
january 2012 | vol. 55 | no. 1 | communications of the acm 41

V
viewpoints

P
h

o
t

o
g

r
a

p
h

 b
y

 Y
v

o
n

n
e

 H
e

a
t

h

doi:10.1145/2063176.2063193	 Philip L. Frana

Interview
An Interview with
Stephen A. Cook
Stephen A. Cook, winner of the 1982 A.M. Turing Award, reflects on his career.

nature of NP-complete class of prob-
lems has been one of the most active
and important research activities in
computer science.”

Cook further discusses the feasibil-
ity of solving the P versus NP problem,
which has recently received renewed
attention given increasingly powerful
computational capabilities and the
decreasing cost of computing. In a Sep-
tember 2009 Communications article,
Lance Fortnow wrote that Cook’s work
on computational complexity theory
has motivated a great amount of re-
search into decision problems with
“feasible” decision procedures in the
areas of workplace efficiency, transpor-
tation, logistics, and manufacturing. It

T
he Charles Babbage Institute
holds one of the world’s
largest collections of re-
search-grade oral history
interviews relating to the

history of computers, software, and
networking. Most of the 400 interviews
have been conducted in the context of
specific research projects, which facili-
tate the interviewer’s extensive prepa-
ration and often suggest specific lines
of questions. Transcripts from these
oral histories are a key source in un-
derstanding the history of computing,
since traditional historical sources are
frequently incomplete.

The following is a condensed ver-
sion of an interview with A.M. Turing
Award recipient and ACM Fellow Ste-
phen A. Cook, considered one of the
forefathers of computational com-
plexity theory. The original interview
was conducted by CBI researcher
Philip L. Frana in Toronto, Canada, in
2002 following Cook’s lecture at the
University of Minnesota as part of the
Cray Distinguished Speaker Series.
After describing his background, in-
cluding his influential 1971 presenta-
tion on “The Complexity of Theorem
Proving Procedures,” Cook discusses
his move to the University of Toron-
to in 1970 and the reception of his
work on NP-completeness, leading
up to his 1982 A.M. Turing Award for
“contributions to the theory of com-
putational complexity, including the
concept of nondeterministic, polyno-
mial-time completeness. The ensuing
exploration of the boundaries and

also laid the groundwork for discover-
ies of NP-intermediate integer factor-
ization algorithms like the high-profile
Shor’s algorithm for breaking public-
key cryptography.

The complete transcript of the origi-
nal interview is available at http://con-
servancy.umn.edu/handle/107226.

Were your parents mathematicians?
My father was a chemist. He got his

Ph.D. at the University of Michigan and
worked for many years at a subsidiary
of Union Carbide. Later he became
adjunct professor at the University of
Buffalo. My mother eventually had two
master’s degrees, one in English and
one in history. She was mostly a house-

42 communications of the acm | january 2012 | vol. 55 | no. 1

viewpoints

wife but did some teaching at Erie
Community College. She taught Eng-
lish for a number of years.

How did you make the decision to at-
tend Michigan in 1957?

My parents were alumni and they
met there. Some other relatives also at-
tended Michigan. My mother grew up
in Michigan.

I take it you knew that the mathematics
and computer science programs were
strong at Michigan at that point?

Not especially. I knew that Michi-
gan was generally good academically. I
was not thinking of computer science
when I went to Michigan. Computers
were pretty new then. This was 1957.

What were you thinking about doing
when you went to Michigan?

Engineering, actually. I enrolled
in the College of Engineering in En-
gineering Science, and I had quite
an interest in electronics. Clarence,
NY, is where we were living at the
time, and Clarence had, and still has,
a prominent citizen named Wilson
Greatbatch. Greatbatch was inducted
into the National Inventors Hall of
Fame for inventing the first implant-
able artificial cardiac pacemaker.
[Greatbatch, who held more than 325
patents and was a recipient of the
Lemelson–MIT Prize, passed away
September 27, 2011. –Ed.] He was de-
veloping the electronics for it while
I was in high school so I learned and
worked with him, just helping him
solder up circuits. This was the early
days of transistors, so I got quite inter-
ested in electronics.

He recommended Michigan?
No, it was just my parent’s alma ma-

ter. My older brother had also gone to
Michigan.

I don’t know too many people who
were at Michigan at that time. Did you
study with Bernie Galler?

Yes, absolutely. I took a course from
him my very first year. It was a one-hour
credit course in programming—that
was my introduction to programming.

