
Ontology and Database Systems:
Ontology-based Systems

Part 6: Reasoning in the ALC family

Diego Calvanese

Faculty of Computer Science
Master of Science in Computer Science

A.Y. 2013/2014

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

Part 6

Reasoning in the ALC family

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (1/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (2/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC
ALC and first-order logic
Bisimulations
Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (3/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

ALC and first-order logic Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC
ALC and first-order logic
Bisimulations
Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (4/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

ALC and first-order logic Part 6: Reasoning in the ALC family

Recall the definition of ALC – Concept language

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

conjunction C1 u C2 Hum uMale CI1 ∩ CI2
value restriction ∀R.C ∀hasChild.Male {o | ∀o′. (o, o′) ∈ RI → o′ ∈ CI}
negation ¬C ¬∀hasChild.Male ∆I \ CI

(C1, C2 denote arbitrary concepts and R an arbitrary role)

We make also use of the following abbreviations:

Construct Stands for
⊥ A u ¬A (for some atomic concept A)
> ¬⊥

C1 t C2 ¬(¬C1 u ¬C2)
∃R.C ¬∀R.¬C

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (5/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

ALC and first-order logic Part 6: Reasoning in the ALC family

ALC ontology (or knowledge base)

Def.: ALC ontology

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:

The TBox is a set of inclusion assertions on ALC concepts: C1 v C2

The ABox is a set of membership assertions on individuals:

Membership assertions for concepts: A(c)
Membership assertions for roles: P (c1, c2)

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

Example

TBox: Father ≡ Human uMale u ∃hasChild
HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)

HappyAnc v ∀descendant.HappyFather
Teacher v ¬Doctor u ¬Lawyer

ABox: Teacher(mary), hasFather(mary, john), HappyAnc(john)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (6/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

ALC and first-order logic Part 6: Reasoning in the ALC family

From ALC to First Order Logic

We have seen that ALC is a well-behaved fragment of function-free First Order
Logic with unary and binary predicates only (FOLbin).

To translate an ALC TBox to FOLbin we proceed as follows:
1 Introduce: a unary predicate A(x) for each atomic concept A

a binary predicate P (x, y) for each atomic role P
2 Translate complex concepts as follows, using translation functions tx, one

for each variable x:

tx(A) = A(x) tx(C uD) = tx(C) ∧ tx(D)
tx(¬C) = ¬tx(C) tx(C tD) = tx(C) ∨ tx(D)

tx(∃P .C) = ∃y.P (x, y) ∧ ty(C)
tx(∀P .C) = ∀y.P (x, y)→ ty(C) (with y a new variable)

3 Translate a TBox T =
⋃

i{ Ci v Di } as the FOL theory:

ΓT =
⋃

i{ ∀x. tx(Ci)→ tx(Di) }
4 Translate an ABox A =

⋃
i{ Ai(ci) } ∪

⋃
j{ Pj(c

′
j , c
′′
j) } as the FOL th.:

ΓA =
⋃

i{ Ai(ci) } ∪
⋃

j{ Pj(c
′
j , c
′′
j) }

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (7/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

ALC and first-order logic Part 6: Reasoning in the ALC family

From ALC to First Order Logic – Reasoning

Via the translation to FOLbin, there is a direct correspondence between DL
reasoning services and FOL reasoning services:

C is satisfiable iff its translation tx(C) is satisfiable

C is satisfiable w.r.t. T iff ΓT ∪ { ∃x. tx(C) } is satisfiable

T |=ALC C v D iff ΓT |=FOL ∀x. (tx(C)→ tx(D))

C v D iff |=
FOL

tx(C)→ tx(D)

> v C iff |=
FOL

tx(C)

(We use |=FOL ϕ to denote that ϕ is a valid FOL formula.)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (8/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

ALC and first-order logic Part 6: Reasoning in the ALC family

From First Order Logic to ALC?

Question

Is it possible to define a transformation τ(·) from FOLbin formulas to ALC
concepts and roles such that the following is true?

|=
FOL

ϕ implies > v τ(ϕ)

If yes, we should specify the transformation τ(·).

If not, we should provide a formal proof that τ(·) does not exist.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (9/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Bisimulations Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC
ALC and first-order logic
Bisimulations
Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (10/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Bisimulations Part 6: Reasoning in the ALC family

Distinguishability of interpretations

Def.: Distinguishing between models

If I and J are two interpretations of a logic L, then we say that I and J are
distinguishable in L if there is a formula ϕ of the language of L such that

I |=L ϕ and J 6|=L ϕ

Proving non equivalence:

To show that two logics L1 and L2 with the same class of interpretations are
not equivalent, it is enough to show that there are two interpretations I and
J that are distinguishable in L1 and not distinguishable in L2.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (11/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Bisimulations Part 6: Reasoning in the ALC family

Bisimulation

The notion of bisimulation in description logics is intended to capture
equivalence of objects and their properties.

Def.: Bisimulation

A bisimulation ∼B between two ALC interpretations I and J is a relation in
∆I ×∆J such that, for every pair of objects o1 ∈ ∆I and o2 ∈ ∆J , if
o1 ∼B o2 then the following hold:

for every atomic concept A: o1 ∈ AI if and only if o2 ∈ AJ
(local condition);

for every atomic role P :

for each o′1 with (o1, o
′
1) ∈ P I , there is an o′2 with (o2, o

′
2) ∈ PJ such that

o′1 ∼B o
′
2 (forth property);

for each o′2 with (o2, o
′
2) ∈ PJ , there is an o′1 with (o1, o

′
1) ∈ P I such that

o′1 ∼B o
′
2 (back property).

(I, o1) ∼ (J , o2) means that there is a bisimulation ∼B between I and J such
that o1 ∼B o2.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (12/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Bisimulations Part 6: Reasoning in the ALC family

Bisimulation and ALC

Lemma

ALC cannot distinguish o1 in interpretation I and o2 in interpretation J when
(I, o1) ∼ (J , o2).
In other words, if (I, o1) ∼ (J , o2), then for every ALC concept C we have that

o1 ∈ CI if and only if o2 ∈ CJ

Proof.

By induction on the structure of concepts. [Exercise]

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (13/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Properties of ALC Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC
ALC and first-order logic
Bisimulations
Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (14/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Properties of ALC Part 6: Reasoning in the ALC family

Disjoint union model property of ALC

Def.: Disjoint union model

For two interpretations I = (∆I , ·I) and J = (∆J , ·J), the disjoint union of
I and J is the interpretation:

I] J = (∆I]J , ·I]J)

where

∆I]J = ∆I]∆J ;

AI]J = AI]AJ , for every atomic concept A;

P I]J = P I] PJ , for every atomic role P .

Exercise

Prove via the bisimulation lemma that, for each pair of ALC concepts C and D:

if I |= C v D and J |= C v D then I] J |= C v D.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (15/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Properties of ALC Part 6: Reasoning in the ALC family

Tree model property of DLs

Theorem

An ALC concept C is satisfiable w.r.t. a TBox T if and only if there is a
tree-shaped model I of T and an object o such that o ∈ CI .

Proof.

The “if” direction is obvious. For the “only-if” direction, we exploit the fact
that an interpretation and its unraveling into a tree are bisimilar.

C

A

A B

A,B

r r

r rr r

A

A B

A,B A,B

A B

A,B A,B

A B

A,B A,B

r r

r r

r r

r r

r r

r r

...

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (16/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Properties of ALC Part 6: Reasoning in the ALC family

Expressive power of ALC

Exercise

Prove, using tree model property, that the FOLbin formula ∀x.P (x, x) cannot be
translated into ALC. In other words, prove that there is no ALC TBox T such
that

I |=ALC T if and only if I |=FOL ∀x.P (x, x)

A consequence of the above fact, and of the fact that ALC can be expressed in
FOLbin is that:

Expressive power of ALC
ALC is strictly less expressive than FOLbin.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (17/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Properties of ALC Part 6: Reasoning in the ALC family

From FOLbin to ALC

Def.: Bisimulation invariance

A FOL unary formula ϕ(x) is invariant for bisimulation if for all
interpretations I and J , and all objects o1 and o2 such that (I, o1) ∼ (J , o2)

I, [x→ o1] |= ϕ(x) if and only if J , [x→ o2] |= ϕ(x)

Theorem ([van Benthem, 1976; van Benthem, 1983])

The following are equivalent for all unary FOLbin ϕ(x):

ϕ(x) is invariant for bisimulation.

ϕ(x) is equivalent to the standard translation of an ALC concept.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (18/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability
Complexity of concept satisfiability
Lower bounds for reasoning over concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (19/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Tableaux for concept satisfiability Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability
Complexity of concept satisfiability
Lower bounds for reasoning over concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (20/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Tableaux for concept satisfiability Part 6: Reasoning in the ALC family

Negation Normal Form

Definition

A concept C is in negation normal form (NNF) if the ’¬’ operator is applied
only to atomic concepts

Lemma

Every concept C can be transformed in linear time into an equivalent concept
in NNF.

Proof.

A concept C can be transformed in NNF by the following rewriting rules that
push inside the ¬ operator:

¬(C uD) ≡ ¬C t ¬D
¬(C tD) ≡ ¬C u ¬D
¬(¬C) ≡ C
¬∀P .C ≡ ∃P .¬C
¬∃P .C ≡ ∀P .¬C

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (21/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Tableaux for concept satisfiability Part 6: Reasoning in the ALC family

Tableaux rules for checking concept satisfiability

Let C0 be an ALC concept in NNF.

To test satisfiability of C0, a tableaux algorithm:

1 starts with A0 := {C0(x0)}, and

2 constructs new ABoxes, by applying the following tableaux rules:

Rule Condition −→ Effect

→u (C1 u C2)(x) ∈ A −→ A := A ∪ {C1(x), C2(x)}
→t (C1 t C2)(x) ∈ A −→ A := A ∪ {C1(x)} or A := A ∪ {C2(x)}
→∃ (∃P .C)(x) ∈ A −→ A := A ∪ {P (x, y), C(y)},where y is fresh
→∀ (∀P .C)(x), P (x, y) ∈ A −→ A := A ∪ {C(y)}

Note:

A rule is applicable to an ABox A only if it has an effect on A, i.e., if it
adds some new assertion; otherwise it is not applicable to A.

Since the →t rule is non-deterministic, starting from A0, we obtain after
each rule application a set S of ABoxes.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (22/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Tableaux for concept satisfiability Part 6: Reasoning in the ALC family

Complete and clash-free ABoxes

Definition

An ABox A
is complete if none of the tableaux rules applies to it.

has a clash if {C(x),¬C(x)} ⊆ A, and is clash-free otherwise.

A clash represents an obvious contradiction. Hence, it is immediate so see that
an ABox containing a clash is unsatisfiable.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (23/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Tableaux for concept satisfiability Part 6: Reasoning in the ALC family

Tableaux for concept satisfiability – Example

Consider concept C0 = (A1 u
C3︷ ︸︸ ︷

∃P .(A2 tA3))︸ ︷︷ ︸
C1

u∀P .¬A2︸ ︷︷ ︸
C2

A0 = {C0(x0)}

A1 = A0 ∪ {C1(x0), C2(x0)}

A2 = A1 ∪ {A1(x0), C3(x0)}

A3 = A2 ∪ {P (x0, x1), (A2 tA3)(x1)}

A4 = A3 ∪ {¬A2(x1)}

A5 = A4 ∪ {A2(x1)}X A6 = A4 ∪ {A3(x1)}
√

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (24/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Tableaux for concept satisfiability Part 6: Reasoning in the ALC family

Termination, soundness, and completeness

For a set finite S of ABoxes, we say that S is consistent if it contains at least
one satisfiable ABox.

Lemma

1 Termination: There cannot be an infinite sequence of rule applications

S0 = {{C0(x0)}} −→ S1 −→ S2 −→ · · ·

2 Soundness: If by applying a tableaux rule to the set S of ABoxes we
obtain the set S ′, then S is consistent iff S ′ is consistent.

3 Completeness: Every complete and clash-free ABox A is satisfiable.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (25/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Tableaux for concept satisfiability Part 6: Reasoning in the ALC family

Canonical interpretation and decidability of satisfiability

To show that every complete and clash-free ABox A is satisfiable, we describe
how to generate from such an A an interpretation IA that is a model of A.

This interpretation is called . . .

