intended meaning
Usage
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Static vs. dynamic aspects

The aspects of the domain of interest that can be modeled by an ontology
language can be classified into:

Static aspects

Are related to the structuring of the domain of interest.
Supported by virtually all languages.

Dynamic aspects

Are related to how the elements of the domain of interest evolve over time.
Supported only by some languages, and only partially (cf. services).

Before delving into the dynamic aspects, we need a good understanding of the
static ones.

In this course we concentrate essentially on the static aspects.
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Extensional level of an ontology language

At the extensional level we have individuals and facts:

An instance represents an individual (or object) in the extension of a
concept.
e.g., domenico is an instance of Employee

A fact represents a relationship holding between instances.
e.g., worksFor(domenico, tones)
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Intensional level of an ontology language

An ontology language for expressing the intensional level usually includes:

Concepts

Properties of concepts

Relationships between concepts, and their properties

Axioms

Queries

Ontologies are typically rendered as diagrams (e.g., Semantic Networks,
Entity-Relationship schemas, UML Class Diagrams).
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Concepts

Def.: Concept

Is an element of an ontology that denotes a collection of instances (e.g., the set
of “employees”).

We distinguish between:

Intensional definition:
specification of name, properties, relations, . . .

Extensional definition:
specification of the instances

Concepts are also called classes, entity types, frames.
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Properties

Def.: Property

Is an element of an ontology that qualifies another element (e.g., a concept or a
relationship).

Property definition (intensional and extensional):

Name

Type: may be either

atomic (integer, real, string, enumerated, . . . ), or
e.g., eye-color → { blu, brown, green, grey }
structured (date, set, list, . . . )
e.g., date → day/month/year

The definition may also specify a default value.

Properties are also called attributes, features, slots, data properties.
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Relationships

Def.: Relationship

Is an element of an ontology that expresses an association among concepts.

We distinguish between:

Intensional definition:
specification of involved concepts
e.g., worksFor is defined on Employee and Project

Extensional definition:
specification of the instances of the relationship, called facts
e.g., worksFor(domenico, tones)

Relationships are also called associations, relationship types, roles, object
properties.
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Axioms

Def.: Axiom

Is a logical formula that expresses at the intensional level a condition that must
be satisified by the elements at the extensional level.

Different kinds of axioms/conditions:

subclass relationships, e.g., Manager v Employee

equivalences, e.g., Manager ≡ AreaManager t TopManager

disjointness, e.g., AreaManager u TopManager ≡ ⊥
(cardinality) restrictions,
e.g., each Employee worksFor at least 3 Project

. . .

Axioms are also called assertions.
A special kind of axioms are definitions.
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Example: ontology rendered as UML Class Diagram

Employee
empCode: Integer
salary: Integer

Manager

AreaManager TopManager

Project
projectName: String

1..?

boss
H

1..1

1..?

worksFor
H

3..?

1..1

manages
N

1..1
{disjoint, complete}
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The Unified Modeling Language (UML)

The Unified Modeling Language (UML) was developed in 1994 by unifying
and integrating the most prominent object-oriented modeling approaches:

Booch

Rumbaugh: Object Modeling Technique (OMT)

Jacobson: Object-Oriented Software Engineering (OOSE)

History:

1995, version 0.8, Booch, Rumbaugh; 1996, version 0.9, Booch,
Rumbaugh, Jacobson; version 1.0 BRJ + Digital, IBM, HP, . . .

UML 1.4.2 is industrial standard ISO/IEC 19501.

Current version: 2.4.1 (Aug. 2011): http://www.omg.org/spec/UML/

1999–today: de facto standard object-oriented modeling language.

References:

Grady Booch, James Rumbaugh, Ivar Jacobson, “The unified modeling
language user guide”, Addison Wesley, 1999 (2nd ed., 2005)

http://www.omg.org/ → UML

http://www.uml.org/
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The Unified Modeling Language (UML) Part 1: Modeling Information through Ontologies

UML Class Diagrams

In this course we deal only with one of the most prominent components of
UML: UML Class Diagrams.

A UML Class Diagram (or shortly, UML-CD) is used to represent explicitly the
information on a domain of interest (typically the application domain of
software).

Note: This is exactly the goal of all conceptual modeling formalism, such as
Entity-Relationship Diagrams (standard in Database design) or Ontologies.
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UML Class Diagrams (cont’d)

The UML class diagram models the domain of interest in terms of:

objects grouped into classes;

associations, representing relationships between classes;

attributes, representing simple properties of the instances of classes;
Note: here we do not deal with “operations”.

sub-classing, i.e., ISA and generalization relationships.
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The Unified Modeling Language (UML) Part 1: Modeling Information through Ontologies

Example of a UML Class Diagram

Employee
empCode: Integer
salary: Integer

Manager

AreaManager TopManager

Project
projectName: String

1..?

boss
H

1..1

1..?

worksFor
H

3..?

1..1

manages
N

1..1
{disjoint, complete}
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Use of UML Class Diagrams

UML CDs are used in various phases of a software design:

1 During the so-called analysis, where an abstract precise view of the domain
of interest needs to be developed.
; the so-called “conceptual perspective”.