He said you did very well. I took the
liberty of asking him about you. He
remembers you. Were you learning
SNOBOL?

Not SNOBOL, but it was a Michi-
gan product. I remember the Graham-
Arden compiler. I can’t remember the
programming language. There was a
homegrown algebraic programming
language.

Was it MAD, the Michigan Algorithmic
Decoder?

That sounds right. That might have
been it.

Do you remember any of your other
mentors from those days?

At Michigan, the math guy was
Nicholas Kazarinoff. I was in engineer-
ing science and I took a calculus course
where I performed well and he noticed
me. That was really my best subject all
along. He encouraged me to jump into
a third-year course the second term and
so I took an accelerated mathematics
program. Eventually I transferred into
the Bachelor of Math and Science de-
gree program after two and a half years,
and majored in mathematics.

Was it difficult to make that adjustment?
Yes. It was clear that mathemat-

ics was my real area. Of course, I was
good in mathematics in high school,
but I didn’t know any mathematicians.
I didn’t really know what mathemati-
cians did.

Who made the recommendation that
you study at Harvard upon graduation?

That was one of the great mathe-
matics departments. I applied at other
places too, like Princeton and Berkeley.
I don’t remember exactly why I ended
up at Harvard.

Was Alan Cobham already at Harvard
at this time?

Well, no. Before I got there he was
a graduate student in the mathemat-
ics department and was close to get-
ting his Ph.D. He wrote a thesis, but he
didn’t bother to complete the minor
thesis requirement. Instead, he just
went off to work for IBM Research in
Yorktown Heights.

Did you have a major professor in mind
when you went to Harvard?

No, and I didn’t really know what I
wanted to do either. I put down alge-
bra as my area. I got more interested
in computers when I took a course
with my eventual advisor, Hao Wang.
He wasn’t in the mathematics depart-
ment; he was in applied physics.

What was your thesis topic?
We didn’t have a real master’s the-

sis. The master’s degree was something
you picked up, just course work really.

So it was just a stepping-stone?
Yes.

In one of your lectures you talk about
Cobham’s question, “Is multiplica-
tion harder than addition?” as being
inspirational to you. Was that a turning
point?

That was one thing. Yes, he wrote
this interesting paper on the intrin-
sic computational difficulty of func-
tions, which I read. That was an in-
fluential paper for sure. There were
other things around too. Michael
Rabin was interested in the same
kind of problems and he had written
articles, and then there were other
papers. I think I mention them in my
Turing Award article.a

Right. Were Princeton faculty and stu-
dents visiting Harvard in those days, or
were you going down to Princeton?

No, I never went to Princeton. James
Bennett’s thesis was quite influential,
but I never met him. In fact I think he
dropped out of the academic picture
as soon as he got his degree. I did meet
Bob Ritchie. I think he came up to visit,
I think that was the only Princeton con-
nection I can remember.

But you were reading their papers?

a	 Cook, S.A. An overview of computational com-
plexity. Commun. ACM 26, 6 (June 1983), 401–408.

I think there was
a feeling that
there were certain
problems that just
seemed to be hard.

viewpoints

january 2012 | vol. 55 | no. 1 | communications of the acm 43

I was reading their papers, but not
having personal interaction with them.

At some point you picked a thesis advi-
sor.

Yes, I had taken a couple courses
from Hao Wang. We got along. He
wasn’t especially interested in com-
plexity, but he was a logician and he
had an interest in computation and he
had done work in automatic theorems
before.

You received your Ph.D. in 1966. What
was your thesis?

It was on the complexity of
multiplication,b so that was right in
line with Cobham’s question.

You immediately took a job at UC
Berkeley in 1966?

Yes, that’s correct.

Did you finish in the middle of the
term?

No. I finished in the spring and
spent the summer in Europe, and then
went off to Berkeley.

What was it like to be a Midwesterner
who moves out to California? Many
people have found that a very easy tran-
sition, but others have found it very dif-
ficult.

There wasn’t a huge difference as
far as the atmosphere on the university
campus at Berkeley. Of course that was
the 1960s so there was a lot more stu-
dent foment.

You were there at a time of a great deal
of student organizing.

There was indeed. The Free Speech

b	 Cook’s thesis title was “On the Minimum
Computation Time of Functions.”

movement was in full swing and there
was tear gas on campus.

You remember some of these inci-
dents?

Yes. There were times when we
couldn’t get to the campus because
there were demonstrators in the way.

Did you have a role?
No, I was just an observer. I wasn’t

politically very active.

