14

The Complexity of Non-uniform Problems

14.1 Fundamental Considq@ﬁions

Although we have not made this éxﬁ]icit, our considerations to this point have
been directed toward software solutions. If we want to design an efficient algo-
rithm for an optimization problem like TSP or KNAPSACK, we are thinking of
an algorithm that works for arbitrarily many cities or objects. When designing
hardware, however, the situation is different. If a processor works with 64-bit
numbers, then a divider for 64-bit numbers is supposed to compute the first
64 bits of the quotient.

The corresponding computational model is the circuit. Circuits for inputs
of length n have Boolean variables x1,. .., 7, and Boolean constants 0 and
1 as inputg. They can be described as a sequence G1,...,G of gates. Each
gate (3, gas two inputs E; and E; o that must be among the previous gates
G1,...,Gs-1 and the inputs. The gate ; applies a binary operation op; to
its inputs. The functions that are computed by such circuits arise naturally.
The input variables z; and the Boolean constants 0 and 1 can be considered
as funciions as well. If the inputs to a gate G; are realized by the functions
g:,1 and g; 2, then gate G, is realized by the function

gi(a) :== gia(a) op; gi2(a) -

Circuits can be represented more visually as directed acyclic graphs. The
inputs and gates form the vertices of the graph. Each gate has two in-coming
edges representing its two inputs. In the general case, we must distinguish
between the first and second input. If we restrict our attention to symmetric
operators like AND, OR, and EXOR, then this is unnecessary. A circuit C
realizes the function f = (f1,..., fm): {0,1}™ — {0,1}™ if each component
function f; is Tealized by an input or a gate. A circuit for addition on three
hits is represented in Figure 14.1.1. The sum bit is computed in G4 and the
“carry bit” in Gs.

For the evaluation of the efficiency of circuits two different measures are
available. The circuit size (or just size) of a circuit is equal to the number

202 14 The Complexity of Non-uniform Problems

Fig. 14.1.1. A 3-bit adder.

of gates in the circuit and forms a measure of the hardware costs and the
sequential computation time. We imagine that the gates are evaluated in the
given order, and that the evaluation of each gate has cost 1. In reality, circuits
are “parallel processors”. In our example in Figure 14.1.1, gates 4 and G can
be evaluated simultaneously, and once G has been evaluated, G and Gy can
be evaluated simultaneously. The depth of a gate is the length of the longest
path from an input to that gate. All the gates with depth d can be evaluated
simultaneously in the dth time step. The circuit depth (or just depth) of a
circuit is the maximal depth of a gate in a given circuit. Qur example adder
has size 5 and depth 3.

Just as we have been concentrating our attention on decision problems, so
here we will be primarily interested in Boolean functions f : {0,1}* — {0,1}
that have a single output. For the design of hardware, a particular input size
may be important, but an asymptotic complexity theoretical analysis can only
be based on a sequence f = (f,) of Boolean functions. A circuit family or
sequence of circuits C = (C,) computes f = (f,,) il each f, is computed by ..
This leads to the following relationship between decision problems on {0, 1}*
and sequences of Boolean functions f = (f,,) with f, : {0,1}™ — {0,1}. For
each decision problem there is a corresponding sequence of functions f4 =
(f) with

fHe)=1e2ecA.
}())n the other hand for any f = (f,) the decision problem A; can be defined
Y
T e A*‘F}fiml(m) =1.

On the basis of this relationship, in this chapter we will only consider inputs
over the alphabet {0, 1}.

For a sequence f = {f,) of Boolean functions we want to analyze the
complexity measures of size and depth. So let C¢(n) denote the minimal size

14.1 Fundamental Considerations 203

of a circuit that computes f,, and let Ds(n) be defined analogously for circuit
depth. In Chapter 2 we claimed that the time complexity of a problem is
a robust measure. Does this imply that the time complexity of A and the,
circuit size of f4 are related? Boolean functions can always be represented
in disjunctive normal form. A naive analysis shows that their size and depth
are bounded by n - 2" and n + [logn]|, respectively. This is true even for
sequences of functions (f2) for which A is not computable. There are even
noncomputable languages that for each length n contain either all inputs of
that length or none of them. Then f2 is a constant function for each n and
so has size 0.