2 During software development, to maintain an abstract view of the software
to be developed.
; the so-called “implementation perspective”.

In this course we focus on 1!
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UML Class Diagrams and ER Schemas

UML CDs (when used for the conceptual perspective) closely resemble
Entity-Relationship (ER) Diagrams.

Example of UML vs. ER:

Employee
empCode: Integer
salary: Integer

Manager

AreaManager TopManager

Project
projectName: String

worksFor
H

1..1

manages
N

1..?

{disjoint, complete}

Employee

PaySlipNumber(Integer)

Salary(Integer)

Manager

AreaManager TopManager

Project

ProjectCode(String)

Works-for

Manages
(1, n)

(1, 1)x
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Comparison with other formalisms

Ontology languages vs. knowledge representation languages:

Ontologies are knowledge representation schemas.

Ontology vs. logic:

Logic is the tool for assigning semantics to ontology languages.

Ontology languages vs. conceptual data models:

Conceptual schemas are special ontologies, suited for conceptualizing a
single logical model (database).

Ontology languages vs. programming languages:

Class definitions are special ontologies, suited for conceptualizing a single
structure for computation.
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Classification of ontology languages

Graph-based

Semantic networks
Conceptual graphs
UML Class Diagrams, Entity-Relationship Diagrams

Frame based

Frame Systems
OKBC, XOL

Logic based

Description Logics (e.g., SHOIQ, DLR, DL-Lite , OWL, . . . )
Rules (e.g., RuleML, LP/Prolog, F-Logic)
First Order Logic (e.g., KIF)
Non-classical logics (e.g., non-monotonic, probabilistic)
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Modeling the domain of interest

We aim at obtaining a description of the data of interest in semantic terms.

One can proceed as follows:

1 Represent the domain of interest as a conceptual schema, similar to
those used at design time to design a database.

2 Formalize the conceptual schema as a logical theory, namely the
ontology.

3 Use the resulting logical theory for reasoning and query answering.
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Let’s start with an exercise

Requirements: We are interested in building a software application to manage filmed
scenes for realizing a movie, by following the so-called “Hollywood Approach”.

Every scene is identified by a code (a string) and is described by a text in natural
language.

Every scene is filmed from different positions (at least one), each of these is called a
setup. Every setup is characterized by a code (a string) and a text in natural language
where the photographic parameters are noted (e.g., aperture, exposure, focal length,
filters, etc.). Note that a setup is related to a single scene.

For every setup, several takes may be filmed (at least one). Every take is
characterized by a (positive) natural number, a real number representing the number
of meters of film that have been used for shooting the take, and the code (a string) of
the reel where the film is stored. Note that a take is associated to a single setup.

Scenes are divided into internals that are filmed in a theater, and externals that are
filmed in a location and can either be “day scene” or “night scene”. Locations are
characterized by a code (a string) and the address of the location, and a text
describing them in natural language.

Write a precise specification of this domain using any formalism you like!
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Solution 1: Use conceptual modeling diagrams (UML)!

Scene
code: String
description: Text

Internal
theater: String

External
nightScene: Boolean

Take
nbr: Integer
filmedMeters: Real
reel: String

Setup
code: String
photographicPars: Text

Location
name: String
address: String
description: Text

1..?

J stpForScn

1..1

1..?

tkOfStp
H

1..1

0..?
located I

1..1

{disjoint, complete}
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Solution 1: Use conceptual modeling diagrams –
Discussion

Good points:

Easy to generate (it’s the standard in software design).

Easy to understand for humans.

Well disciplined, well-established methodologies available.

Bad points:

No precise semantics (people that use it wave hands about it).

Verification (or better validation) done informally by humans.

Machine incomprehensible (because of lack of formal semantics).

Automated reasoning and query answering out of question.

Limited expressiveness (∗).

(∗) Not really a bad point, in fact.
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Solution 2: Use logic!!

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x),
stpForScn(x, y), tkOfStp(x, y), located(x, y), . . . .

Axioms:

∀x, y. codeScene(x, y)→ Scene(x) ∧ String(y)
∀x, y. description(x, y)→ Scene(x) ∧ Text(y)

∀x, y. codeSetup(x, y)→ Setup(x) ∧ String(y)
∀x, y. photographicPars(x, y)→ Setup(x) ∧ Text(y)

∀x, y. nbr(x, y)→ Take(x) ∧ Integer(y)
∀x, y. filmedMeters(x, y)→ Take(x) ∧ Real(y)
∀x, y. reel(x, y)→ Take(x) ∧ String(y)

∀x, y. theater(x, y)→ Internal(x) ∧ String(y)

∀x, y. nightScene(x, y)→ External(x) ∧ Boolean(y)

∀x, y. name(x, y)→ Location(x) ∧ String(y)
∀x, y. address(x, y)→ Location(x) ∧ String(y)
∀x, y. description(x, y)→ Location(x) ∧ Text(y)

∀x. Scene(x)→ (1 ≤ ]{y | codeScene(x, y)} ≤ 1)