Def.: Canonical interpretation IA of a complete and clash-free ABox A
∆IA = {x | C(x), P (x, y), or P (y, x) ∈ A}.
AIA = {x | A(x) ∈ A}, for every atomic concept A.

P IA = {(x, y) | P (x, y) ∈ A}, for every atomic role P .

Theorem

Satisfiability of ALC concepts is decidable.

Proof.

Is based on showing that the canonical interpretation of an ABox A obtained
starting from a concept C is indeed a model of C.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (26/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Tableaux for concept satisfiability Part 6: Reasoning in the ALC family

Satisfiability of ALC concepts – Exercises

Exercise

Check the satisfiability of the following concepts:

1 ¬(∀R.A t ∃R.(¬A u ¬B))

2 ∃R.(∀S.C) u ∀R.(∃S.¬C)

3 ∃S.C u ∃S.D u ∀S.(¬C t ¬D)

4 ∃S.(C uD) u (∀S.¬C t ∃S.¬D)

5 C u ∃R.A u ∃R.B u ¬∃R.(A uB)

Exercise

Check if the following subsumption is valid:

¬∀R.A u ∀R.((∀R.B) tA) v ∀R.¬(∃R.A) u ∃R.(∃R.B)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (27/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Tableaux for concept satisfiability Part 6: Reasoning in the ALC family

Some significant cases of ALC subsumption – Exercises

Which of the following statements is true? Explain your answer.

1 ∀R.(A uB) v ∀R.A u ∀R.B
√

2 ∀R.A u ∀R.B v ∀R.(A uB)
√

3 ∀R.A t ∀R.B v ∀R.(A tB)
√

4 ∀R.(A tB) v ∀R.A t ∀R.B RI = {(x, y), (x, z)}, AI = {y}, BI = {z}

5 ∃R.(A uB) v ∃R.A u ∃R.B
√

6 ∃R.(A tB) v ∃R.A t ∃R.B
√

7 ∃R.A t ∃R.B v ∃R.(A tB)
√

8 ∃R.A u ∃R.B v ∃R.(A uB) RI = {(x, y), (x, z)}, AI = {y}, BI = {z}

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (28/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Complexity of concept satisfiability Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability
Complexity of concept satisfiability
Lower bounds for reasoning over concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (29/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Complexity of concept satisfiability Part 6: Reasoning in the ALC family

Complexity of reasoning in ALC

Exercise

Consider the concept Cn defined inductively as follows;

C1 = ∃P .A u ∃P .¬A
Ci+1 = ∃P .A u ∃P .¬A u ∀P .Ci, for i ∈ {1, . . . , n}

Check the form of the canonical interpretation of the ABox obtained starting
from {Cn(x0)}.

Solution

Given the input concept Cn, the satisfiability algorithm generates a complete
and open ABox whose canonical interpretation is a binary tree of depth n, and
thus consists of 2n+1 − 1 individuals.

So, in principle, the complexity of checking satisfiability of an ALC concept
might require exponential space. However, we show that this can be avoided.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (30/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Complexity of concept satisfiability Part 6: Reasoning in the ALC family

Upper bound for concept satisfiability in ALC

Theorem [Schmidt-Schauss and Smolka, 1991]

Satisfiability of ALC concepts is in PSpace.

Proof sketch.

We show that if an ALC concept is satisfiable, we can construct a model using
only polynomial space.

Since PSpace = NPSpace, we consider a non-deterministic algorithm
that for each application of the →t rule, chooses the “correct” ABox.

Then, the tree model property of ALC implies that the different branches
of the tree model to be constructed by the algorithm can be explored
separately, in a depth-first manner, as follows:

1 Apply exhaustively both the →u rule and (non-deterministically) the →t
rule, and check for clashes.

2 Choose a node x and apply the →∃ rule to generate all necessary direct
successors of x.

3 Apply the →∀ rule to propagate concepts to the newly generated successors.
4 Successively handle the successors in the same way.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (31/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Complexity of concept satisfiability Part 6: Reasoning in the ALC family

Satisfiability of ALC ABoxes

To test whether a given ABox A is satisfiable:

1 Convert all concepts appearing in the assertions in A in NNF, obtaining an
ABox A0.

2 Apply the tableaux algorithm starting simply from A0.

Theorem

Satisfiability of ALC ABoxes is in PSpace.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (32/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability
Complexity of concept satisfiability
Lower bounds for reasoning over concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (33/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Sources of complexity for reasoning over concepts

We analyze now the intrinsic complexity of reasoning over concept expressions
for various sublanguages of ALC.

Two sources of complexity:

Union (U) (and Booleans in general) require solving propositional
satisfiability (complexity of type NP).

Interaction between ∃R.C (E) and ∀R.C gives rise to complexity of type
coNP.

When they are combined, the complexity jumps to PSpace.

This provides the basis for the hardness results in the following table:

Complexity of concept satisfiability: [Donini et al., 1992; Donini et al., 1997]

AL, ALN PTime
ALU , ALUN NP-complete
ALE coNP-complete
ALC, ALCN , ALCI, ALCQI PSpace-complete

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (34/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Concept satisfiability in ALU is NP-hard

We reduce satisfiability of Boolean formulae in CNF to concept
satisfiability in ALU .

For a Boolean formula F in CNF, let ρ(F) be the ALU concept obtained by:

considering Boolean variables as atomic concepts, and

replacing in F each ∧ with u, and each ∨ with t.

Theorem

F is satisfiable iff ρ(F) is satisfiable.

Proof.

Let F = C1 ∧ · · · ∧ Cn be a Boolean formula in CNF over Boolean variables
A1, . . . , Ak.

Then F is satisfiable if and only if one can choose in every clause Ci a literal Li

s.t. {L1, . . . , Ln} does not contain Aj and ¬Aj for some variable Aj .

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (35/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Concept satisfiability in ALU is NP-hard (Cont’d)

Proof (“Only If” Part).

Suppose F is satisfiable. Then there exist L1, . . . , Ln as specified above.
Let I be the interpretation with ∆I = {1}, and such that

AI =

{
{1}, if A = Li for some i

∅, otherwise
P I = ∅, for every role P .

Then LIi = {1}, for i ∈ {1 . . . , n}. Hence (ρ(F))I = {1}, so ρ(F) is satisfiable.

Proof (“If” Part).

Suppose ρ(F) is a satisfiable concept.

Then there exists an interpretation I and an a ∈ ∆I such that a ∈ (ρ(F))I .

Hence every clause Ci contains a literal Li such that a ∈ LIi .

Thus {L1, . . . , Ln} does not contain Aj and ¬Aj for some variable Aj , which
implies that F is satisfiable.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (36/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Concept satisfiability in ALE is coNP-hard

Def.: Exact Cover

Let U = {u1, . . . , un} be a finite set, and let M = {M1, . . . ,Mm} be a family
of subsets of U .
An exact cover for (U,M) are sets Mi1 , . . . ,Mi` of M that:

are pairwise disjoint, i.e., Mih ∩Mik = ∅, for h 6= k, and

cover U , i.e., Mi1 ∪ · · · ∪Mi` = U .

The Exact Cover problem consists in checking whether there exists an exact
cover for a given (U,M).

The Exact Cover problem is NP-complete.

We reduce Exact Cover to concept unsatisfiability in ALE .

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (37/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Reducing Exact Cover to concept unsatisfiability in ALE

Given U = {u1, . . . , un} and M = {M1, . . . ,Mm}, we consider the concept

CM = C1 u · · · u Cm uD

where: Ci = Æ1
iP .Æ2

iP . · · ·Æn
i P .Æ1

iP .Æ2
iP . · · ·Æn

i P .>

with Æj
i =

{
∃, if uj ∈Mi

∀, if uj /∈Mi

D = ∀P . · · · ∀P .︸ ︷︷ ︸
2n

⊥

Notice that the quantifier prefix is duplicated, i.e., for every element uj ∈ U
there are two quantifiers in each Ci, one at level j and one at level n+ j.

Theorem

There is an exact cover for (U,M) iff CM is unsatisfiable.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (38/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Reducing Exact Cover to ALE concept unsat. – Example

Let U = {u1, u2, u3}, and M = {M1,M2,M3}, where

M1 = {u1, u2}, M2 = {u2, u3}, M3 = {u3}

The corresponding ALE-concept is CM = C1 u C2 u C3 uD, where

u1 u2 u3 u1 u2 u3

M1 = {u1, u2} ; C1 = ∃P .∃P .∀P .∃P .∃P .∀P .>
M2 = {u2, u3} ; C2 = ∀P .∃P .∃P .∀P .∃P .∃P .>
M3 = {u3} ; C3 = ∀P .∀P .∃P .∀P .∀P .∃P .>

D = ∀P .∀P .∀P .∀P .∀P .∀P .⊥

Intuitively, the existentials in the Cis force the existence of a P -path of
length 2n, iff (U,M) has an exact cover.
If the existence of such a path is enforced, the presence in CM of D causes
a clash, otherwise CM is satisfiable.
Notice that for the reduction to work correctly, the quantifier prefix needs
to be of length 2n rather than n. Consider e.g., the instance of exact cover
(U, {M1,M2}), where U , M1, and M2 are as above.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (39/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Concept satisfiability in ALC is PSpace-hard

Def.: Quantified Boolean Formulae

A quantified Boolean formula (QBF) has the form

(Æ1X1)(Æ2X2) · · · (ÆnXn)F (X1, . . . , Xn)

where each Æi is either ∀ or ∃, and F (X1, . . . , Xn) is a Boolean formula (in
CNF) with Boolean variables X1, . . . , Xn.
Such formula is valid if

for every assignment to X1 / there exists an assignment to X1 such that
for every assignment to X2 / there exists an assignment to X2 such that
· · ·
F (X1, . . . , Xn) evaluates to true.

The Quantified Boolean Formulae problem consists in checking whether a
given QBF is valid.

The Quantified Boolean Problem is PSpace-complete.

We reduce QBF to concept satisfiability in ALC .
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (40/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Reducing QBF to concept satisfiability in ALC
Consider the QBF Q = (Æ1X1)(Æ2X2) · · · (ÆnXn)F , where
F = G1 ∧ · · · ∧Gm is a Boolean formula in CNF. We construct the concept

CQ = D1 u C1
1 u · · · u Cm

1

where in CQ all concepts are formed over atomic concept A and atomic role P .

The concept D1 encodes the quantifier prefix, and is defined inductively:

Di =

{
∃P .A u ∃P .¬A u ∀P .Di+1, if Æi = ∀
∃P .> u ∀P .Di+1, if Æi = ∃

for i ∈ {1, . . . , n}

and Dn+1 = >.

Each concept C`
1 encodes a clause G`, and is defined inductively:

C`
i =

∀P .(A t C`

i+1), if Xi appears in G`

∀P .(¬A t C`
i+1), if ¬Xi appears in G`

∀P .C`
i+1, if Xi does not appear in G`

for i ∈ {1, . . . , n}

and C`
n+1 = ⊥.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (41/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Reducing QBF to ALC concept satisfiability – Example

Let Q = (∀X)(∃Y)(∀Z) (

G1︷ ︸︸ ︷
(¬X ∨ Y)∧

G2︷ ︸︸ ︷
(X ∨ ¬Y)∧

G3︷ ︸︸ ︷
(¬X ∨ Y ∨ ¬Z)).

Then CQ = D u C1 u C2 u C3, where

D = ∃P .A u ∃P .¬A u ∀P .(∃P .> u ∀P .(∃P .A u ∃P .¬A u ∀P .>))

C1 = ∀P .(¬A t ∀P .(A t ∀P .(⊥))) ← [G1 = ¬X ∨ Y

C2 = ∀P .(A t ∀P .(¬A t ∀P .(⊥))) ← [G2 = X ∨ ¬Y
C3 = ∀P .(¬A t ∀P .(A t ∀P .(¬A t ⊥))) ← [G3 = ¬X ∨ Y ∨ ¬Z

Interpretation generated by D:

Model of CQ:
1

2

A

3

¬A

4

A

5

¬A

6
A

7
¬A

8
A

9
¬A

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (42/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over concept expressions Part 6: Reasoning in the ALC family

Complexity of concept satisfiability and subsumption

The previous reductions give us lower bounds for concept satisfiability.

Since C is satisfiable iff C v ⊥, and all three languages can express ⊥,
this gives also complementary lower bounds for concept subsumption.

The tableaux algorithms for ALC, can be refined to work more efficiently
for the cases of ALU and ALE concept satisfiability and subsumption
[Schmidt-Schauss and Smolka, 1991; Donini et al., 1992].

