

Fakultät für Informatik

Facoltà di Scienze e Tecnologie informatiche | Faculty of Computer Science

COURSE PRESENTATION FORM - ACADEMIC YEAR 2011 / 2012

COURSE NAME Theory of Computing

COURSE CODE 72001 (MSc New – DM 270) / 70101 (MSc Old – DM 509)

LECTURER Diego Calvanese

TEACHING ASSISTANT

TEACHING LANGUAGE English

CREDIT POINTS 8

LECTURE HOURS 48

EXERCISE HOURS 24

OFFICE HOURS LECTURER

See http://www.inf.unibz.it/~calvanese/teaching/, Faculty of CS, POS

Building, piazza Domenicani 3, office 2.19.

OFFICE HOURS TEACHING ASSISTANT

PREREQUISITES There are no prerequisites in terms of courses to attend. Students

> should be familiar with notions of mathematics and set theory, and with basic proof techniques, as taught in the mathematics courses of a

bachelor in computer science.

The objective of the Theory of Computing course is to introduce and **OBJECTIVES**

study abstract, mathematical models of computation (such as Turing machines, formal grammars, recursive functions), and to use the abstract computation models to study the ability to solve computational problems, by identifying both the intrinsic limitations of computing devices, and the practical limitations due to limited availability of resources (time and space). A second objective is to show how to reason

and prove properties about computations in a precise, formal, abstract

way.

SYLLABUS Formal languages, Turing Machines, recursive functions, undecidability,

computational complexity, NP-completeness, time and space complexity

classes, non-uniform computing models.

TEACHING FORMAT Frontal lectures; exercises in class.

ASSESSMENT Midterm or final examination on the first half of the syllabus (50%) +

final examination on the second half of the syllabus (50%). The two parts of the examination can be taken independently of each other within

the three exam sessions of an academic year. Each part of the

examination may be either written or oral. For more details on the exam

Fakultät für Informatik

Facoltà di Scienze e Tecnologie informatiche | Faculty of Computer Science

rules, consult the course web page.

READING LIST

Textbooks:

- Introduction to Automata Theory, Languages, and Computation (3rd edition). J.E. Hopcroft, R. Motwani, J.D. Ullman. Addison Wesley,
- Languages and Machines (3rd edition). Thomas A. Sudkamp. Addison Wesley, 2005. Only Chapter 13.
- Complexity Theory. Ingo Wegener. Springer, 2005. Only Chapter 14.

Further reading material:

- Elements of the Theory of Computation (2nd edition). H.R Lewis, C.H. Papadimitriou. Prentice Hall. 1998.
- Introduction to the Theory of Computation. M. Sipser. PWS Publishing Company. 1997.
- Computational Complexity. C.H. Papadimitriou. Addison Wesley. 1995.

SOFTWARE USED

None

LEARNING OUTCOME

After the course, students will know the fundamental models of computation, and the intrinsic and practical limitations of computing devices. They will also be familiar with formal techniques of computer science, and will be able to formally prove properties about computations.

COURSE PAGE

http://www.inf.unibz.it/~calvanese/teaching/tc/