∀x. Internal(x)→ Scene(x)
∀x. External(x)→ Scene(x)
∀x. Internal(x)→ ¬External(x)
∀x. Scene(x)→ Internal(x) ∨ External(x)

∀x, y. stpForScn(x, y)→
Setup(x) ∧ Scene(y)
∀x, y. tkOfStp(x, y)→

Take(x) ∧ Setup(y)
∀x, y. located(x, y)→

External(x) ∧ Location(y)

∀x. Setup(x)→
(1 ≤ ]{y | stpForScn(x, y)} ≤ 1)
∀y. Scene(y)→

(1 ≤ ]{x | stpForScn(x, y))}
∀x. Take(x)→

(1 ≤ ]{y | tkOfStp(x, y)} ≤ 1)
∀x. Setup(y)→

(1 ≤ ]{x | tkOfStp(x, y)})
∀x. External(x)→

(1 ≤ ]{y | located(x, y)} ≤ 1)
· · ·
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Solution 2: Use logic – Discussion

Good points:

Precise semantics.

Formal verification.

Allows for query answering.

Machine comprehensible.

Virtually unlimited expressiveness (∗).

Bad points:

Difficult to generate.

Difficult to understand for humans.

Too unstructured (making reasoning difficult), no well-established
methodologies available.

Automated reasoning may be impossible.

(∗) Not really a good point, in fact.
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Solution 3: Use both!!!

Note: these two approaches seem to be orthogonal, but in fact they can be
used together cooperatively.

Basic idea:

Assign formal semantics to constructs of the conceptual design diagrams.

Use conceptual design diagrams as usual, taking advantage of
methodologies developed for them in Software Engineering.

Read diagrams as logical theories when needed, i.e., for formal
understanding, verification, automated reasoning, etc.

Added values:

Inherited from conceptual modeling diagrams: ease-to-use for humans

inherit from logic: formal semantics and reasoning tasks, which are needed
for formal verification and machine manipulation.
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Solution 3: Use both!!! (cont’d)

Important:

The logical theories that are obtained from conceptual modeling diagrams are
of a specific form.

Their expressiveness is limited (or better, well-disciplined).

One can exploit the particular form of the logical theory to simplify
reasoning.

The aim is getting:

decidability, and
reasoning procedures that match the intrinsic computational complexity of
reasoning over the conceptual modeling diagrams.
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Conceptual models vs. logic

We illustrate now what we get from interpreting conceptual modeling diagrams
in logic.

We will use:

as conceptual modeling diagrams: UML Class Diagrams.
Note: we could also use Entity-Relationship Diagrams instead of UML CDs.

as logic: First-Order Logic to formally capture semantics and reasoning.
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Classes in UML CDs

A class in a UML CD models a set of objects (its “instances”) that share
certain common properties, such as attributes, operations, etc.

Each class is characterized by:

a name (which must be unique in the whole class diagram),

a set of (local) properties, namely attributes and operations (see later).

Example

Book
title: String
pages: Integer

– the name of the class is ‘Book’
– the class has two properties (attributes)
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Classes in UML CDs: instances

The objects that belong to a class are called instances of the class. They form
a so-called instantiation (or extension) of the class.

Example

Here are some possible instantiations of our class Book:

{booka, bookb, bookc, bookd, booke}
{bookα, bookβ}
{book1, book2, book3, . . . , book500, . . . }

Which is the actual instantiation?
We will know it only at run-time!!! – We are now at design time!
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Classes in UML CDs: formalization

A class represents a set of objects. . . . But which set? We don’t actually know.

So, how can we assign a semantics to such a class?

We represent a class as a FOL unary predicate!

Example

For our class Book, we introduce a predicate Book(x).
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Associations

An association in UML models a relationship between two or more classes.

At the instance level, an association is a relation between the instances of
two or more classes.

Associations model properties of classes that are non-local, in the sense
that they involve other classes.

An association between n classes is a property of each of these classes.

Example

Book
title: String
pages: Integer

AuthorwrittenBy I
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Associations: formalization

C1

C2

· · ·

CnA

We can represent an n-ary association A among classes C1, . . . , Cn as an
n-ary predicate A in FOL.
We assert that the components of the predicate must belong to the classes
participating to the association:

∀x1, . . . , xn.A(x1, . . . , xn)→ C1(x1) ∧ · · · ∧ Cn(xn)

Example

∀x1, x2.writtenBy(x1, x2)→ Book(x1) ∧Author(x2)
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Associations: multiplicity

On binary associations, we can place multiplicity constraints, i.e., a minimal
and maximal number of tuples in which every object participates as first
(second) component.

Example

Book
title: String
pages: Integer

Author

0..?

writtenBy I

1..?

Note: UML multiplicities for associations are look-across and are not easy to use in an
intuitive way for n-ary associations. So typically they are not used at all.