Here the difference between software solutions (algonthms) and hardware
solutions. like circuit families becomes clear. With, dn algorithm for inputs
of arbitrary length we also have an algorithm for any particular length n.
On the other hand, we need the entire circuit family to process inputs of
arbitrary length. An algorithm has agimte description, as does a circuit, but
what about a circuit family? For.d-doncomputable decision problem A the
sequence of DNF circuits just deécribed is not even computable.

An algorithm is a uniform description of a solution procedure for all input
lengths. When we are interested in such solutions we speak of a uniform
problem. A circuit family C' = (C,,) only leads to a uniform description of a
solution procedure if we have an algorithm that can compute C, from n. It
is possible for there to be very small circuits C,, for f, that are very hard
to compute and larger circuits ¢, for f, that are much easier to compute.
A circuit family € = (C,,), where C,, has size s(n), is called uniform if Cp,
can be computed from n in O(log s(n)) space. In this chapter when we speak
of uniform families of circnits we will be content to show that S, can be
computeg in time that is polynomial in s(n). It is always easy, but sometime
tedious, to describe how to turn this into a computation in logarithmic space.

Every decision problem A on {0,1}* has a non-uniform variant consisting
of the sequence f4 = (f2) of Boolean functions. The non-uniform complex-
ity measures are circuit size and circuit depth where non-uniform families of
circuits are allowed. A non-uniform divider can be useful. If we need a 64-bit
divider, it only needs to be generated or computed once and then can be used
in many (millions of) processors. So we are interested in the relationships be-
tween uniform and non-uniform complexity measures. In Section 14.2 we will
simulate uniform Turing machines with uniform circuits in such a way that
time i related to size and space to depth. Circuits can solve noncomputable
problems, so they can’t in general be simulated by Turing machines. We will
introduce non-uniform Turing machines that can efficiently simulate circuits,
Once again time will be related to size, and space to depth. Together it turns
out that time for Turing machines and size for circuits are very closely related.
The relationships between space and depth (and so parallel computation time)
are also amazingly tight, but circuits do not provide a model of non-uniform
computation that asymptotically exactly mirror the resource of storage space.
Such a model will be introduced in Section 14.4.

204 14 The Complexity of Non-uniform Problems

For complexity classes that contain P, one can ask if all of their problems
can be solved by circuits of polynomial size. In Section 14.5 we will show that
this is the case for the complexity class BPP. If a similar result holds for NP as
well, we obtain a new possibility for dealing with difficult problems. But this
is only possible, as we wilt show in Section 14.7, if the polynomial hierarchy
collapses to the second level. Before that we present a characterization of
non-uniform complexity classes in Section 14.6.

Circuits form o fundamenial hardware model. Only uniform circuits
lead to on efficient algorithmic solution. New aspects of the complezity
of problems are captured by the non-uniform complezity measures of
circuit size and circutt depth. From a practical perspective, it is tmpor-
tant to know if @ problem is difficult because it requires large circuits
or because it is not possible to compute small cireuits efficiently.

14.2 The Simulation of Turing Machines By Circuits

The goals of our considerations can be summarized as follows:

¢ Turing machines with small computation time can be simulated by uniform
circuits with small size. '

o Turing machines that use little space can be simulated by uniform circuits
of small depth.

The first result compares the computation time of Turing machines with the
time for the evaluation of a circuit. The second result implies that small space
requirement makes possible an efficient computation via parallel processing
and is a basis for the parallel computation hypothesis about the tight connec-
tion between storage space and parallel computation time.