Theorem

Concept satisfiability is:

NP-complete in ALU ,

coNP-complete in ALE ,

PSpace-complete in ALC.

Theorem

Concept subsumption is:

coNP-complete in ALU ,

NP-complete in ALE ,

PSpace-complete in ALC.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (43/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes
Lower bounds for reasoning over TBoxes

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (44/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes
Lower bounds for reasoning over TBoxes

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (45/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

TBox reasoning

TBox Satisfiability: T is satisfiable, if it admits at least one model.

Concept Satisfiability w.r.t. a TBox: C is satisfiable w.r.t. T , if there is
a model I of T such that CI is not empty, i.e., T 6|= C ≡ ⊥.

Subsumption: C1 is subsumed by C2 w.r.t. T , if for every model I of T
we have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent w.r.t. T if for every model I of T
we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

We can reduce all reasoning tasks to concept satisfiability wrt a TBox.
[Exercise]

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (46/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Acyclic TBox

Def.: Concept definition

A definition of an atomic concept A is an assertion of the form A ≡ C, where
C is an arbitrary concept expression in which A does not occur.

Def.: Cyclic concept definitions

A set of concept definitions is cyclic if it is of the form

A1 ≡ C1[A2], A2 ≡ C2[A3], . . . , An ≡ Cn[A1]

where C[A] means that A occurs in the concept expression C.

Def.: Acyclic TBox

A TBox is acyclic if it is a set of concept definitions that neither contains
multiple definitions of the same concept, nor a set of cyclic definitions.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (47/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Unfolding w.r.t. an acyclic TBox

Satisfiability of a concept C w.r.t. an acyclic TBox T can be reduced to pure
concept satisfiability by unfolding C w.r.t. T :

1 We start from the concept C to check for satisfiability.

2 Whenever T contains a definition A ≡ C ′, and A occurs in C, then in C
we substitute A with C ′.

3 We continue until no more substitutions are possible.

Theorem

Let UnfoldT (C) be the result of unfolding C w.r.t T .
Then C is satisfiable w.r.t. T iff UnfoldT (C) is satisfiable.

Proof.

By induction on the number of unfolding steps. [Exercise]

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (48/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Complexity of unfolding w.r.t. an acyclic TBox

Unfolding a concept w.r.t. an acyclic TBox might lead to an exponential blow
up.

For each n, let Tn be the acyclic TBox:

A0 ≡ ∀P .A1 u ∀R.A1

A1 ≡ ∀P .A2 u ∀R.A2

...
An−1 ≡ ∀P .An u ∀R.An

It is easy to see that UnfoldTn(A0) grows exponentially with n.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (49/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. acyclic TBoxes Part 6: Reasoning in the ALC family

Concept satisfiability w.r.t. an acyclic TBox

We adopt a smarter strategy: unfolding on demand

Rule Condition −→ Effect

→u (C1 u C2)(x) ∈ A −→ A := A ∪ {C1(x), C2(x)}
→t (C1 t C2)(x) ∈ A −→ A := A ∪ {C1(x)} or A := A ∪ {C2(x)}
→∃ (∃P .C)(x) ∈ A −→ A := A ∪ {P (x, y), C(y)},where y is fresh
→∀ (∀P .C)(x), P (x, y) ∈ A −→ A := A ∪ {C(y)}
→T A(x) ∈ A and A ≡ C ∈ T −→ A := A ∪ {nnf(C)(x)}

Theorem

In ALC, concept satisfiability w.r.t. acyclic TBoxes is PSpace-complete.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (50/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary TBoxes Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes
Lower bounds for reasoning over TBoxes

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (51/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary TBoxes Part 6: Reasoning in the ALC family

Tableaux rule for arbitrary TBox axioms

When the TBox may contain cycles, unfolding cannot be used, since in general
it would not terminate.

Instead, we modify the tableaux by relying on the following observations:

C v D is equivalent to > v ¬C tD.
Hence,

⋃
i{Ci v Di} is equivalent to a single inclusion > v

⊔
i(¬Ci tDi).

If > v C is in T , then for every ABox A generated by the tableaux and for
every occurrence of some x in A, we have to add also the fact C(x).

We can obtain this effect by adding a suitable rule to the tableaux rules:

Rule Condition −→ Effect

→u (C1 u C2)(x) ∈ A −→ A := A ∪ {C1(x), C2(x)}
→t (C1 t C2)(x) ∈ A −→ A := A ∪ {C1(x)} or A := A ∪ {C2(x)}
→∃ (∃P .C)(x) ∈ A −→ A := A ∪ {P (x, y), C(y)},where y is fresh

→∀ (∀P .C)(x), P (x, y) ∈ A −→ A := A ∪ {C(y)}
→T x occurs in A −→ A := A ∪ {

⊔
CvD∈T nnf(¬C tD)(x)}

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (52/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary TBoxes Part 6: Reasoning in the ALC family

Tableaux rule for arbitrary TBox axioms – Example

Exercise

Check if C is satisfiable w.r.t. the TBox {C v ∃R.C}.

Solution

{C(x0)} →T {C(x0), (¬C t ∃R.C)(x0)}
→t {C(x0), . . . , (∃R.C)(x0)}
→∃ {C(x0), . . . , R(x0, x1), C(x1)}
→T {C(x0), . . . , R(x0, x1), C(x1), (¬C t ∃R.C)(x1)}
→t {C(x0), . . . , R(x0, x1), C(x1), . . . ,∃R.C(x1)}
→∃ {C(x0), . . . , R(x0, x1), C(x1), . . . , R(x1, x2), C(x2)}
→T · · ·

Termination is no longer guaranteed!

Due to the application of the →T -rule, the nesting of the concepts does not
decrease with each rule-application step.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (53/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary TBoxes Part 6: Reasoning in the ALC family

Blocking

To guarantee termination, we need to understand when it is not necessary
anymore to create new objects.

Def.: Blocking

y is an ancestor of x in an ABox A, if A contains

R0(y, x1), R1(x1, x2), . . . , Rn(xn, x).

We label objects with sets of concepts: L(x) = {C | C(x) ∈ A}.
x is directly blocked in A if it has an ancestor y with L(x) ⊆ L(y).

If y is the closest such node to x, we say that x is blocked by y.

A node is blocked if it is directly blocked or one of its ancestors is blocked.

The application of all rules is restricted to nodes that are not blocked.
With this blocking strategy, one can show that the algorithm is guaranteed to
terminate.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (54/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary TBoxes Part 6: Reasoning in the ALC family

Blocking – Exercise

Exercise

Check if C is satisfiable w.r.t. the TBox {C v ∃R.C}.

Solution

{C(x0)} →T {C(x0), (¬C t ∃R.C)(x0)}
→t {C(x0), (¬C t ∃R.C)(x0), (∃R.C)(x0)}
→∃ {C(x0), (¬C t ∃R.C)(x0), (∃R.C)(x0), R(x0, x1), C(x1)}

x1 is blocked by x0 since L(x1) = {C} and L(x0) = {C,¬C t ∃R.C, ∃R.C},
hence L(x1) ⊆ L(x0).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (55/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary TBoxes Part 6: Reasoning in the ALC family

Complexity of concept satisfiability w.r.t. a TBox

Cyclic interpretations

The interpretation IA generated from an ABox A obtained by the tableaux
algorithm with blocking strategy is defined as follows:

∆IA = {x | C(x) ∈ A and x is not blocked}
AIA = {x | x ∈ ∆IA and A(x) ∈ A}
P IA = {(x, y) | {x, y} ⊆ ∆IA and P (x, y) ∈ A} ∪

{(x, y) | x ∈ ∆IA , P (x, y′) ∈ A, and y′ is blocked by y}

Complexity

The algorithm runs no longer in PSpace since it may generate role paths of
exponential length before blocking occurs.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (56/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary TBoxes Part 6: Reasoning in the ALC family

Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than reasoning over
concept expressions:

Bad news:

without restrictions on the form of TBox assertions, reasoning over DL
ontologies is already ExpTime-hard, even for very simple DLs (see, e.g.,
[Donini, 2003]).

Good news:

We can add a lot of expressivity (i.e., essentially all DL constructs seen so
far), while still staying within the ExpTime upper bound [Pratt, 1979;

Schild, 1991; Calvanese and De Giacomo, 2003].

There are DL reasoners that perform reasonably well in practice for such
DLs (e.g, Racer, Pellet, Fact++, . . .) [Möller and Haarslev, 2003].

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (57/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning w.r.t. arbitrary TBoxes Part 6: Reasoning in the ALC family

Finite model property

Theorem

A satisfiable ALC TBox has a finite model.

Proof.

The model constructed via tableaux is finite.
Completeness of the tableaux procedure implies that if a TBox is satisfiable,
then the algorithm will find a model, which is indeed finite

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (58/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes
Lower bounds for reasoning over TBoxes

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (59/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Lower bounds for reasoning over ALC ontologies

Theorem

The following problems are ExpTime-hard in ALC:

concept subsumption w.r.t. a TBox;

concept satisfiability w.r.t. a TBox;

ontology satisfiability.

Recall that ALC is closed under concept negation and that:

T |= C1 v C2 iff C1 u ¬C2 is unsatisfiable w.r.t. T .

C is satisfiable w.r.t. T iff the ontology 〈T , {C(a0)}〉 is satisfiable.

Hence it suffices to prove the hardness result for subsumption w.r.t. a TBox.

We look at a proof based on encoding the two player corridor tiling problem.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (60/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Two player corridor tiling game

A Tiling system T consists of a finite set of square tile types with horizontal
and vertical adjacency conditions.

The adjacency conditions are sometimes represented by coloring the four
edges of the tiles (assuming that the tiles cannot be flipped or rotated).
Adjacent tiles must have the same color on touching sides.

0 1 2 3 4 k

. . .

A corridor tiling is a tiling of a corridor of width n with tiles of T respecting
the adjacency conditions.

. . .0

. . .1

. . .2

1 2 3 4 n

...

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (61/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Two player corridor tiling game

∀lice and ∃lias alternatively place a tile, row by row, from left to right,
respecting adjacency conditions.

∃lias wins if

he can place a special “winning tile” in the second position of a row, or
he can play in such a way that ∀lice can no longer place a tile.

In other words, ∃lias loses if he cannot place a tile, or if the game goes on
forever.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (62/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Two player corridor tiling problem

Def.: Two player corridor tiling problem

Instance:

A tiling system, expressed as T = (k,H, V), where

0, 1, . . . , k are the tile types, with k being the winning tile.
H ⊆ [0..k]× [0..k] is the horizontal adjacency relation.
V ⊆ [0..k]× [0..k] is the vertical adjacency relation.

An initial row of tiles t1t2 · · · tn of length n.

Question: Does ∃lias have a winning strategy?
I.e., for every move ∀lice makes, is there a move ∃lias can counter with, in such
a way that he wins?

Theorem

Two player corridor tiling is ExpTime-complete.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (63/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Encoding of two player corridor tiling in ALC

We show now how to reduce the two player corridor tiling problem to
subsumption w.r.t. an ALC TBox.

The intention is to represent each placed tile by an object.
The object carries the information about the last n moves made.

We use an atomic role N (for next) to connect objects representing
successive tiles. We connect an object at the end of a row, to the one at
the beginning of the next row.

We use the following atomic concepts:

Ci, for i ∈ [1..n], denoting that the column of the tile represented by an
object is i.
Lt

i, for each i ∈ [1..n] and each t ∈ [0..k], denoting that the last tile placed
in column i has been tile t.
A, denoting that it is ∀lice’s turn to place the current tile.
W , denoting that ∃lias wins.

We use these concepts and roles to construct an ALC TBox TT that encodes a
tiling problem.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (64/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Encoding of two player corridor tiling in ALC (2)

We introduce in TT the following concept inclusions to ensure that tilings are
correctly represented.

To encode that each tile is placed in exactly one column in the corridor:

> v C1 t · · · t Cn

Ci v ¬Cj for i, j ∈ [1..n], i 6= j

To encode that the tiles are placed in the correct left-to-right order:

Ci v ∀N .Ci+1 for i ∈ [1..n−1]
Cn v ∀N .C1

To encode that each column has exactly one tile last placed into it:

> v L0
i t · · · t Lk

i for i ∈ [1..n]

Lt
i v ¬Lt′

i for i ∈ [1..n], t, t′ ∈ [0..k], t 6= t′

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (65/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Encoding of two player corridor tiling in ALC (3)

We introduce in TT the following concept inclusions to encode the adjacency
conditions, by making use of the information carried by the objects.