In contrast, in ER Schemas, multiplicities are not look-across and are easy to use, and
widely used.
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Associations: formalization of multiplicities

C1 C2

min2 .. max2

A I

min1 .. max1

Multiplicities of binary associations are easily expressible in FOL:

∀x1.C1(x1)→ (min1 ≤ ]{x2 | A(x1, x2)} ≤ max 1)
∀x2.C2(x2)→ (min2 ≤ ]{x1 | A(x1, x2)} ≤ max 2)

Example

∀x.Book(x)→ (1 ≤ ]{y | written by(x, y)})

Note: this is a shorthand for a FOL formula expressing the cardinality of the set
of possible values for y.
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Expressing multiplicities in FOL

We use the expressions m ≤ ]{x | ϕ(x)} and ]{x | ϕ(x)} ≤ n as abbreviations.

Minimum cardinality m ≤ ]{x | ϕ(x)}

m ≤ ]{x | ϕ(x)} = ∃x1, . . . , xm.ϕ(x1) ∧ · · · ∧ ϕ(xm) ∧
∧

1≤i<m
i<j≤m

xi 6= xj

Maximum cardinality ]{x | ϕ(x)} ≤ n

]{x | ϕ(x)} ≤ n = ∀x1, . . . , xn, xn+1. (ϕ(x1) ∧ · · · ∧ ϕ(xn+1))

→
∨

1≤i≤n
i<j≤n+1

xi = xj

Note: we need FOL with equality.
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

In our example . . .

Scene
code: String
description: Text

Internal
theater: String

External
nightScene: Boolean

Take
nbr: Integer
filmedMeters: Real
reel: String

Setup
code: String
photographicPars: Text

Location
name: String
address: String
description: Text

1..?

J stpForScn

1..1

1..?

tkOfStp
H

1..1

0..?
located I

1..1

{disjoint, complete}
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Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

In our example . . .

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x),
stpForScn(x, y), tkOfStp(x, y), located(x, y), . . . .

Axioms:

∀x, y. codeScene(x, y)→ Scene(x) ∧ String(y)
∀x, y. description(x, y)→ Scene(x) ∧ Text(y)

∀x, y. codeSetup(x, y)→ Setup(x) ∧ String(y)
∀x, y. photographicPars(x, y)→ Setup(x) ∧ Text(y)

∀x, y. nbr(x, y)→ Take(x) ∧ Integer(y)
∀x, y. filmedMeters(x, y)→ Take(x) ∧ Real(y)
∀x, y. reel(x, y)→ Take(x) ∧ String(y)

∀x, y. theater(x, y)→ Internal(x) ∧ String(y)

∀x, y. nightScene(x, y)→ External(x) ∧ Boolean(y)

∀x, y. name(x, y)→ Location(x) ∧ String(y)
∀x, y. address(x, y)→ Location(x) ∧ String(y)
∀x, y. description(x, y)→ Location(x) ∧ Text(y)

∀x. Scene(x)→ (1 ≤ ]{y | codeScene(x, y)} ≤ 1)

∀x. Internal(x)→ Scene(x)
∀x. External(x)→ Scene(x)
∀x. Internal(x)→ ¬External(x)
∀x. Scene(x)→ Internal(x) ∨ External(x)

∀x, y. stpForScn(x, y)→
Setup(x) ∧ Scene(y)
∀x, y. tkOfStp(x, y)→

Take(x) ∧ Setup(y)
∀x, y. located(x, y)→

External(x) ∧ Location(y)

∀x. Setup(x)→
(1 ≤ ]{y | stpForScn(x, y)} ≤ 1)
∀y. Scene(y)→

(1 ≤ ]{x | stpForScn(x, y))}
∀x. Take(x)→

(1 ≤ ]{y | tkOfStp(x, y)} ≤ 1)
∀x. Setup(y)→

(1 ≤ ]{x | tkOfStp(x, y)})
∀x. External(x)→

(1 ≤ ]{y | located(x, y)} ≤ 1)
· · ·
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Associations: most interesting multiplicities

The most interesting multiplicities are:

0..∗: unconstrained

1..∗: mandatory participation

0..1: functional participation (the association is a partial function)

1..1: mandatory and functional participation (the association is a total
faction)

In FOL:

0..∗: no constraint

1..∗: ∀x.C1(x)→ ∃y.A(x, y)

0..1: ∀x.C1(x)→ ∀y, y′.A(x, y) ∧A(x, y′)→ y = y′

(or simply ∀x, y, y′.A(x, y) ∧A(x, y′)→ y = y′)

1..1: (∀x.C1(x)→ ∃y.A(x, y)) ∧ (∀x, y, y′.A(x, y) ∧A(x, y′)→ y = y′)
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Attributes

An attribute models a local property of a class.

It is characterized by:

a name (which is unique only in the class it belongs to),

a type (a collection of possible values),

and possibly a multiplicity.

Example

Book
title: String
pages: Integer

– The name of one of the attributes is ‘title’.
– Its type is ‘String’.
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Attributes as functions

Attributes (without explicit multiplicity) are:

mandatory (must have at least a value), and

single-valued (can have at most one value).

That is, they are total functions from the instances of the class to the values
of the type they have.

Example

book3 has as value for the attribute ‘title’ the String: "The little digital

video book".
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Attributes with multiplicity

More generally attributes may have an explicit multiplicity (similar to that of
associations).