What is the difficulty in simulating a Turing machine step by step with a
circuit? Turing machines can incorporate branches (if-statements), and thus
which tape celi is read at time ¢ may depend on the input. It is true that
configurations are only locally modified at each step, but where this modifi-
cation occurs depends on the input. Oblivious Turing machines (see Defini-
tion 5.4.1) always read the same tape cell in the tth step regardless of the
input. As we showed in Lemma 5.4.2, Turing machines can be simulated by
oblivious Turing machines with only a quadratic slow-down. We mentioned
there that one can actually get by with a logarithmic slow-down factor, i.e.,
that time O(t(n)log(t(n))) suffices for the simulation of any Turing machine
by an oblivious Turing machine. So we will investigate how we can simulate
oblivious Turing machines step by step with circuits.

The start configuration can be described by the input variables and
Boolean constants at no cost. Assume we have described the first ¢ — 1 com-
putation steps and consider step ¢. Only the state and the symbol on the
tape cell being read may change in this step. Since the state space @ and

14.2 The Simulation of Turing Machines By Circuits 205

the tape alphabet I' are finite, we only need constantly many bits of the
description of the configuration to compute the new state and the new con-
tents of the tape cell. More concretely, we are evaluating the Turing program
§:@x T — QxI x{-1,0,+1}, where the third component is constant
for a given ¢ since we are considering only oblivious Turing machines. Even
the disjunctive normal form realization of a circuit for é has only constant
size with respect to the input length n. This constant will depend only on the
complexity of 8. Together we obtain a cireuit of size O(t(n)) to simulate t(n)
steps of a Turing machine. The circuit is uniform if the tape head position
in step t can be efficiently computed, as is the case for the oblivious Turing
machines mentioned above. In summary, we have the following result.

Theorem 14.2.1. An oblivious t(n) time-bounded Turing machine can be
stmulated by uniform circuits of size O(t(n)). A t(i) time-bounded Turing
machine can be simulated by um’for_r% circuits of size O(t{n)logt(n)). O

The corresponding circuits alsg:'iiéf;e depth O(t(n) log{t(n)). To get circuits
with smaller depth we need a new idea. .

Theorem 14.2.2. An s(n) space-bounded Turing machine can be simulated
by uniform circuits of depth O(s*(n)?), where s*(n) := max{s(n}, [lognl}.

Proof. For space-bounded Turing machines we assume, as was described in
Section 13.2, that the inpul is on a read-only input tape. The mxlmber of
different configurations is bounded by k{n) = 20Ucsnts(m)]) = 20(7(n), We
consider the corresponding directed configuration graph that contains a ver-
tex for each configuration. The edge set E{x) depends on the input x. The
edge (v,3v) belongs to E(z) if the Turing machine on input z can go from
conﬁgura%'idn v to configuration w in one step. Let the adjacency matrix of
this graph be A(z) = (ayw(z)). It is important that a, . (z) only depends on
x; in an essential way when the ith tape cell is being read in configuration v.
S0 @y () is one of the functions 0, 1, z; or Z;. Thus each of the functions
Gy (x) can be computed by a circuit of depth 1. Now let af () = 1 if and
only if on input z the configuration w can be reached from configuration v in ¢
steps. For ¢ € {1,...,£— 1} we must go from configuration v to configuration
u and then in ¢ — ¢ steps from configuration v to w. Thus

0} (1) = \/ ab (2} A0 (),
U

where \/ represents disjunction. The matrix A is the Boolean matrix product
of A¥ and At The depth needed to realize this matrix product is 1 +
[log k(n)] = O(s* (n)) Each of the conjunctions requires depth 1, and for each
of the disjunctions a balanced binary tree can be used. Again from Secfion 13.2
we know that we reach an accepting configuration only if we can reach it in
E(n) < 2Mo8&(™)] steps. So we compute A for all 1 < i < [logk(n)] with
[tog k(n)] = O(s*(n)) matrix multipications. Finally we check if the input =

206 14 The Complexity of Non-uniform Problems
is accepted with a disjunction of all a%iiojk(nﬂ (z) for the initial configuration
up and the accepting configurations w. The depth of this circuit is bounded
by

L+ (1+ [logk(n)]) - [log k(n)] + Mlog k(n)] = O(s*(n)?) .