To encode the vertical adjacency relation V :

Ci u Lt
i v ∀N .

⊔
t′|(t,t′)∈V L

t′

i for i ∈ [1..n], t ∈ [0..k]

To encode the horizontal adjacency relation H:

Ci u Lt
i−1 v ∀N .

⊔
t′|(t,t′)∈H Lt′

i for i ∈ [2..n], t ∈ [0..k]

To encode that in columns where no move is made nothing changes:

¬Ci u Lt
i v ∀N .Lt

i for i ∈ [1..n], t ∈ [0..k]
¬Ci u ¬Lt

i v ∀N .¬Lt
i for i ∈ [1..n], t ∈ [0..k]

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (66/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Encoding of two player corridor tiling in ALC (4)

We introduce in TT the following concept inclusions to encode the game.

To encode the existence of all possible moves in the game tree, provided
∃lias hasn’t already won:

¬Lk
2 u C1 u Lt

1 v
l

t′ | (t,t′)∈V

∃N .Lt′

1 , for t ∈ [0..k]

¬Lk
2 u Ci u Lt

i u Lt′

i−1 v
l

t′′ | (t,t′′)∈V ∧ (t′,t′′)∈H

∃N .Lt′′

i ,

for i ∈ [2..n], t, t′ ∈ [0..k]

To encode the alternation of moves:

A v ∀N .¬A
¬A v ∀N .A

To encode the winning of ∃lias:

W ≡ (A u Lk
2) t (A u ∀N .W) t (¬A u ∃N .W)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (67/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

ExpTime-hardness of reasoning over ALC ontologies

Observations:

if ∃lias cannot move when it is his turn, then W is false for the object
representing that tile.

if ∀lice can force the game to go on forever, then there will be models of
TT in which W is false.

Theorem

∃lias has a winning strategy for tiling system T with initial row t1 · · · tn
iff

TT |= A u C1 u Lt1
1 u · · · u Ltn

n vW

Since the size of TT is polynomial in T and n, this shows that concept
subsumption w.r.t. to an ALC TBox is ExpTime-hard (and hence
ExpTime-complete).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (68/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Hardness proofs using tilings

Tiling problems are a very useful tool for showing complexity results in
description logics, modal logics, and fragments of FOL.

In DLs, they have been used to:

Show NExpTime-hardness (e.g., for ALCIOF and extensions):

Bounded tilings

Deciding the existence of a tiling for

an n× n grid (or torus) is NP-complete.

a corridor of width n is PSpace-complete.

a 2n × 2n grid (or torus) is NExpTime-complete.

Show undecidability (e.g., for DLs with transitive roles in the number
restrictions, role value maps, etc.):

Unbounded tilings

Deciding the existence of a tiling for an unbounded grid is undecidable.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (69/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Tiling systems and Turing Machines

Tiling problems are a very closely related to Turing Machines (TMs).

A row of tiles corresponds to a configuration of the TM, i.e., to the tape
content, head position, and state.

Successive rows correspond to the evolution over time of the TM
configuration.

The horizontal and vertical adjacency relations essentially encode the
transition function of the TM.

The initial row of tiles corresponds to the input word, initially written on
the tape.

The winning tile corresponds to the final state.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (70/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Alternating Turing Machines

The tiling we used in our reduction is related to Alternating Turing Machines.

Def.: Alternating Turing Machine (ATM)

An ATM has the form M = (Σ,Γ, Q∀, Q∃, q0, δ, qf , ␢), where

As for an ordinary Turing Machine:

Σ is the input alphabet, and Γ the tape alphabet;
q0 is the initial state, and qf the final state;
δ : Q× Γ→ Q× Γ× {right, left} is the transition function, where
Q = Q∃ ∪Q∀.

Q∃ is the set of existential states, for which the ATM moves
non-deterministically to some successive configuration.

Q∀ is the set of universal states, for which the ATM moves to all
successive configurations, i.e., it branches off multiple computations.

An ATM accepts an input string w ∈ Σ∗ if, when started in q0 with w on the
tape, all branched off computations lead to an accepting configuration, i.e., one
where the ATM is in qf .

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (71/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Two-player tilings and Alternating Turing Machines

A two-player corridor tiling is a simple ‘disguise’ for a PSpace ATM (i.e., and
ATM that runs in polynomial space), for which we want to decide acceptance of
an input word.

The initial row of tiles represents the word initially written on the tape.

Each row of n-tiles corresponds to the tape content, and the width n
accounts for the polynomial space used by the ATM.

The two players ∃lias and ∀lice correspond to existential and universal
states, respectively.

The alternation between the players in the game corresponds to the
alternation between existential and universal moves of the ATM.

However, there are differences between a two-player tiling and an ATM in
the way alternation is handled:

In the two-player tiling, the two players strictly alternate at each placed tile.
In the ATM, there is no strict alternation between existential and universal
states (although one could impose such strict alternation without loss of
generality); moreover, one transition corresponds to placing an entire row of
tiles, as opposed to a single tile.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (72/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

ExpTime-hardness of reasoning over AL ontologies

The lower bound for reasoning over ALC TBoxes and ontologies can be
strengthened to weaker DLs.

Theorem

Concept satisfiability and subsumption w.r.t. an AL TBox, and satisfiability of
an AL ontology are ExpTime-hard.

Recall that:

C is satisfiable w.r.t. T iff T 6|= C v ⊥.

C is satisfiable w.r.t. T iff the ontology 〈T , {C(a0)}〉 is satisfiable.

Hence it suffices to prove the result for concept satisfiability w.r.t. a TBox.

We reduce concept satisfiability w.r.t. an ALC TBox to concept
satisfiability w.r.t. an AL TBox.

Note: This is possible only for reasoning w.r.t. a TBox, while (plain) concept
satisfiability or subsumption cannot be reduced from ALC to AL.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (73/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

Reducing ontology reasoning from ALC to AL

We reduce concept satisfiability w.r.t. an ALC TBox to concept satisfiability
w.r.t. an AL TBox in a series of steps:

1 Reduce to satisfiability of an atomic concept w.r.t. a TBox with primitive
inclusion assertions only.

2 Eliminate nesting of constructs in right hand sides of inclusions by
introducing new assertions.

3 Encode away qualified existential quantification.

4 Encode away disjunction.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (74/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

From ALC to AL: 1. Simplify assertions and concepts

We reduce concept satisfiability w.r.t. a TBox T to satisfiability of an atomic
concept w.r.t. a TBox T1 with primitive inclusion assertions only.

C is satisfiable w.r.t.
⋃

i{Ci v Di}
iff

AT u C is satisfiable w.r.t. { AT v
d

i(¬Ci tDi) u
d

P ∀P .AT }
iff

AC is satisfiable w.r.t.

 AC v AT u C
AT v

d
i(¬Ci tDi) u

d
P ∀P .AT

with AT and AC fresh atomic concepts.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (75/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

From ALC to AL: 2. Eliminate nesting of constructs

To eliminate the nesting of constructs in the right-hand side of inclusion
assertions in T1, we proceed as follows:

1 We transform the concepts into negation normal form, by pushing
negations inside.

2 We replace assertions as follows:

A v C1 u C2 ; A v C1, A v C2

A v C1 t C2 ; A v A1 tA2, A1 v C1, A2 v C2

A v ∀P .C ; A v ∀P .A1, A1 v C
A v ∃P .C ; A v ∃P .A1, A1 v C

where A1, A2 are fresh atomic concepts for each replacement.

The above transformations are satisfiability preserving:

Lemma

Let T2 be obtained from T1 by steps (1) and (2) above. Then we have that:

AC is satisfiable w.r.t. T1 iff AC is satisfiable w.r.t. T2
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (76/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

From ALC to AL: 3. Eliminate qualified exist. quantif.

To eliminate qualified existential quantification from the right-hand side of
inclusion assertions in T2, we proceed as follows:

1 For each ∃P .A appearing in T2, we introduce a fresh atomic role PA.
2 We replace assertions as follows:

A′ v ∃P .A ; A′ v ∃PA u ∀PA.A′

A′ v ∀P .A ; A′ v ∀P .A u
d

PAi
∀PAi

.A

The above transformations are satisfiability preserving:

Lemma

Let T3 be obtained from T2 by steps (1) and (2) above. Then we have that:

AC is satisfiable w.r.t. T2 iff AC is satisfiable w.r.t. T3

Note: As an intermediate result, we obtain:

Concept satisfiability w.r.t. a primitive ALU TBox is ExpTime-hard.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (77/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Lower bounds for reasoning over TBoxes Part 6: Reasoning in the ALC family

From ALC to AL: 4. Encode away disjunction

To encode away disjunction in the right-hand side of inclusion assertions in T3,
we replace assertions as follows:

A1 v A2 tA3 ; ¬A2 u ¬A3 v ¬A1

The two assertions are logically equivalent.

From this, we obtain the desired result:

Concept satisfiability w.r.t. an AL TBox is ExpTime-hard.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (78/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC
Some important extensions of ALC
Inverse roles
Number restrictions
Encoding number restrictions
Role constructs
TBox internalization

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (79/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Some important extensions of ALC Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC
Some important extensions of ALC
Inverse roles
Number restrictions
Encoding number restrictions
Role constructs
TBox internalization

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (80/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Some important extensions of ALC Part 6: Reasoning in the ALC family

Numeric constraints

Functionality restrictions ALCF : allow one to impose that a relation is a
function:

global functionality: > v (≤ 1R) (equivalent to (funct R))
Example: > v (≤ 1 hasFather)

local functionality: A v (≤ 1R)
Example: Person v (≤ 1 hasFather)

Number restrictions ALCN : (≤ nR) and (≥ nR)
Example: Person v (≤ 2 hasParent)

Qualified Number restrictions ALCQ: (≤ nR.C) and (≥ nR.C)
Example: FootballTeam v (≥ 1 hasPlayer. Golly) u

(≤ 1 hasPlayer. Golly) u
(≥ 2 hasPlayer. Defensor) u
(≤ 4 hasPlayer. Defensor)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (81/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Some important extensions of ALC Part 6: Reasoning in the ALC family

Role constructs

Inverse roles ALCI: R−, interpreted as (R−)I = {(y, x) | (x, y) ∈ RI}
Example: we can refer to the parent, by using the hasChild role, e.g.,

∃hasChild−.Doctor.

Transitive roles: (trans R), stating that the relation RI is transitive, i.e.,
{(x, y), (y, z)} ⊆ RI → (x, z) ∈ RI

Example: (trans hasAncestor)

Subsumption between roles: R1 v R2, used to state that a relation is
contained in another relation.

Example: hasMother v hasParent

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (82/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Inverse roles Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC
Some important extensions of ALC
Inverse roles
Number restrictions
Encoding number restrictions
Role constructs
TBox internalization

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (83/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Inverse roles Part 6: Reasoning in the ALC family

Inverse roles increase the expressive power

Exercise

Prove that the inverse role construct constitutes an effective extension of the
expressive power of ALC, i.e., show that ALC is strictly less expressive than
ALCI.

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that are
bisimilar but distinguishable in ALCI.

I:

P1

P2

J : . . .
P1 P2 P1 P2

∼B ∼B∼B ∼B

|= ∃P1.> v ∃P−2 .>

6|= ∃P1.> v ∃P−2 .>

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (84/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Inverse roles Part 6: Reasoning in the ALC family

Modeling with inverse roles

Exercise

Try to model the following facts in ALCI.
Notice that not all the statements are modellable in ALCI.

1 Lonely people do not have friends and are not friends of anybody.

2 An intermediate stop is a stop that has a predecessor stop and a successor
stop.

3 A person is a child of his father.

Solution

1 LonelyPerson v Person u ¬∃hasFriend−.> u ¬∃hasFriend.>
2 IntermediateStop ≡ Stop u ∃next.Stop u ∃next−.Stop

3 This cannot be modeled in ALCI.
Note that Person v ∀hasFather.(∀child.Person) is not enough.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (85/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Inverse roles Part 6: Reasoning in the ALC family

Tree model property of ALCI

Theorem (Tree model property)

If C is satisfiable w.r.t. a TBox T , then it is satisfiable w.r.t. T by a
tree-shaped model whose root is an instance of C.