Example

Book
title: String
pages: Integer
keywords: String {1..5}

– The attribute ‘title’ has an implicit multiplicity of 1..1.
– The attribute ‘keywords’ has an explicit multiplicity

of 1..5.

Note: When the multiplicity is not specified, then it is assumed to be 1..1.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (118/156)



Introduction to ontologies Using logic for representing knowledge Ontology languages UML Class Diagrams as FOL ontologies References

Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Attributes: formalization

Since attributes may have a multiplicity different from 1..1, they are better
formalized as binary predicates, with suitable assertions representing types and
multiplicity.

Given an attribute att of a class C with type T and multiplicity i..j, we capture
it in FOL as a binary predicate attC(x, y) with the following assertions:

An assertion for the attribute type:

∀x, y. attC(x, y)→ C(x) ∧ T (y)

An assertion for the multiplicity:

∀x.C(x)→ (i ≤ ]{y | attC(x, y)} ≤ j)
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Attributes – Exercise on formalization

Book
title: String
pages: Integer
keywords: String {1..5}

Provide the FOL formalization of the attributes of the above class.

∀x, y. titleB(x, y)→ Book(x) ∧ String(y)
∀x.Book(x)→ (1 ≤ ]{y | titleB(x, y)} ≤ 1)

∀x, y. pagesB(x, y)→ Book(x) ∧ Integer(y)
∀x.Book(x)→ (1 ≤ ]{y | pagesB(x, y)} ≤ 1)

∀x, y. keywordsB(x, y)→ Book(x) ∧ String(y)
∀x.Book(x)→ (1 ≤ ]{y | keywordsB(x, y)} ≤ 5)
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In our example . . .

Scene
code: String
description: Text

Internal
theater: String

External
nightScene: Boolean

Take
nbr: Integer
filmedMeters: Real
reel: String

Setup
code: String
photographicPars: Text

Location
name: String
address: String
description: Text

1..?

J stpForScn

1..1

1..?

tkOfStp
H

1..1

0..?
located I

1..1

{disjoint, complete}
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In our example . . .

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x),
stpForScn(x, y), tkOfStp(x, y), located(x, y), . . . .

Axioms:

∀x, y. codeScene(x, y)→ Scene(x) ∧ String(y)
∀x, y. description(x, y)→ Scene(x) ∧ Text(y)

∀x, y. codeSetup(x, y)→ Setup(x) ∧ String(y)
∀x, y. photographicPars(x, y)→ Setup(x) ∧ Text(y)

∀x, y. nbr(x, y)→ Take(x) ∧ Integer(y)
∀x, y. filmedMeters(x, y)→ Take(x) ∧ Real(y)
∀x, y. reel(x, y)→ Take(x) ∧ String(y)

∀x, y. theater(x, y)→ Internal(x) ∧ String(y)

∀x, y. nightScene(x, y)→ External(x) ∧ Boolean(y)

∀x, y. name(x, y)→ Location(x) ∧ String(y)
∀x, y. address(x, y)→ Location(x) ∧ String(y)
∀x, y. description(x, y)→ Location(x) ∧ Text(y)

∀x. Scene(x)→ (1 ≤ ]{y | codeScene(x, y)} ≤ 1)

∀x. Internal(x)→ Scene(x)
∀x. External(x)→ Scene(x)
∀x. Internal(x)→ ¬External(x)
∀x. Scene(x)→ Internal(x) ∨ External(x)

∀x, y. stpForScn(x, y)→
Setup(x) ∧ Scene(y)
∀x, y. tkOfStp(x, y)→

Take(x) ∧ Setup(y)
∀x, y. located(x, y)→

External(x) ∧ Location(y)

∀x. Setup(x)→
(1 ≤ ]{y | stpForScn(x, y)} ≤ 1)
∀y. Scene(y)→

(1 ≤ ]{x | stpForScn(x, y))}
∀x. Take(x)→

(1 ≤ ]{y | tkOfStp(x, y)} ≤ 1)
∀x. Setup(y)→

(1 ≤ ]{x | tkOfStp(x, y)})
∀x. External(x)→

(1 ≤ ]{y | located(x, y)} ≤ 1)
· · ·
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ISA and generalizations

The ISA relationship is of particular importance in conceptual modeling: a class
C ISA a class C ′ if every instance of C is also an instance of C ′.

In UML, the ISA relationship is modeled through the notion of generalization.

Example

Author
kindOfWriter: String

Person
name: String

The attibute ‘name’ is inherited by ‘Author’.
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Generalizations

A generalization involves a superclass (base class) and one or more
subclasses: every instance of each subclass is also an instance of the superclass.

Example

AdultChild

Person
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Generalizations with constraints

The ability of having more subclasses in the same generalization, allows for
placing suitable constraints on the classes involved in the generalization.

Example

AdultChild

Person

{disjoint}
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Generalizations with constraints (cont’d)

Most notable and used constraints:

Disjointness, which asserts that different subclasses cannot have common
instances (i.e., an object cannot be at the same time instance of two
disjoint subclasses).

Completeness (aka “covering”), which asserts that every instance of the
superclass is also an instance of at least one of the subclasses.