You were hired as an assistant profes-
sor at Berkeley, not as a lecturer, is that
right?

That’s right. My position was in the
mathematics department and I was ac-
tually cross-appointed with something
in the computer center. Initially, I had
no connection with the computer sci-
ence department, which was just start-
ing out then.

I realize that research and discovery
is not always an evolutionary process,
but this must have been a time that
was most critical to you in preparing
for your 1971 presentation on “The
Complexity of Theorem Proving Proce-
dures” at ACM SIGACT. Was NP-com-
pleteness something you’d been think-
ing about hard at Berkeley?

No. I was thinking about complex-
ity issues, but the specific idea of NP-
completeness didn’t come to me until
immediately before giving the paper. It
was gelling from other ideas I had been
thinking about.

How long had SIGACT been around in
1971?

It was pretty new. I’m pretty sure
this was the third meeting.

Had you attended other meetings?
Yes. I had papers in every confer-

ence of STOC,c as we now call it, for
about 15 years.

You taught at Berkeley for four years,
from 1966 to 1970.

Yes, that’s right.

And after four years you decided to
move on?

No. I was denied tenure by the math-

c	 The ACM SIGACT Symposium on the Theory
of Computing.

I guess what
I provided was a
definition and result—
the NP-completeness
result crystallized it.

Calendar
of Events
January 17–19
ACM-SIAM Symposium
on Discrete Algorithms,
Kyoto, Japan,
Contact: David S. Johnson,
Email: dsj@research.att.com,
Phone: 908-582-4742

January 18–20
ACM International Workshop
on Timing Issues in the
Specification
and Synthesis of Digital
Systems,
Taipei, Taiwan,
Sponsored: SIGDA,
Contact: Charlie Chung Ping Chen,
Email: cchen@cc.ee.ntu.edu.tw

January 22–28
The 39th Annual ACM
SIGPLAN-SIGACT Symposium
on Principles
of Programming Languages,
Philadelphia, PA,
Sponsored: SIGPLAN,
Contact: John Field,
Email: jfield@google.com

January 28–30
ACM International Health
Informatics Symposium,
Miami, FL,
Sponsored: SIGHIT,
Contact: Jiming Liu,
Email: jiming@comp.hkbu.
edu.hk

January 30–February 3
Fourteenth Australasian
Computing Education
Conference,
Melbourne, Australia,
Contact: Michael da Raadt,
Email: michaeld@moodle.com

February 6–8
International Conference
on Agents and Artificial
Intelligence,
Vilamoura, Algarve Portugal,
Contact: Fred Ana,
Email: afred@lx.it.pt

February 7–9
Second ACM Conference on
Data and Application Security
and Privacy,
San Antonio, TX,
Sponsored: SIGSAC,
Contact: Elisa Bertino,
Email: bertino@cerias.purdue.edu

44 communications of the acm | january 2012 | vol. 55 | no. 1

viewpoints

ematics department. Tenure decisions
weren’t as open then. I don’t know
what information was presented to the
department. The entire math depart-
ment took a vote—I know that. But I
don’t know what kind of evidence was
presented or what the basis for the de-
cision was.

Was that a pattern? Did you have
friends that suffered the same prob-
lem, in your small circle?

My natural colleagues tended to
be in computer science departments
and I think that made a big difference.
Subsequently, I had no trouble getting
offers from computer science depart-
ments. My field may have been a little
too new to be accepted in mathematics.

This was right around the time that Di-
jkstra’s tenure was denied in Amster-
dam too.

Was that also a mathematics depart-
ment decision?

Yes. He then went on to Austin, Texas.
I wonder if it wasn’t the same problem
that he faced.

I guess so, in the sense that the field
was not completely respectable, math-
ematically. I had training and there was
a strong group of logicians in Berkeley
and I had something to do with them,
and I think they had some interest in
my work, but apparently not enough.

Toronto hired you as an associate pro-
fessor in 1970?

Yes, that’s right. I think I was hired
as an associate professor and then got
tenured a year later. I had other offers
too. I had an offer at Yale.

Why did you pick Toronto over Yale?

The city, certainly, is much nicer,
and the department was better estab-
lished. Yale’s computer science pro-
gram was just starting up and it wasn’t
clear how well it was going to go. There
were several interesting people here.
An excellent departmental chair, Tom
Hull, really established things here.
He did a lot of early hires and set it up
as one of the premier departments in
the continent.

When was the department established
here?