Proof (outline).

1 Extend the notion of bisimulation to ALCI.

2 Show that if (I, o1) ∼ALCI (J , o2), then o1 ∈ CI iff o2 ∈ CJ , for every
ALCI concept C.

3 For a non tree-shaped model I and some element o1 ∈ CI , generate a
tree-shaped model J rooted at o2 and show that
(I, o1) ∼ALCI (J , o2).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (86/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Inverse roles Part 6: Reasoning in the ALC family

Bisimulation for ALCI (tree model property 1)

Def.: ALCI-Bisimulation

An ALCI-bisimulation between two ALCI interpretations I and J is a
bisimulation ∼B that satisfies the following additional conditions when
o1 ∼B o2:

for each o′1 with (o′1, o1) ∈ P I , there is an o′2 ∈ ∆J with (o′2, o2) ∈ PJ
such that o′1 ∼B o

′
2.

The same property in the opposite direction.

We call these properties the inverse relation equivalence.

(I, o1) ∼ALCI (J , o2) means that there is an ALCI-bisimulation ∼B between I
and J such that o1 ∼B o2.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (87/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Inverse roles Part 6: Reasoning in the ALC family

ALCI-bisimulation – Example

Example of bisimulation that is not an ALCI-bisimulation, and one that is so.

I:
1 2 3P P

J :
2 3

P

∼B ∼B

1 2 3P P

1 2 3

P P

∼B′ ∼B′ ∼B′

We have that (I, 2) ∼ (J , 2) but not (I, 2) ∼ALCI (J , 2).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (88/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Inverse roles Part 6: Reasoning in the ALC family

Invariance under ALCI-bisimulation (tree model prop. 2)

Theorem

If (I, o1) ∼ALCI (J , o2), then o1 ∈ CI iff o2 ∈ CJ , for every ALCI concept C.

Proof.

By induction on the structure of C.

All the cases are as for ALC, and in addition we have the following case:

If C is of the form ∃P−.C:

o1 ∈ (∃P−.C)I iff o′1 ∈ CI for some o′1 with (o′1, o1) ∈ P I
iff o′2 ∈ CJ for some o′2 with (o′2, o2) ∈ PJ

and (I, o′1) ∼ALCI (J , o′2)
iff o2 ∈ (∃P−.C)J

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (89/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Inverse roles Part 6: Reasoning in the ALC family

Transformation into tree-shaped ALCI models (t.m.p. 3)

Theorem

If I is a non tree-shaped model, and o is some element of ∆I , then there is a
model J that is tree-shaped and such that (I, o) ∼ALCI (J , o).

Proof.

We define J as follows:

∆J is the set of paths π = (o1, P
(−)
1,2 , o2, . . . , P

(−)
n−1,n, on) such that n ≥ 1,

o1 = o, and (oi, oi+1) ∈ P Ii or (oi+1, oi) ∈ P Ii , for i ∈ {1, . . . , n− 1}.
AJ = {πon | on ∈ AI}
PJ = {(πon , πonPon+1) | (on, on+1) ∈ P I} ∪

{(πonP−on+1 , πon) | (on+1, on) ∈ P I}

It is easy to show that J is a tree-shaped model rooted at o.

The ALCI bisimulation ∼B between I and J is defined as oi ∼B πoi.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (90/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Number restrictions Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC
Some important extensions of ALC
Inverse roles
Number restrictions
Encoding number restrictions
Role constructs
TBox internalization

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (91/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Number restrictions Part 6: Reasoning in the ALC family

Number restrictions increase the expressive power

Exercise

Prove that the number restriction construct constitutes an effective extension of
the expressive power of ALC, i.e., show that ALC is strictly less expressive
than ALCN .

Solution

I:
P

J :

P

P

∼B

∼B

∼B

|= > v (≤ 1P)

6|= > v (≤ 1P)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (92/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Number restrictions Part 6: Reasoning in the ALC family

Qualified number restriction

Exercise

Prove that qualified number restrictions are an effective extension of the
expressivity of ALCN , i.e., show that ALCN is strictly less expressive than
ALCQ.

Solution (outline)

1 Define a notion of bisimulation that is appropriate for ALCN .

2 Prove that ALCN is bisimulation invariant for the bisimulation relation
defined in item 1.

3 Prove that ALCN is strictly less expressive than ALCQ.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (93/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Number restrictions Part 6: Reasoning in the ALC family

Bisimulation for ALCN

Def.: ALCN -bisimulation

An ALCN -bisimulation between two ALCN interpretations I and J is a
bisimulation ∼B that satisfies the following additional conditions when
o1 ∼B o2:

if o11, . . . , o
n
1 are all the distinct elements in ∆I such that (o1, o

k
1) ∈ P I ,

for k ∈ {1, . . . , n}, then there are exactly n elements o12, . . . , o
n
2 in ∆J

such that (o2, o
k
2) ∈ PJ , for k ∈ {1, . . . , n}.

The same property in the opposite direction.

We call these properties the relation cardinality equivalence.

(I, o1) ∼ALCN (J , o2) means that there is an ALCN -bisimulation ∼B between
I and J such that o1 ∼B o2.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (94/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Number restrictions Part 6: Reasoning in the ALC family

Invariance under ALCN -bisimulation

Theorem

If (I, o1) ∼ALCN (J , o2), then o1 ∈ CI iff o2 ∈ CJ , for every ALCN concept
C.

Proof.

By induction on the structure of C.

All the cases are as for ALC, and in addition we have the following base case:

If C is of the form (≤ nP):

If o1 ∈ (≤ nP)I , then there are m ≤ n elements o11, . . . , o
m
1 with

(o1, o
i
1) ∈ P I .

The additional condition on ALCN -bisimulation implies that there are
exactly m elements o12, . . . , o

m
2 in ∆J such that (o2, o

i
2) ∈ PJ .

This implies that o2 ∈ (≤ nP)J .

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (95/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Number restrictions Part 6: Reasoning in the ALC family

ALCN is strictly less expressive than ALCQ

We show that in ALCQ we can distinguish two models that are
ALCN -bisimilar, and hence not distinguishable in ALCN .

I: 1

2 A

3 A

4 ¬A

P

P

P

J : 1

2 A

3 ¬A

4 ¬A

P

P

P

∼B

∼B

∼B

|= > v (≤ 1P .¬A)

6|= > v (≤ 1P .¬A)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (96/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Encoding number restrictions Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC
Some important extensions of ALC
Inverse roles
Number restrictions
Encoding number restrictions
Role constructs
TBox internalization

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (97/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Encoding number restrictions Part 6: Reasoning in the ALC family

Encoding ALCN into ALCFI
We encode away number restrictions by using functionality and inverse roles.
To do so, given an ALCN concept C and a TBox T , we define:

a set Tr of ALCFI-axioms, and
a transformation π from ALCN -concepts to ALCFI-concepts

such that:

C is satisfiable w.r.t. T in ALCN iff
π(C) is satisfiable w.r.t. π(T) ∪ Tr in ALCFI

Intuition

Replace role P with P1, . . . , Pn, which count the number of P successors.

1

2

3

4

P

P

P

1 |= (≤ 3P)
1 |= ¬(≥ 4P)

1

2

3

4

P1

P2

P3

1 |= ∃P1.>
1 |= ∃P2.>
1 |= ∃P3.>
1 |= ¬∃P4.>

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (98/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Encoding number restrictions Part 6: Reasoning in the ALC family

Encoding ALCN into ALCFI (cont’d)

We assume C and all concepts in T to be in NNF, where
nnf(¬(≥ mP)) = (≤ m−1P) and nnf(¬(≤ mP)) = (≥ m+1P).

Let nmax be the maximum number occurring in a number restriction of C or T .

We proceed as follows:
1 For every role P , introduce fresh roles P1, . . . , Pnmax+1.
2 For every role Pi, the TBox Tr contains the following axioms:

1 ∃Pi+1.> v ∃Pi.>, for i ∈ {1, . . . , nmax}
2 > v (≤ 1Pi), for i ∈ {1, . . . , nmax} (NB: Pnmax+1 is not functional)
3 > v ∀Pi.∀P−j .⊥, for i, j ∈ {1, . . . , nmax}, i 6= j.

3 π(C) is defined by induction on the structure of C:

π(A) = A
π(¬A) = ¬A

π((≥ mP)) = ∃Pm.>
π(∃P .C) = ∃P1.π(C) t · · · t ∃Pnmax+1.π(C)
π(∀P .C) = ∀P1.π(C) u · · · u ∀Pnmax+1.π(C)

π(C1 u C2) = π(C1) u π(C2)
π(C1 t C2) = π(C1) t π(C2)
π((≤ mP)) = ∀Pm+1.¬>

4 π(T) =
⋃

CvD∈T {π(C) v π(D)}
D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (99/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Encoding number restrictions Part 6: Reasoning in the ALC family

Encoding ALCN into ALCFI (cont’d)

We have to prove that if C is satisfiable w.r.t. T , then π(C) is satisfiable w.r.t.
Tr ∪ π(T).

1 If C is satisfiable in ALCN , then it has a tree-shaped model I.

2 Extend I into J with the interpretation of P1, . . . , Pnmax+1 as follows.
For each o ∈ ∆I , let P I(o) = {o1, . . . , om, . . . } be the set of P -successors
of o in I. Then:

if |P I(o)| < nmax , then add (o, oi) to PJi , for i ∈ {1, . . . , |P I(o)|}.
if |P I(o)| ≥ nmax , then add (o, oi) to PJi , for i ∈ {1, . . . , nmax}, and also
add (o, oj) to PJnmax+1 for j ≥ nmax + 1

3 Prove that J is a model of Tr.

4 Prove that J is a model of π(C).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (100/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Encoding number restrictions Part 6: Reasoning in the ALC family

Encoding ALCN into ALCFI (cont’d)

Finally we have to prove that if π(C) is satisfiable w.r.t. Tr ∪ π(T), then C is
satisfiable wrt T .

1 Let J be a tree-shaped model of Tr ∪ π(T) that satisfies C.

2 Let I be obtained by extending J with the interpretation of each role P as
follows:

P I = P I1 ∪ · · · ∪ P In+1

3 Prove by structural induction that I is a model of T that satisfies C.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (101/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Role constructs Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC
Some important extensions of ALC
Inverse roles
Number restrictions
Encoding number restrictions
Role constructs
TBox internalization

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (102/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Role constructs Part 6: Reasoning in the ALC family

Role hierarchy: H

Def.: Role Hierarchy

A role hierarchy H is a finite set of role inclusion assertions, i.e., expressions
of the form

R1 v R2

for roles R1 and R2.
We say that R1 is a subrole of R2.

Exercise

Explain why the role inclusion R1 v R2 cannot be axiomatized by the concept
inclusions:

∃R1.> v ∃R2.>
∃R−1 .> v ∃R−2 .>

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (103/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Role constructs Part 6: Reasoning in the ALC family

Transitive roles: S

Def.: Semantics

I |= (trans P) if P I is a transitive relation.

Note: if a role P is transitive, also P− is transitive. Hence, we can restrict
transitivity assertions to atomic roles only without losing expressive power.

Exercise

Explain why transitive roles cannot be axiomatized by the inclusion assertion

∃P .(∃P .A) v ∃P .A

Solution

1

2 3 A

4 A

P
P

P
This interpretation satisfies the assertion
∃P .(∃P .A) v ∃P .A, but P is not transitive.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (104/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

TBox internalization Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC
Some important extensions of ALC
Inverse roles
Number restrictions
Encoding number restrictions
Role constructs
TBox internalization

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (105/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

TBox internalization Part 6: Reasoning in the ALC family

TBox internalization

Until now we have distinguished between the following two problems:

Satisfiability of a concept C, and

Satisfiability of a concept C w.r.t. a TBox T .

Clearly the first problem is a special case of the second.

For expressive concept languages, satisfiability w.r.t. a TBox can be reduced to
concept satisfiability, i.e., the TBox can be internalized:

Def.: Internalization of the TBox

For a description logic L, we say that the TBox can be internalized, if the
following holds:
For every L-TBox T one can construct an L-concept CT such that, for every
L-concept C, we have that C is satisfiable w.r.t. T iff C u CT is satisfiable.

Note: This is similar to propositional or first order logic, where the problem of
checking Γ |= φ (validity under a finite set of axioms Γ) reduces to the problem
of checking the validity of a single formula, i.e.,

∧
Γ→ φ.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (106/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

TBox internalization Part 6: Reasoning in the ALC family

TBox internalization for logics including SH
A role hierarchy and transitive roles are sufficient for internalization.