Example

AdultTeenagerChild

Person

{disjoint, complete}
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Generalizations: formalization

CkC2C1

C

. . .

{disjoint, complete}

ISA: ∀x.Ci(x)→ C(x), for 1 ≤ i ≤ k

Disjointness: ∀x.Ci(x)→ ¬Cj(x), for 1 ≤ i < j ≤ k

Completeness: ∀x.C(x)→
∨k
i=1 Ci(x)

Note: ISA and completeness can be formalized more compactly with:

∀x.C(x)↔
∨k
i=1 Ci(x)
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Generalizations – Exercise on formalization

AdultTeenagerChild

Person

{disjoint, complete}

Provide the FOL formalization of the above generalization hierarchy.

∀x.Child(x)→ Person(x)
∀x.Teenager(x)→ Person(x)
∀x.Adult(x)→ Person(x)

∀x.Child(x)→ ¬Teenager(x)
∀x.Child(x)→ ¬Adult(x)
∀x.Teenager(x)→ ¬Adult(x)

∀x.Person(x)→ (Child(x) ∨ Teenager(x) ∨Adult(x))
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In our example . . .

Scene
code: String
description: Text

Internal
theater: String

External
nightScene: Boolean

Take
nbr: Integer
filmedMeters: Real
reel: String

Setup
code: String
photographicPars: Text

Location
name: String
address: String
description: Text

1..?

J stpForScn

1..1

1..?

tkOfStp
H

1..1

0..?
located I

1..1

{disjoint, complete}
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In our example . . .

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x),
stpForScn(x, y), tkOfStp(x, y), located(x, y), . . . .

Axioms:

∀x, y. codeScene(x, y)→ Scene(x) ∧ String(y)
∀x, y. description(x, y)→ Scene(x) ∧ Text(y)

∀x, y. codeSetup(x, y)→ Setup(x) ∧ String(y)
∀x, y. photographicPars(x, y)→ Setup(x) ∧ Text(y)

∀x, y. nbr(x, y)→ Take(x) ∧ Integer(y)
∀x, y. filmedMeters(x, y)→ Take(x) ∧ Real(y)
∀x, y. reel(x, y)→ Take(x) ∧ String(y)

∀x, y. theater(x, y)→ Internal(x) ∧ String(y)

∀x, y. nightScene(x, y)→ External(x) ∧ Boolean(y)

∀x, y. name(x, y)→ Location(x) ∧ String(y)
∀x, y. address(x, y)→ Location(x) ∧ String(y)
∀x, y. description(x, y)→ Location(x) ∧ Text(y)

∀x. Scene(x)→ (1 ≤ ]{y | codeScene(x, y)} ≤ 1)

∀x. Internal(x)→ Scene(x)
∀x. External(x)→ Scene(x)
∀x. Internal(x)→ ¬External(x)
∀x. Scene(x)→ Internal(x) ∨ External(x)

∀x, y. stpForScn(x, y)→
Setup(x) ∧ Scene(y)
∀x, y. tkOfStp(x, y)→

Take(x) ∧ Setup(y)
∀x, y. located(x, y)→

External(x) ∧ Location(y)

∀x. Setup(x)→
(1 ≤ ]{y | stpForScn(x, y)} ≤ 1)
∀y. Scene(y)→

(1 ≤ ]{x | stpForScn(x, y))}
∀x. Take(x)→

(1 ≤ ]{y | tkOfStp(x, y)} ≤ 1)
∀x. Setup(y)→

(1 ≤ ]{x | tkOfStp(x, y)})
∀x. External(x)→

(1 ≤ ]{y | located(x, y)} ≤ 1)
· · ·
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Association classes

Sometimes we may want to assert properties of associations. In UML to do so
we resort to association classes:

That is, we associate to an association a class whose instances are in
bijection with the tuples of the association.

Then we use the association class exactly as a UML class (modeling local
and non-local properties).
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Association class – Example

Book
title: String
pages: Integer

Author

writtenBy
contribution: String

Contract

0..? I 1..?

1..1

with I

0..1
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Association classes: reification

C1

C2

· · ·

Cn

A

Reification

The process of putting in correspondence objects of a class (the association
class) with tuples in an association is formally described as reification:

We introduce a unary predicate A for the association class A.

We introduce n new binary predicates A1, . . . , An, one for each of the
components of the association.

We introduce suitable assertions so that objects in the extension of the
unary-predicate A are in bijection with tuples in the n-ary association A.
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Association classes: formalization of reification

C1

C2

· · ·

CnA

J A1

1..1

A2 N 1..1

An I

1..1

FOL assertions are needed for ensuring that one can establish a bijection
between instances of the association class and instances of the association:

∀x, y.Ai(x, y)→ A(x) ∧ Ci(y), for i ∈ {1, . . . , n}

∀x.A(x)→ ∃y.Ai(x, y), for i ∈ {1, . . . , n}

∀x, y, y′.Ai(x, y) ∧Ai(x, y′)→ y = y′, for i ∈ {1, . . . , n}

∀x, x′, y1, . . . , yn.
∧n
i=1(Ai(x, yi) ∧Ai(x′, yi)) → x = x′
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Association classes – Exercise on formalization

Book
title: String
pages: Integer

Author

writtenBy
contribution: String

0..? I 0..?