There was first a graduate depart-
ment and then an undergraduate
department. The undergraduate de-
partment started up about 1969 or
1970—about when I came.

You settled not far from home.
Yes. I grew up near Buffalo, and we

had gone to Ontario resorts in summers.

Was the department as theoretical an
institution as it is today?

I think numerical analysis was a
strong feature, as it was in many early
departments. There were also a cou-
ple of physicists, Kelly Gotlieb and
Pat Hume. They are both retired now.
Kelly is very active in ACM. He’s in his
90s, but is co-chair of the ACM awards
committee. He may have been the first
chair of the department.

Who were your early colleagues?
Allan Borodin was probably closest.

His office was right across the hall. He
was a Cornell graduate, hired the year
before me.

Did you know him previously?
No, I knew vaguely of his work. I

met him during my first recruiting
trip, and we got along fine.

What kinds of things were you teach-
ing when you first arrived?

My first appointment was cross-ap-
pointed in mathematics. That lasted
for a year or two and then I switched
completely to computer science. I did
teach some math courses. I taught
a course in logic, for example. I also
taught first-year programming—I did
that at Berkeley too. I taught first-year
computer programming a few times. I
did teach graduate courses in my own
area, in computational complexity.

Were there not the rivalries up here
between the mathematicians and com-
puter scientists?

I’m not sure that the mathemati-
cians totally appreciated my work. I
think there was a feeling on their part
that they should—a feeling that this
is an up-and-coming subject and they
should have something to do with it.
Yet I didn’t have too much to do with
the members of the mathematics
department, and that’s one reason I
decided to switch over entirely to the
computer science department.

Within a year you had presented your
paper on the complexity of theorem
proving procedures at the Symposium
on the Theory of Computing. Was
there an immediate and positive reac-
tion to your paper? The very next year
R.M. Karp shows that 21 problems are
NP-complete. Was it something that
was on a lot of people’s minds?

I think so. I think there was a feeling
that there were certain problems that
just seemed to be hard. Rabin was also
interested in these. I remember he was
quite interested in the traveling sales-
man problem, and was trying to find
ways to get lower bounds on the com-
plexity. So I would say yes, there was
something in the air for sure. I guess
what I provided was a definition and
a result—the NP-completeness result
crystallized it.

[The traveling salesman problem
is a graph theory problem that asks,
“Given a map of N cities connected by
roads, can a salesperson visit all the
cities exactly once within some given
number of miles?” The traveling sales-
man problem is a so-called infeasible
problem in computer science, and is
therefore unlikely to be computable in
polynomial time; the problem is only
solved in exponential time. Some read-
ers may quibble with this definition;
fuller explanations are found in: Flood,
M.M. “The Travelling Salesman Prob-
lem,” Operations Research 4 (1956),
61–75; Hoffman, A.J. and Wolfe, P. The
Traveling Salesman Problem: A Guided
Tour of Combinatorial Optimization,
E.L. Lawler et al., Eds. (Chichester:
John Wiley, 1985), 1–16; Reinelt, G.
“The Traveling Salesman: Computa-
tional Solutions for TSP Applications,”
Lecture Notes in Computer Science 840
(Springer-Verlag, Berlin, 1994). —Ed.]

Just because
the problem is
NP-complete does not
mean that you should
not try to solve it.

viewpoints

january 2012 | vol. 55 | no. 1 | communications of the acm 45

In your lecture at the University of Min-
nesota you noted that you need to re-
mind some of your new students that
all problems in NP are not hard.

Yes.

I gather that that’s how this mythology
sprung up that NP problems are hard?

Some people even think NP stand
for “Not P,” but it stands for non-deter-
ministic polynomial time. So we have
these contrasting classes, P and NP.
The simplistic assumption is that the
P ones are the easy ones, and the NP
are the hard ones. And of course P is
the subset of NP. It’s the NP-complete
ones, the subset of NP problems, which
are the hard ones.

Much of this is covered in the chapters
of just about any introductory comput-
er science textbook.

Yes.

The idea of time being the most impor-
tant complexity measure seems rather
straightforward to me now because I’ve
heard it and read it several places, but
it apparently wasn’t.

I think time was an important mea-
sure. It was Alan Cobham who was try-
ing to think of some intrinsic measure
like “work,” but in fact his theorem
was about the characterization of poly-
nomial time, so that was the thing he
talked about—time. Time seemed to
be the most obvious measure of com-
plexity. Certainly space memory was
also considered right from the start.