Theorem (TBox internalization for SH)

Let T = {C1 v D1, . . . , Cn v Dn} be a finite set of concept inclusion
assertions, and let

CT =

nl

i=1

¬Ci tDi

Let U be a fresh transitive role, and let

RU = {P v U | P is a role appearing in C or T }

Then C is satisfiable w.r.t. T iff C u CT u ∀U .CT is satisfiable w.r.t. RU .

One can adopt also other internalization mechanisms:

exploiting reflexive transitive closure of roles;

exploiting nominals.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (107/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC
Reasoning in ALCI
Reasoning in ALCQI

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (108/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCI Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC
Reasoning in ALCI
Reasoning in ALCQI

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (109/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCI Part 6: Reasoning in the ALC family

Tableaux rules for ALCI

We need to extend the tableaux rules dealing with quantification over roles to
the case where the role might be an inverse.

Rule Condition −→ Effect

→u (C1 u C2)(x) ∈ A −→ A := A ∪ {C1(x), C2(x)}
→t (C1 t C2)(x) ∈ A −→ A := A ∪ {C1(x)} or A := A ∪ {C2(x)}
→∃ (∃P .C)(x) ∈ A −→ A := A ∪ {P (x, y), C(y)},where y is fresh

(∃P−.C)(x) ∈ A −→ A := A ∪ {P (y, x), C(y)},where y is fresh

→∀ (∀P .C)(x), P (x, y) ∈ A −→ A := A ∪ {C(y)}
(∀P−.C)(x), P (y, x) ∈ A −→ A := A ∪ {C(y)}

→T x occurs in A −→ A := A ∪ {
⊔

CvD∈T nnf(¬C tD)(x)}

In addition, we need to adopt a suitable blocking strategy, given that we are
dealing with an arbitrary set of inclusion assertions.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (110/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCI Part 6: Reasoning in the ALC family

Tableaux for ALCI – Example

Example

Check satisfiability of C = A u ∃P .A u ∀P−.¬A w.r.t. the TBox
T = {> v B}.

Solution

(A u ∃P .A u ∀P−.¬A)(x)
B(x)
A(x), (∃P .A)(x), (∀P−.¬A)(x)
P (x, y), A(y)
y is blocked by x

x

A, B

∃P .A, ∀P−.¬A
P

Problem: x is not an instance of the concept ∀P−.¬A, hence we have not
obtained a model of C.

The reason for the problem is that we have adopted a too weak blocking
strategy.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (111/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCI Part 6: Reasoning in the ALC family

Blocking strategy for ALCI

For ALCI, subset-blocking, where the blocking condition is L(x) ⊆ L(y), is no
longer sufficient. We need to adopt a stronger blocking strategy.

Def.: Equality blocking

A node x is called directly blocked if it has an ancestor y with L(x) = L(y).

For the previous example

(A u ∃P .A u ∀P−.¬A)(x)
B(x)
A(x), (∃P .A)(x), (∀P−.¬A)(x)
P (x, y), A(y)
B(y)
y is not blocked anymore by x

x

A, B

∃P .A,
∀P−.¬A

y

A, B
P

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (112/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCI Part 6: Reasoning in the ALC family

Decidability of ALCI

Theorem

Let T be a general ALCI-TBox and C an ALCI-concept. Then:

1 The algorithm terminates when applied to T and C.

2 The rules can be applied such that they generate a clash-free and complete
completion tree iff C is satisfiable w.r.t. T .

Corollary

Satisfiability of ALCI-concepts w.r.t. general TBoxes is decidable.

ALCI has the finite model property.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (113/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCI Part 6: Reasoning in the ALC family

Correctness of tableaux algorithm for ALCI

Termination: As for ALC.

Soundness: if the algorithm generates a class-free tableaux, then C is
satisfiable w.r.t. T .

∆I = {x | C(x) ∈ A and x is not blocked}
AI = {x | x ∈ ∆I and A(x) ∈ A}
P I = {(x, y) | {x, y} ⊆ ∆IA and P (x, y) ∈ A} ∪

{(x, y) | x ∈ ∆I , P (x, y′) ∈ A, and y′ is blocked by y} ∪
{(x, y) | y ∈ ∆I , P (x′, y) ∈ A, and x′ is blocked by x}

Completeness: given a model I of C, we can use it to steer the
application of the non-deterministic rule for t.
At the end we obtain a tableaux that generates a model J that is bisimilar
to the initial model I.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (114/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC
Reasoning in ALCI
Reasoning in ALCQI

6 SHOIQ and SROIQ

7 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (115/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

ALCQI and finite models

ALCQI with general TBoxes does not have the finite model property.

Example (ALCQI concept satisfiable only in infinite models)

Consider satisfiability of the concept ¬A w.r.t. the TBox
T = {> v ∃P .A u (≤ 1P−.>)}.

¬A is satisfied only in an infinite model.

0

¬A
1

A
P

P this violates the condition (≤ 1P−.>)

2

A
P . . .P

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (116/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Tableaux rules for number restrictions – Intuition

To deal with:

(≥ nR.C): If a node x does not have n R-neighbours satisfying C, new
nodes satisfying C are created and made R-successors x.

(≤ nR.C): If a node has more than n R-neighbours satisfying C, then two
of them are non-deterministically chosen and merged by
merging their labels and the subtrees in the tableaux rooted at
these nodes.

The correct form of the tableaux rules is complicated by the following facts:

They need to take into account blocking.

For a node it might not be known whether it actually satisfies C or not.

One needs to avoid jumping back and forth between merging and creating
new nodes in the presence of potentially conflicting number restrictions.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (117/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Tableaux rules for qualified number restrictions

Let us consider the following two rules:
→≥: if (≥ nR.C) ∈ L(x), x is not blocked, and

x has less than n R-neighbours yi with C ∈ L(yi)
then create n new R-successors y1, . . . , yn of x with

L(yi) = {C} for 1 ≤ i ≤ n

→≤: if (≤ nR.C) ∈ L(x), x is not indirectly blocked, x has n+ 1
R-neighbours y0, . . . , yn with C ∈ L(yi) for 0 ≤ i ≤ n, and
there are i, j such that yj is not an ancestor of yi

then let L(yi) := L(yi) ∪ L(yj), make the successors of yj to
successors of yi, and remove yj from the tree

However, the rules in this form are problematic, since they might cause nodes
to be repeatedly created and merged (“yoyo”-effect).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (118/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Dealing with “yoyo”-effect

To prevent the “yoyo”-effect we use explicit inequality:

→≥: if (≥ nR.C) ∈ L(x), x is not blocked, and
x has less than n R-neighbours yi with C ∈ L(yi)

then create n new R-successors y1, . . . , yn of x with
L(yi) := {C} for 1 ≤ i ≤ n and yi 6= yj for 1 ≤ i < j ≤ n

→≤: if (≤ nR.C) ∈ L(x), x is not indirectly blocked, x has n+ 1
R-neighbours y0, . . . , yn with C ∈ L(yi) for 0 ≤ i ≤ n, and
there are i, j s.t. not yi 6= yj and yj is not an ancestor of yi

then let L(yi) := L(yi) ∪ L(yj),
make the successors of yj to successors of yi,
add yi 6= z for each z with yj 6= z, and
remove yj from the tree

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (119/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Clash for number restrictions

Number restrictions may give rise to an additional form of immediate
contradiction. Hence, we add to the clash conditions also the following one:

Def.: Clash for number restrictions

A node x contains a clash if

(≤ nR.C) ∈ L(x), and

x has more than n R-neighbours y0, . . . , yn with yi 6= yj for 0 ≤ i < j ≤ n.

However, this does not suffice!

E.g., (≤ 1R.A) u (≤ 1R.¬A) u (≥ 3R.B) is unsatisfiable, but the algorithm
would answer “satisfiable”.

Reason: if (≤ nR.C) ∈ L(x) and x has an R-neighbour y, we need to know
whether y is an instance of C or of ¬C.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (120/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Choice rule

To solve the problem, we proceed as follows:

1 We extend the set of node labels to

Cl(C0, T) = sub(C0, T) ∪ {¬̇C | C ∈ sub(C0, T)},

where:

¬̇C denotes the NNF of ¬C, and
sub(C0, T) denotes the set of subconcepts of C0 and of all concepts in T .

2 We add an additional non-deterministic tableaux rule: choice rule

→?: if (≤ nS.C) ∈ L(x), x is not indirectly blocked, and
there is an R-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅

then L(y) := L(y) ∪ {E} for some E ∈ {C, ¬̇C}

Does this suffice? No . . .

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (121/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Problem with blocking strategy – Example

Consider the tableaux for satisfiability of C0 w.r.t. a TBox T , where
C0 = ¬A u ∃P .D
D = A u (≤ 1P−) u ∃P−.¬A
T = {> v ∃P .D}

x L(x) = {C0, ¬A, ∃P .D}

y L(y) = {D, A, (≤ 1P−), ∃P−.¬A, ∃P .D}

P

z L(z) = {D, A, (≤ 1P−), ∃P−.¬A, ∃P .D}

P

P

y would block z, but we cannot construct a model from this.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (122/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Blocking strategy and tableaux algorithm for ALCQI

We use E(x, y) to denote the label of edge (x, y) of the tableaux.

Def.: Double blocking

A node y is directly blocked if there are ancestors x, x′, and y′ of y such that:

x is predecessor of y, and x′ is predecessor of y′.

E(x, y) = E(x′, y′),

L(x) = L(x′), and L(y) = L(y′).

Lemma

Let T be a general ALCQI TBox and C0 an ALCQI concept. Then:

1 The tableaux algorithm terminates when applied to T and C0.

2 The rules can be applied such that they generate a clash-free and complete
completion tree iff C0 is satisfiable w.r.t. T .

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (123/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Tableaux algorithm for ALCQI – Correctness

Termination: The tree is no longer built monotonically, but 6= prevents
“yoyo”-effect.

Soundness: a complete, clash-free tree can be “unravelled” into an (infinite
tree) model.

Elements of the model are paths starting from the root.

Instead of going to a blocked node, go to its blocking node.
p ∈ AI if A ∈ L(Tail(p))
Roughly speaking, set (p, p|y) ∈ P I if y is a P -successor of Tail(p) (and
similar for inverse roles), taking care of blocked nodes.

Danger: assume two successors y, y′ of x are blocked by the same node z:

Standard unravelling yields one path [. . . xz] for both nodes.
Hence, [. . . x] might not have enough P -successors for some
(≥ nR.C) ∈ L(x).
Solution: annotate points in the path with blocked nodes:
[. . . x

x
z
y

] 6= [. . . x
x

z
y′]

Completeness: Identical to the proof for ALCI, but for stricter invariance
condition on mapping π from model to tableaux.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (124/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Tableaux algorithm for ABox satisfiability

Two alternative possibilities:

For DLs without inverse roles: use pre-completion.

Reduce ABox-satisfiability to (several) satisfiability tests by completing the
ABox using all but generating rules (i.e., →u, →t, →∀).

Example: {P1(a, b), (A u ∀P1.∀P2.(¬A tB))(a),
P2(b, a), (A u ∃P2.¬B)(b)}

For DLs with inverse roles: use completion forests.

Similar to a pre-completion, but root nodes can be related.

Example: {P1(a, b), (A u ∀P1.∀P2.(¬A tB))(a),
P2(b, a), (A u ∃P2.(∀P−2 .∀P−1 .¬A))(b)}

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (125/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning in ALCQI Part 6: Reasoning in the ALC family

Tableaux algorithm for SHIQ
SHIQ extends ALCI with role hierarchies and transitive roles:

Roles in number restrictions are simple, i.e., don’t have transitive subroles.

If (transitive S) and R v S, then SI is a transitive relation containing RI .

The additional constructs need to be taken into account in the tableaux
algorithm:

The relational structure of the completion tree is only a “skeleton” (Hasse
Diagram) of the relational structure of the model to be built.
Specifically, transitive edges are left out.

Edges are labelled with sets of role names.
Example: Consider {S1 v P, S2 v P} ⊆ T . A node satisfying
(≤ 1P) u (≥ 1S1.A) u (≥ 1S2.B) must have an outgoing edge labeled
both with S1 and with S2.