Provide the FOL formalization of the above association class.

∀x, y.wb1(x, y)→ writtenBy(x) ∧ Book(y)
∀x, y.wb2(x, y)→ writtenBy(x) ∧Author(y)

∀x.writtenBy(x)→ ∃y.wb1(x, y)
∀x.writtenBy(x)→ ∃y.wb2(x, y)
∀x, y, y′.wb1(x, y) ∧ wb1(x, y′)→ y = y′

∀x, y, y′.wb2(x, y) ∧ wb2(x, y′)→ y = y′

∀x, x′, y1, y2.wb1(x, y1) ∧ wb1(x′, y1) ∧ wb2(x, y2) ∧ wb2(x′, y2) → x = x′

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (135/156)



Introduction to ontologies Using logic for representing knowledge Ontology languages UML Class Diagrams as FOL ontologies References

Logic-based approach to conceptual modeling Part 1: Modeling Information through Ontologies

Association classes: formalization of multiplicities

C1 C2

A

min2..max2 I min1..max1

The multiplicities are expressed over (the second component of) the binary
predicates A1 and A2 representing the components of the association:

∀y.C1(y)→ min1 ≤ ]{x | A1(x, y)} ≤ max 1

∀y.C2(y)→ min2 ≤ ]{x | A2(x, y)} ≤ max 2
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Association classes with multiplicities – Exercise

Book
title: String
pages: Integer

Author

writtenBy
contribution: String

1..? I 1..10

Considering the previous formalization of the association class writtenBy ,
provide the FOL formalization of the multiplicities.

∀y.Book(y)→ 1 ≤ ]{x | wb1(x, y)} ≤ 10

∀y.Author(y)→ 1 ≤ ]{x | wb2(x, y)}
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Reasoning on UML CDs via FOL reasoning

There are several properties that are of interest for a UML CD, and that can be
phrased as forms of inference on the diagram:

Consistency of the whole diagram.

Consistency of classes and associations, to avoid maintaining in the
diagram useless information.

Subsumption of classes (or associations), to detect when properties of a
more general class are inherited by a more specific class.

Equivalence of classes (or associations), to detect and eliminate
redundancy in the diagram.

Implication of properties, to make implicit information explicit.

In the following, we formally define the above reasoning tasks on UML CDs,
and show how they can be recast in terms of FOL reasoning.

To this aim, given a UML CD D, we denote with ΓD the set of FOL sentences
that encode in FOL all constructs of D.
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Forms of reasoning: class and association consistency

A class C is consistent in a UML CD D, if D admits an instantiation in which
C has a non-empty set of instances.

Let ΓD be the set of FOL sentences encoding D, and C(x) the predicate
corresponding to the class C.

Then C is consistent in D iff

ΓD ∪ {∃x.C(x)} is satisfiable (or, ΓD 6|= ∀x.C(x)→ false)

i.e., there exists a model of ΓD in which the extension of C(x) is not empty.

Corresponding FOL reasoning task: satisfiability.

Similarly, we can define consistency of an association in a UML CD.
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Class consistency – Example (by E. Franconi)

Person

Italian English

Lazy LatinLover Gentleman Hooligan

{disjoint}

{disjoint, complete} {disjoint}

ΓD |= ∀x.LatinLover(x)→ false
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Forms of reasoning: diagram consistency

A UML CD D is consistent, if it admits an instantiation, i.e., if its classes can
be populated without violating any of the conditions imposed by D.

Let ΓD be the set of FOL sentences encoding D.

Then, the UML CD D is consistent iff

ΓD is satisfiable

i.e., ΓD admits at least one model.
(Remember that FOL models have a non-empty domain.)

Corresponding FOL reasoning task: satisfiability.

Note: With the UML constructs we have considered, every UML CD D is
consistent. Indeed, every interpretation in which the extension of all predicates
is empty is a model of ΓD.
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Forms of reasoning: full diagram consistency

A UML CD D is fully consistent, if it admits an instantiation in which all
classes and associations have a non-empty extension.

Let C be the set of classes in D.
Let k be the maximum arity of associations in D, and
let An, for n ∈ {2, . . . , k}, be the set of associations of arity n in D.
Let ΓD be the set of FOL sentences encoding D.

Then, the UML CD D is fully consistent iff

ΓD ∪
⋃
C∈C{∃x.C(x)} ∪

⋃k
n=1

⋃
A∈An

{∃x1, . . . , xn.A(x1, . . . , xn)}
is satisfiable.

Corresponding FOL reasoning task: satisfiability.

Exercise

Show that a UML CD D is fully consistent iff every class and every association
of D is consistent in D.
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Forms of reasoning: class subsumption

A class C1 is subsumed by a class C2 (or C2 subsumes C1), in a UML CD D if
D that C2 is a generalization of C1.

Let ΓD be the set of FOL sentences encoding D, and C1(x), C2(x) the
predicates corresponding to the classes C1, and C2 of D.