You and Richard Karp were colleagues
at Berkeley?

We overlapped at Berkeley. He came
to Berkeley from IBM a year or two be-
fore I left, so I knew him.

So he returned home from the SIGACT
symposium, and started looking at
these problems more carefully.

Yes, that’s right. I think he toured
the states talking to people about them,
and coming up with new problems.

Is it fair to say, then, that Karp is your
‘popularizer’?

Yes. He did a tremendous thing—
there’s no question about it. I certainly
didn’t realize there were so many natu-
ral computational problems out there
that turned out to be NP-complete.

Between 1970 and 1980 you received sev-
eral grants from the National Research
Council to work on this problem and
others. In 1975, you are promoted to full
professor at the University of Toronto.

Yes.

And then followed a number of awards:
the E.W.R. Steacie Memorial Fellow-
ship to support fundamental research
essential to the development of sci-
ence; the Izaak Walton Killam Memo-
rial Research Fellowship from the Can-
ada Council for the Arts.

Yes.

And in that period too, in 1982, you
were awarded the ACM A.M. Turing
Award for, among other things, your
contributions of complexity theory.

Yes. And of course the trigger was
the theory of NP-completeness.

In 1985 you became a university pro-
fessor. Numerous teaching awards
followed.

A couple.

You were awarded the CRM/Fields
Prize in 1998. What is the Fields Insti-
tute? A mathematics institute?

It’s a mathematics institute, right.
It’s on our campus although I guess it’s
separate. It’s a bit like the Isaac New-
ton Center at Cambridge. They have
a building for mathematics research.
They sponsor programs and they have
emphasis programs in different areas
in mathematics.

The Mathematical Intelligencer de-
clared the P versus NP problem one of
the three greatest math problems of
the next century. Where does this per-
ception come from?

It seems to be really relevant to the
real world—probably more than the
other problems on the list. It’s not clear
what impact on the world the other
very interesting problems have, though
they certainly could impact mathemat-
ics. If P equals NP, it could have a dra-
matic effect on the world. More likely
P is not equal to NP. There the impact
would still be good. It would lead to the
possibility of proving cryptographic
protocols are secure, which is some-
thing we can’t hope to do at present.

One of your audience members said
that NP-completeness is sometimes
identified on the basis of—as he called
it—an “unrealistic” example. I gath-
ered he was trying to argue that there
was a disconnect between the theory
and human experience on some level.

I think he was referring to the fact
that some problems are NP-complete
but still seem to be, in practice, solv-
able. So that’s a question of what class
of inputs you want to use. Every NP-
complete problem is easy to solve for
some inputs and maybe in some cases
the inputs you really are interested in
are the easy ones. So, in that case, say-
ing it’s NP-complete is misleading.
Even for the original NP-complete prob-
lem of satisfiability, the fact that it’s
NP-complete hasn’t stopped this big
industry of programs that they’re solv-
ing the satisfiability problem with—in
some cases, very dramatic and useful
successes. As I mentioned in the talk,
they’ve been able to verify large chunks
of a microprocessor by proving unsatis-
fiable gaps that it causes with the tens
of thousands of variables. And so there
are certainly some. Just because the
problem is NP-complete does not mean
that you should not try to solve it.

I’m wondering if this isn’t the same
stumbling block, on a very general lev-
el, that other disciplines are struggling
with. In genomics and bioinformatics
they now talk about empirical laws that
haven’t found their theory yet. They
say, “Don’t worry about proving these
things—they’re empirically derived
from computations.”

In bioinformatics there are lots of
computational problems as you say,
and I’m sure that many of them are NP-
complete or NP-hard in their full gen-
erality and that just means you have to

I’ve always been
interested in things
that had a logical
flavor to them, like
formal correctness
of programs.

46 communications of the acm | january 2012 | vol. 55 | no. 1

viewpoints

change the problem or somehow get
around the complication in tractabil-
ity. Or perhaps the inputs that you’re
really interested in may not be hard.

Do you consult with the bioinformatics
people in Toronto?

We don’t have a strong bioinformat-
ics group. We do have people in the
medical sciences interested in the sub-
ject. When we have talks I always attend
them and I’m interested in the subject.

Can you talk about randomizing algo-
rithms and Boolean circuit complexity
being a key to P not equal to NP.

That’s a possible approach and
there’s an intriguing connection be-
tween Boolean circuit complexity and
the P and NP connection.

How often do you get messages from
people who say they have solved the
problem?