To deal with transitivity, it suffices to propagate ∀ restrictions.
Specifically, if ∀S.C ∈ L(x), R ∈ E(x, y), and (transitive S), then
∀R.C ∈ L(y).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (126/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ
Nominals
Boolean TBoxes
Reasoning with nominals
Enhancing role expressivity

7 ReferencesD. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (127/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Nominals Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ
Nominals
Boolean TBoxes
Reasoning with nominals
Enhancing role expressivity

7 ReferencesD. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (128/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Nominals Part 6: Reasoning in the ALC family

Nominals (a.k.a. objects) O

In many cases it is convenient to define a set (concept) by explicitly
enumerating its members.

Example

WeekDay ≡ { friday,monday, saturday, sunday,
thursday, tuesday,wednesday }

Def.: Nominals

A nominal is a concept with cardinality equal to 1, representing a singleton set.

If o is an individual, the expression {o} is a concept, called nominal.

The expression {o1, . . . , on} for n ≥ 0 denotes:

⊥ if n = 0, and
{o1} t · · · t {on} if n > 0.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (129/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Nominals Part 6: Reasoning in the ALC family

Semantics of nominals

The interpretation of a nominal, i.e., {o}I , is the singleton set {oI}.
As a consequence:

{o1, . . . , on}I = {oI1 , . . . , oIn}

Exercise (Modeling with Nominals:)

Express, in term of subsumptions between concepts, the following statements,
using nominals, and all the DL constructs you studied so far:

1 There are exactly 195 Countries.

2 Alice loves either Bob or Calvin.

3 Either John or Mary is a spy.

4 Everything is created by God.

5 Everybody drives on the left or everybody drives on the right.

6 (∃x.A(x))→ (∀x.B(x)).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (130/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Nominals Part 6: Reasoning in the ALC family

Exercise on nominals

1 There are exactly 195 Countries.

Country ≡ {afghanistan, albania, . . . , zimbabwe}
{afghanistan} v ¬{albania}, . . . , {afghanistan} v ¬{zimbabwe}
{albania} v ¬{algeria}, . . . , {albania} v ¬{zimbabwe}
. . .

2 Alice loves either Bob or Calvin.

{alice} v ∃loves.{bob, calvin}

3 Either John or Mary is a spy.

{john} v ¬{mary}
{johnOrMary} v {john,mary}
{johnOrMary} v Spy

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (131/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Nominals Part 6: Reasoning in the ALC family

Exercise on nominals (cont’d)

4 Everything is created by God.

> v ∃creates−.{god}

In this case god is called spy point, as every object of the domain can be
observed (and predicated) by “god” through the relation “creates”. Spy
points allows for universal/existential quantification over the full domain.

5 Everybody drives on the left or everybody drives on the right.

{god} v ∀creates.(¬Person t LeftDriver) t
∀creates.(¬Person t RightDriver)

6 (∃x.A(x))→ (∀x.B(x))

{god} v ¬∃creates.A t ∀creates.B

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (132/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Nominals Part 6: Reasoning in the ALC family

Encoding ABoxes into TBoxes

Using nominals, one can immediately encode an ABox into a TBox:

C(a) becomes {a} v C.

R(a, b) becomes {a} v ∃R.{b}.

Note:

Reasoning with nominals is in general much more complicated than
reasoning with an ABox.

State-of-the-art DL reasoners that are able to deal with nominals, process
anyway ABox assertions in a very different way than TBox assertions
involving nominals.

However, this simple encoding of an ABox into a TBox is useful for
theoretical purposes, and applies essentially to all DLs.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (133/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Boolean TBoxes Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ
Nominals
Boolean TBoxes
Reasoning with nominals
Enhancing role expressivity

7 ReferencesD. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (134/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Boolean TBoxes Part 6: Reasoning in the ALC family

Boolean TBoxes

Def.: Boolean TBox

A Boolean TBox is a propositional formula whose atomic components are
concept inclusions. More formally:

A v B is a boolean TBox, for every pair of concepts A and B.

If α and β are boolean TBoxes, then so are ¬α, α ∧ β, α ∨ β and α→ β.

Example

¬(Driver v Pilot) ∧ ((Driver v LeftDriver) ∨ (Driver v RightDriver))

This Boolean TBox states that not all drivers are pilots and that either all
drivers drive on the left or all drivers drive on the right side of the road.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (135/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Boolean TBoxes Part 6: Reasoning in the ALC family

Internalizing boolean TBoxes using nominals

Theorem

In ALCOI, a boolean TBox ϕ can be transformed into an equivalent standard
TBox Tϕ.

Proof.

W.l.o.g., we can assume that ϕ is in CNF (w.r.t. the boolean operators),
i.e., ϕ is a conjunction of clauses, where each clause c in ϕ is of the form:

c =
n∨

i=1

(Ai v Bi) ∨
m∨

j=1

¬(Cj v Dj)

Let P be a new role and o a new object, not appearing in ϕ.
Tϕ is the TBox that contains the inclusion > v ∃P−.{o} (i.e., o is a spy point) and
the following inclusion, for every clause c in ϕ:

{o} v
n⊔

i=1

(∀P .(¬Ai tBi)) t
m⊔

j=1

(∃P .(Cj u ¬Dj))

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (136/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Boolean TBoxes Part 6: Reasoning in the ALC family

SHIQ is strictly less expressive than SHOIQ

Exercise

Show that boolean TBoxes cannot be represented in SHIQ.
[Hint: use the fact that SHIQ is invariant under disjoint union of models.]

Theorem

SHIQ is strictly less expressive than SHOIQ.

Proof.

Boolean SHIQ TBoxes can be encoded in standard SHOIQ TBoxes.
But these cannot be represented in SHIQ.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (137/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ
Nominals
Boolean TBoxes
Reasoning with nominals
Enhancing role expressivity

7 ReferencesD. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (138/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Nominals and tree model property

The tree model property is a key property that makes modal logics, and hence
description logics, robustly decidable [Vardi, 1997].

The tree model property fails for DLs with nominals.

The concept {a} u ∃R.{a} is satisfied only by a model containing a cycle on a.

The interaction between nominals, number restrictions, and inverse roles:

leads to the almost complete loss of the tree model property;

causes the complexity of the ontology satisfiability problem to jump from
ExpTime to NExpTime [Tobies, 2000];

makes it difficult to extend the SHIQ tableaux algorithm to SHOIQ.

Example

Consider the TBox T that contains:

> v ∃P−.{o} {o} v (≤ 20P .A)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (139/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Completion Graph

Def.: Completion graph

Let R be an RBox (i.e., a role hierarchy) and C0 a SHOIQ-concept in NNF.
A completion graph for C0 with respect to R is a directed graph

G = 〈V,E,L, 6=〉

where:

L(v) ⊆ Cl(C0) ∪NI ∪
{(≤ mR.C) | (≤ nR.C) ∈ Cl(C0) and m < n}

E(v, w) ⊆ {R | R is a role of C0}
6= ⊆ V × V

Cl(C0) is the syntactic closure of C0, and is constituted by C0 all its
subconcepts.

NI is the set of all individuals.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (140/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Clash

Def.: Clash

A completion graph G contain a clash if:

1 {A,¬A} ⊂ L(x) for some A and x; (ALC)

2 (≤ nS.C) ∈ L(x) and there are n+ 1 S-neighbours y0, . . . , yn of x with
C ∈ L(yi), and yi 6= yj for 0 ≤ i < j ≤ n (ALCQ)

3 o ∈ L(x) ∩ L(y), and x 6= y for some nodes x, y and nominal o. (SHIQ)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (141/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Blockable nodes

Def.: Nominal node

A nominal node is a node x, such that L(x) contains a nominal o.

Def.: Blockable node

A Blockable node is any node that is not a nominal node.

Def.: Safe neighbours

An R-neighbour y of a node x is safe if

x is blockable, or

x is a nominal node and y is not blocked.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (142/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Tableau rules for SHOIQ

→u: if 1. C1 u C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} /∈ L(x)

then L(x) := L(x) ∪ {C1, C2}

→t: if 1. C1 t C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} ∩ L(x) = ∅

then L(x) := L(x) ∪ {C} for some C ∈ {C1, C2}

→∃: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no safe S-neighbour y with C ∈ L(y),

then create a new node y with L(x, y) = {S} and L(y) = {C}

→∀: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C /∈ L(y)

then L(y) := L(y) ∪ {C}

→∀+ : if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is some R with (trans R) and R v∗ S, and
3. there is an R-neighbour y of x with ∀R.C /∈ L(y)

then L(y) := L(y) ∪ {∀R.C}

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (143/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Tableau rules for SHOIQ (cont’d)

→?: if 1. (≤ nS.C) ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅

then L(y) := L(y) ∪ {E} for some E ∈ {C, ¬̇C}

→≥: if 1. (≥ nS.C) ∈ L(x), x is not blocked, and
2. there are not n safe S-neighbors y1, . . . , yn of x with

C ∈ L(yi) and yi 6= yj for 1 ≤ i < j ≤ n
then create n new nodes y1, . . . , yn with L(x, yi) = {S},

L(yi) = {C}, and yi 6= yj for 1 ≤ i < j ≤ n

→≤: if 1. (≤ nS.C) ∈ L(z), z is not indirectly blocked, and
2. #SG(z, C) > n and there are two S-neighbours x, y of z

with C ∈ L(x) ∩ L(y), and not x 6= y
then 1. if x is a nominal node, then Merge(y, x)

2. else if y is a nominal node or an ancestor of x, then Merge(x, y)
3. else Merge(y, x)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (144/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Blocking strategy in SHOIQ

The blocking strategy is the same as in SHIQ, namely double-blocking, but
restricted to the non-nominal nodes (i.e., blockable nodes).

Def.: Blocking in SHOIQ
A node x is directly blocked if it has ancestors x′, y and y′ such that

1 x is a successor of x′ and y is a successor of y′,

2 y, x and all nodes on the path from y to x are blockable,

3 L(x) = L(y) and L(x′) = L(y′), and

4 L(x′, x) = L(y′, y).

A node is indirectly blocked if it is blockable and its predecessor is directly
blocked.

A node is blocked if it is directly or indirectly blocked.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (145/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Merging Nodes

Merge(y, x) is obtained by

adding L(y) to L(x);

redirecting to x all the edges leading to y;

redirecting all the edges leading from y to nominal nodes so that they lead
from x to the same nominal nodes;

removing y (and blockable sub-trees below y).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (146/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Reasoning with nominals Part 6: Reasoning in the ALC family

Tableaux rules for SHOIQ (rules for nominals)

→o: if for some nominal o there are 2 nodes x, y with
o ∈ L(x) ∩ L(y) and not x 6= y

then Merge(x, y)

→o?: if 1. (≤ nS.C) ∈ L(x), x is a nominal node, and
there is a blockable S-neighbour y of x such that
{C} ∈ L(y) and x is a successor of y and

2. there is no m with 1 ≤ m ≤ n, (≤ mS.C) ∈ L(x)
and there are m nominal S-neighbours z1, . . . zm of
x with C ∈ L(zi) and zi 6= zj for all 1 ≤ i < j ≤ m

then 1. guess m ≤ n and set L(x) := L(x) ∪ {(≤ mS.C)}
2. create m new nodes y1, . . . , ym with
L(x, yi) := {S}, L(yi) = {C, oi} for oi ∈ NI

new in G, and yi 6= yj for all 1 ≤ i < j ≤ m

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (147/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Outline of Part 6

1 Properties of ALC

2 Reasoning over ALC concept expressions

3 Reasoning over ALC ontologies

4 Extensions of ALC

5 Reasoning in extensions of ALC

6 SHOIQ and SROIQ
Nominals
Boolean TBoxes
Reasoning with nominals
Enhancing role expressivity

7 ReferencesD. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (148/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

More expressive role constructs

SROIQ [Horrocks et al., 2006], at the basis of the OWL 2, and its extension
SROIQB [Rudolph et al., 2008] allow for more expressive RBoxes.

Note: We need to distinguish between:

arbitrary roles R: are those implied by role composition;

simple roles S: may be used in number restrictions and with booleans.