Then C1 is subsumed by C2 in D iff

ΓD |= ∀x.C1(x)→ C2(x)

Corresponding FOL reasoning task: logical implication.
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Class subsumption – Example

Person

Italian English

Lazy LatinLover Gentleman Hooligan

{disjoint}

{disjoint, complete} {disjoint}

ΓD |= ∀x.LatinLover(x)→ false
ΓD |= ∀x. Italian(x)→ Lazy(x)
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Class subsumption: another example (by E. Franconi)

Italian

Lazy Mafioso LatinLover ItalianProf

{disjoint, complete}

{disjoint}

Γ |= ∀x. ItalianProf (x)→ LatinLover(x)

Note: this is an example of reasoning by cases.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2014/2015 (146/156)



Introduction to ontologies Using logic for representing knowledge Ontology languages UML Class Diagrams as FOL ontologies References

Reasoning on UML Class Diagrams Part 1: Modeling Information through Ontologies

Forms of reasoning: class equivalence

Two classes C1 and C2 are equivalent in a UML CD D, if C1 and C2 denote
the same set of instances in all instantiations of D.

Let ΓD be the set of FOL sentences encoding D, and C1(x), C2(x) the
predicates corresponding to the classes C1, and C2 of D.

Then C1 and C2 are equivalent in D iff

ΓD |= ∀x.C1(x)↔ C2(x)

Note:

If two classes are equivalent then one of them is redundant.

Determining equivalence of two classes allows for their merging, thus
reducing the complexity of the diagram.
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Class equivalence – Example

Person

Italian English

Lazy LatinLover Gentleman Hooligan

{disjoint}

{disjoint, complete} {disjoint}

ΓD |= ∀x.LatinLover(x)→ false
ΓD |= ∀x. Italian(x)→ Lazy(x)
ΓD |= ∀x.Lazy(x) ≡ Italian(x)
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Forms of reasoning: implicit consequence

The properties of various classes and associations may interact to yield stricter
multiplicities or typing than those explicitly specified in the diagram.

More generally . . .

A property P is an (implicit) consequence of a UML CD D if P holds
whenever all conditions imposed by D are satisfied.

Let ΓD be the set of FOL sentences encoding D, and
let P be (the formalization in FOL of) the property of interest.

Then P is an implicit consequence of D iff
ΓD |= P

i.e., the property P holds in every model of ΓD.

Corresponding FOL reasoning task: logical implication.
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Implicit consequences – Example

Student Course

attends

GradStudent AdvCourse

gradAttends

3..15 I 1..10

0..20 I 2..5
15

ΓD |= ∀x.AdvCourse(x2)→ ]{x1 | gradAttends(x1 , x2 )} ≤ 15
ΓD |= ∀x.GradStudent(x)→ Student(x)
ΓD 6|= ∀x.AdvCourse(x)→ Course(x)
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Unrestricted vs. finite model reasoning

NaturalNumber

EvenNumber

1..1

double
H

1..1

Due to the ISA relationship, every instance of EvenNumber is also an instance
of NaturalNumber , i.e., we have that

ΓD |= ∀x.EvenNumber(x)→ NaturalNumber(x)

Question: Does also the reverse implication hold? I.e.,

ΓD |= ∀x.NaturalNumber(x)→ EvenNumber(x) ?
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Unrestricted vs. finite model reasoning (cont’d)

NaturalNumber

EvenNumber

1..1

double
H

1..1

Due to the 1..1 multiplicities, the classes NaturalNumber and
EvenNumber are in bijection.

Hence, in every instantiation of the diagram,
NaturalNumber and EvenNumber contain the same number of instances.

Does it hold that ΓD |= ∀x.NaturalNumber(x)→ EvenNumber(x) ?

If the domain is infinite, the implication does not hold.

If the domain is finite, the implication does hold.
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Finite model reasoning

Finite model reasoning

Reasoning is done only with respect to models with a finite domain.

Finite model reasoning is interesting for standard databases, which are
(typically) assumed to be finite.

The previous example shows that in UML CDs, finite model reasoning is
different from unrestricted model reasoning.
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Finite model reasoning – Example

EmployeeHighSalary

WealthyEmp

0..1

isHelpedBy
H

1..?

Let Paul be an employee: Employee(Paul)

Question: Does it follow that Paul has a high salary, i.e.,

ΓD |= HighSalary(Paul) ?

Answer: If we consider only finite models, then the answer is “yes”.
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Questions

In the above simple examples reasoning could be easily carried out on intuitive
grounds.
However, two questions come up.

1. Can we develop sound, complete, and terminating procedures for reasoning
on UML CDs?

We cannot do so by directly relying on FOL!

But we can use specialized logics with better computational properties.
A form of such specialized logics are Description Logics.

2. How hard is it to reason on UML CDs in general?

What is the worst-case situation?

Can we single out interesting fragments on which to reason efficiently?

We will address also answering queries over such diagrams, which is in general
a more complicated task than satisfiability or subsumption.

Note: all what we have said holds for Entity-Relationship Diagrams as well!
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