Not that often. I probably get one a
month. They don’t say they have solved
the problem necessarily. Rather, they
ask about it and sometimes they’ll
send a program or an algorithm or
they’ll ask if a certain approach works.
In one case somebody sent a program
for solving the Mine Sweeper problem,
which is NP-complete. He didn’t know
what to do with it and he didn’t want
to tell me the algorithm because he
was afraid I would steal it and take the
million-dollar award in the Clay Math-
ematics Institute Millennium Prize
competition.

Can the problem be solved?
It’s possible. It’s not quite that way,

of course. There are two ways the P vs.
NP question can be solved: P equals
NP, or P does not equal NP. Most of us
think it will be solved by showing P not
equal to NP. But if it is solved by show-
ing P equals NP, then it would have
dramatic implications for mathemat-
ics and it might—I can’t say for sure—
but it might lead to solutions to all the
other problems.

Why do complexity theorists think that
P is not equal to NP?

I think there are two main reasons.
One is that computer scientists are
really good at finding efficient algo-
rithms to solve computational prob-
lems. We’ve been doing this now for 30

or more years, probably 40 years. There
have been detailed courses on it, and
mathematical successes. And as far as
the NP-complete problems go, many of
them are really useful in industry. Lots
of people, not just academic computer
scientists, but real people in the field—
programmers and engineers—have
been trying to solve these problems ef-
ficiently. And of course they’ve all failed
to solve any of the NP-complete prob-
lems, at least in finding provable poly-
time solutions for any of them.

So that’s the one side. The other
side is we think, assuming P not equal
to NP, why haven’t we proved it? It just
seems to be very difficult. It’s much
easier to find an algorithm to solve a
problem to show it’s in P than it is to
prove it’s not in P because you have to
rule out every possible algorithm. We
know that’s difficult and there is this
sequence of inclusions of complex-
ity classes; log-space is a subset of P,
which is a subset of NP, which is a sub-
set of P-space. And we know the first
one: log-space is a proper subclass of
the last one, P-space, by a simple di-
agonal argument, and therefore one
of the adjacent conclusions has to be
proper but we can’t prove any of them
are proper, so that’s just good evidence
we’re not good at establishing separa-
tions that are there.

Do you expect a winner anytime soon?
Yes it could happen. I’m guessing

it’s a feasible problem to solve. Maybe
we have to develop more techniques
to solve it, but it’s going to be solved
eventually.

One of the other areas that you’ve been
working on is assertions. I interviewed
Tony Hoare in 2002; How did you come
into contact with axiomatic semantics
and assertions? Is that a relatively re-
cent area of interest to you?

I did that work in the 1980s. I’ve
always been interested in things that
had a logical flavor to them, like for-
mal correctness of programs. People in
this department were interested in for-
mal correctness and so I was aware of
Hoare’s work. Hoare developed these
rules for proving the so-called “Hoare
triples.” For each instruction he would
have a triple that defined the instruc-
tion in some sense. But he didn’t prove
anything about the whole system that
he got. So I was just trying to think in
some sense, ‘These rules must be com-
plete.’ I was trying to figure out the
sense in which they were complete.

Microsoft hired him to help introduce
assertions into their operating systems.

The fundamental problem in soft-
ware is assuring that it’s correct. There
are some fundamental problems writ-
ing it, but once you’ve written it you
have to somehow debug it and try to de-
velop your confidence that it’s correct.
From early on, various people have said
we need a way of mathematically cer-
tifying the software. Coming up with
formal assertions of specifications and
formal proofs that it meets the specifi-
cations with ‘assertions’ seems a very
natural way to do that.

Hoare said to me that, just before he
left Oxford, teaching was moving away
from knowledge-acquisition through
induction to more collaborative group
activities and a dialogue-oriented ap-
proach. Does that sound familiar to
you? Has the teaching here changed
over time?

I haven’t really changed my method
of teaching courses, which is the tradi-
tional one of lectures, consulting, of-
fice hours, and answering email ques-
tions. That’s the way most of us still
work here. The previous dean had every
department develop a seminar course
for first-year students so there’d be
more close contact with regular faculty
members. I guess that’s one pressure.
I don’t know if it’s radically different.
These seminars were to be small and
perhaps a little more informal. We
have tutorial sessions led by graduate
students in all our courses. The idea is
that classes are supposed to be smaller
and more interactive. 	

Copyright held by author.

The fundamental
problem in software
is assuring that
it’s correct.