Role composition: R1 ◦R2 in the right-hand-side of role inclusions.
Example: hasParent ◦ hasBrother v hasUncle

Role properties: Direct statements about (simple) roles, such as (trans R),
(sym R), (asym S), (refl R), (irrefl S), (funct S),
(invFunct S), and (disj S1 S2)

Example: (trans hasAncestor), (sym spouse), (asym hasChild),
(refl hasRelative), (irrefl parentOf), (funct hasHusband),
(invFunct hasHusband), (disj hasSibling hasCousin)

Boolean combination of simple roles (in SROIQB): ¬S, S1 t S2, S1 u S2

Example: hasParent ≡ hasMother u hasFather, ¬likes

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (149/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

The description logic SROIQB
Construct Syntax Semantics

inverse role R− {(o, o′) | (o′, o) ∈ RI}
universal role U ∆I ×∆I

role negation ¬S (∆I ×∆I) \ SI
role conjunction S1 u S2 SI1 ∩ SI2
role disjunction S1 t S2 SI1 ∪ SI2
top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
nominal {a} {aI}
value restriction ∀R.C {o | ∀o′. (o, o′) ∈ RI → o′ ∈ CI}
existential restr. ∃R.C {o | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI}
Self concept ∃S.Self {o | (o, o) ∈ SI}
qualified number (≥ nS.C) {o | #{o′ | (o, o′) ∈ SI ∧ o′ ∈ CI} ≥ n}
restrictions (≤ nS.C) {o | #{o′ | (o, o′) ∈ SI ∧ o′ ∈ CI} ≤ n}

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (150/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Dealing with complex role inclusion axioms (RIAs)

Unrestricted use of role composition in RIAs causes undecidability.
To regain decidability, we need to impose some restrictions.

Role inclusion axioms as a grammar

A set R of RIAs can be seen as a context-free grammar:

R1 ◦ · · · ◦Rn v R =⇒ R −→ R1 · · ·Rn

We can consider the language that the grammar for R associates to a role R:

LR(R) = {R1 · · ·Rn | R
∗−→ R1 · · ·Rn}

Regular RIAs

The tableaux algorithm for SROIQ is based on using finite-state automata for
LR(R). Hence, decidability can be obtained by restricting to RBoxes
corresponding to regular context free grammars.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (151/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Regular RIAs – Examples

Example (Regular RIAs)

R ◦ S v R
S ◦R v R

Generates the language S∗RS∗, which is regular.

Example (Non regular RIAs)

S ◦R ◦ S v R

Generates the language SnRSn, which is not regular.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (152/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Ensuring decidability in SROIQ

Checking if a context-free grammar is regular is undecidable, hence one cannot
check regularity of a set of RIAs.

SROIQ provides a sufficient condition for the regularity of RIAs.

Def.: Regular RIAs

A role inclusion assertion is ≺-regular if it has one of the forms:

R ◦R v R
R− v R

S1 ◦ · · · ◦ Sn v R
R ◦ S1 ◦ · · · ◦ Sn v R
S1 ◦ · · · ◦ Sn ◦R v R

where ≺ is a strict partial order on direct and inverse roles such that

S ≺ R iff S− ≺ R, and

Si ≺ R, for 1 ≤ i ≤ n.

An set R of RIAs is regular if there is a ≺ s.t. all RIAs in R are ≺-regular.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (153/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Regular RIAs – Examples

Exercise

Check whether the following set R1 of RIAs satisfies regularity of SROIQ:

isProperPartOf v isPartOf
isPartOf ◦ isPartOf v isPartOf

isPartOf ◦ isProperPartOf v isPartOf
isProperPartOf ◦ isPartOf v isPartOf

Then define LR1
(isPartOf).

Exercise

Check whether the following set R2 of RIAs satisfies regularity of SROIQ:

R ◦R v R
S v R

R ◦ S v S
S ◦R v S

Then define LR2
(R) and LR2

(S) and check if they are regular languages.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (154/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Reasoning in SROIQ – Overview

To reason in SROIQ, one can proceed as follows:

1 Eliminate role assertions of the form (funct S), (invFunct S), (sym R),
(trans R), (irrefl R).

2 Eliminate the universal role.

3 Reduce reasoning w.r.t. an ontology consisting of TBox+ABox+RBox to
reasoning w.r.t. only an RBox only.
The resulting RBox is of a simplified form and is called a reduced RBox.

4 Provide tableaux rules that are able to check concept satisfiability w.r.t. a
reduced RBox.

We look at these steps a bit more in detail.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (155/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Reasoning in SROIQ – 1. Eliminating role assertions

We have the following equivalences that allow us to eliminate some of the role
assertions:

(funct S) is equivalent to the concept inclusion > v (≤ 1S).

(invFunct S) is equivalent to the concept inclusion > v (≤ 1S−).

(sym R) is equivalent to the role inclusion R v R−.

(trans R) is equivalent to the role inclusion R ◦R v R.

(irrefl R) is equivalent to the concept inclusion > v ¬∃R.Self.

Notice also that (refl R) is equivalent to the concept inclusion > v ∃R.Self.
However, this concept inclusion can only be used when R is a simple role, and
hence does not allow us to eliminate (refl R) in general.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (156/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Reasoning in SROIQ – 2. Eliminating universal role

To eliminate the universal role:

1 Consider U as any other role (without special interpretation).

2 Define the following concept:

CT ≡ ∀U .(
l

AvB∈T

¬A tB) u
l

o∈N
∃U .{o}.

3 Extend the RBox with the following assertions: R v U , (trans U),
(sym U), and (refl U).

This encoding is correct, since one can show that a satisfiable SROIQ
ontology has a nominal connected model, i.e., a model that is a union of
connected components, where each such component contains a nominal, and
where any two elements of a connected component are connected by a role
path over the roles occurring in the ontology.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (157/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Reasoning in SROIQ – 3. Internalizing ABox and TBox

We have already seen that using nominals we can:

1 encode an ABox by means of TBox assertions, and

2 internalize a (boolean) TBox and reduce concept satisfiability and
subsumption w.r.t. a TBox to satisfiability of a single (nominal) concept.

Hence, it suffices to consider only (un)satisfiability of SROIQ concepts w.r.t.
RBoxes that:

do not contain the universal role,

contain a regular role hierarchy, and

contain only role assertions of the form (refl R), (asym R), and
(disj S1 S2).

We call such RBoxes reduced.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (158/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Reasoning in SROIQ – 4. Additional tableaux rules

The tableaux algorithm uses for each (direct or inverse) role S a
non-deterministic finite state automaton BS defined by the reduced RIAs R.

L(B) denotes the regular language accepted by an NFA B.

For a state p of B, B(p) denotes the NFA identical to B but with initial state p.

→Self-Ref: if ∃S.Self ∈ L(x) or (refl S) ∈ R, x is not blocked, and S /∈ L(x, x)
then add an edge (x, x) if it does not yet exist, and

set L(x, x) := L(x, x) ∪ {S}

→∀1 : if ∀S.C ∈ L(x), x is not indirectly blocked, and ∀BS.C /∈ L(x)
then L(x) := L(x) ∪ {∀BS.C}

→∀2 : if 1. ∀B(p).C ∈ L(x), x is not indirectly blocked, p
S→ q in B(p), and

2. there is an S-neighbour y of x with ∀B(q).C /∈ L(y)
then L(y) := L(y) ∪ {∀B(q).C}

→∀3 : if ∀B.C ∈ L(x), x is not indirectly blocked, ε ∈ L(B), and C /∈ L(x)
then L(x) := L(x) ∪ {C}

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (159/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Enhancing role expressivity Part 6: Reasoning in the ALC family

Decidability of reasoning in SROIQ

Theorem (Termination, Soundness, and Completeness of SROIQ tableaux)

Let C0 be a SROIQ concept in NNF and R a reduced RBox.

1 The tableaux algorithm terminates when started with C0 and R.

2 The tableaux rules can be applied to C0 and R so as to yield a complete
and clash-free completion graph iff there is a tableau for C0 w.r.t. R.

From the previous encodings, we obtain decidability of reasoning in SROIQ.

Theorem (Decidability of SROIQ)

The tableaux algorithm decides satisfiability and subsumption of SROIQ
concepts with respect to ABoxes, RBoxes, and TBoxes.

Note:

The NFA constructed from a set R of regular RIAs may be exponential in
the size of R. This blowup is essentially unavoidable [Kazakov, 2008].

The tableaux algorithm is not computationally optimal.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (160/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

References I

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors.

The Description Logic Handbook: Theory, Implementation and Applications.

Cambridge University Press, 2003.

[Calvanese and De Giacomo, 2003] Diego Calvanese and Giuseppe De Giacomo.

Expressive description logics.

In Baader et al. [2003], chapter 5, pages 178–218.

[Donini et al., 1992] Francesco M. Donini, Bernhard Hollunder, Maurizio Lenzerini, Alberto
Marchetti Spaccamela, Daniele Nardi, and Werner Nutt.

The complexity of existential quantification in concept languages.

Artificial Intelligence, 2–3:309–327, 1992.

[Donini et al., 1997] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner
Nutt.

The complexity of concept languages.

Information and Computation, 134:1–58, 1997.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (161/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

References II

[Donini, 2003] Francesco M. Donini.

Complexity of reasoning.

In Baader et al. [2003], chapter 3, pages 96–136.

[Horrocks et al., 2006] Ian Horrocks, Oliver Kutz, and Ulrike Sattler.

The even more irresistible SROIQ.

In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2006), pages 57–67, 2006.

[Kazakov, 2008] Yevgeny Kazakov.

RIQ and SROIQ are harder than SHOIQ.

In Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2008), pages 274–284, 2008.

[Möller and Haarslev, 2003] Ralf Möller and Volker Haarslev.

Description logic systems.

In Baader et al. [2003], chapter 8, pages 282–305.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (162/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

References III

[Pratt, 1979] Vaugham R. Pratt.

Models of program logic.

In Proc. of the 20th Annual Symp. on the Foundations of Computer Science (FOCS 1979),
pages 115–122, 1979.

[Rudolph et al., 2008] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler.

Cheap boolean role constructors for description logics.

In Proc. of the 11th Eur. Conference on Logics in Artificial Intelligence (JELIA 2008),
volume 5293 of Lecture Notes in Computer Science, pages 362–374. Springer, 2008.

[Schild, 1991] Klaus Schild.

A correspondence theory for terminological logics: Preliminary report.

In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), pages 466–471,
1991.

[Schmidt-Schauss and Smolka, 1991] Manfred Schmidt-Schauss and Gert Smolka.

Attributive concept descriptions with complements.

Artificial Intelligence, 48(1):1–26, 1991.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (163/164)

ALC properties Concept reasoning Ontology reasoning ALC extensions Extending reasoning SHOIQ +SROIQ References

Part 6: Reasoning in the ALC family

References IV

[Tobies, 2000] Stephan Tobies.

The complexity of reasoning with cardinality restrictions and nominals in expressive
description logics.

J. of Artificial Intelligence Research, 12:199–217, 2000.

[van Benthem, 1976] Johan van Benthem.

Modal Correspondence Theory.

PhD thesis, Mathematish Instituut and Instituut voor Grondslagenonderzoek, University of
Amsterdam, 1976.

[van Benthem, 1983] Johan van Benthem.

Modal Logic and Classical Logic.

Bibliopolis, Napoli, 1983.

[Vardi, 1997] Moshe Y. Vardi.

Why is modal logic so robustly decidable.

In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, volume 31,
pages 149–184. American Mathematical Society, 1997.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (164/164)

	Part 6: Reasoning in the ALC family
	Lecture 35-36 (09/05/2014)
	Properties of ALC
	ALC and first-order logic
	Bisimulations
	Properties of ALC

	Reasoning over ALC concept expressions
	Tableaux for concept satisfiability

	Lecture 37-38 (12/05/2014)
	Complexity of concept satisfiability
	Lower bounds for reasoning over concept expressions

	Lecture 39-40 (16/05/2014)
	Reasoning over ALC ontologies
	Reasoning w.r.t. acyclic TBoxes
	Reasoning w.r.t. arbitrary TBoxes

	Lecture 41-42 (19/05/2014)
	Lower bounds for reasoning over TBoxes

	Lecture 43-44 (23/05/2014)
	Extensions of ALC
	Some important extensions of ALC
	Inverse roles

	Lecture 45-46 (16/05/2014)
	Number restrictions
	Encoding number restrictions
	Role constructs
	TBox internalization

	Reasoning in extensions of ALC
	Reasoning in ALCI

	Lecture 47-48 (30/05/2014)
	Reasoning in ALCQI

	SHOIQ and SROIQ
	Nominals
	Boolean TBoxes
	Reasoning with nominals
	Enhancing role expressivity

	References