The corresponding circuits are uniform. The behavior of the Turing machine
only plays a role in the computation of the a, ., (z). O

It is not known how to simulate Turing machines with small time and small
space bounds with circuits of small size end smalt depth simultaneously. Most
likely there are no such simulations.

14.3 The Simulation of Circuits by Non-uniform Turing
Machines

Circuit families C = {C},) form a non-uniform computation model because we
are not concerned with how one comes up with circuit ¢, for input length n.
For a Turing machine to be able to simulate a circuit family it must also have
free access to some information that depends on the length of the instance n =
lz| but not on the contents of the instance . A non-uniform Turing machine is
a Turing machine with twa read-only input tapes. The first input tape contains
the instance x, and the second input tape contains some helping information
h(|z|) that is identical for all inputs of length n. Because of the second input
tape, the number of configurations of a non-uniform Turing machine that
visits at most s(n} tape cells is larger by a factor of 4(n) than the number for
a normal Turing machine, namely 28(cg nts(r)+loghi(n}) Frequently the second
input tape is denoted as an oracle tape and the help as an oracle. The results of
Section 14.2 can be generalized to the situation where we simulate non-uniform
Turing machines with (non-uniform) circuits. The help h(n) represents for C,,
a constant portion of the input.

We will now show the following simulation results which go in the other
direction from the results of Section 14.2:

e Small circuit families can be simulated by fast non-uniform Turing ma-
chines.

¢ Shallow circuit families can be simulated by non-uniform Turing machines
with small space requirements.

The latter of these is the second support for the parallel computatidn hypoth-
esis.

We will use the following notation for circuit families C = (C,):

s(n) for the size of ¢, and s*(n) for max{s(n),n},

d(n) for the depth of Cy, and d*(n) for max{d(n), [logn]},
fr for the function computed by),

Ay for the decision problem corresponding to f = (f,).

14.3 The Simulation of Circuits by Non-uniform Turing Machines 207

Theorem 14.3.1. The circuit family C = (Cp) for a decision problem Ay
can be simuloted by o non-uniform Turing machine with two work topes in
time O(s™(n)?) and space O(s*(n)).

Proof. For our help we let h(n) be a description of the circuit C},. This contains
a list of all gates, which are represented as triples giving the operator, the first
input, and the second input. For each input we note first the type (constant,
input bit, or gate) and then its number. The length of this description is
O(s(n)log s*(n}).

The Turing machine now processes the gates in their natural order. The
first work tape is used to store the values of the previously evaluated gates.
The second work tape will store a counter used to locate positions on the first
work tape or the input tape. The help tape records where the input values
for each gate is to be found. If the Turing machine knows the input values
and the operator of a gate, then it cgn compute the output of this gate and
append it to the list of previously 'lgii'éwn outputs. To evaluate the output
of a gate, the Turing machine first “retrieves the values of its inputs. For a
constant this information is given directly on the help tape. Otherwise the
index of the gate or input bit is copied from the help tape to the second tape.
If the input is ancther gate, the head of the first work tape is brought to the
left end of the tape. While we repeatedly subtract 1 from the counter stored
on the second work tape until we reach the value 1, the tape head on the
first tape is moved one position to the right each time. At the end of this
procedure, the head on the first work tape is reading the information we are
searching for. For an input bit we search analogously on the input tape. It
is easy to see that for gate i or bit i, O{i) = O(s*(n)) steps suffice. Since
we must process s(n) gates each with two inputs, the entire time is bounded
by O{s(1)-'s*(n)) = O(s*(n)?). On the first work tape we never have more
than s(n) bits, and on the second work tape the number of bits is bounded
by s*(n). O

iIf we want to obtain a Turing machine with one work tape, we could use
the simulation result mentioned in Section 2.3 and obtain a time bound of
O(s*(n)*). But in this case it is possible to give a direct description of a
Turing machine with a time bound of O(s*(n)?logs*(n)), but we will omit
these details. If the given circnit family is uniform, then for an input of length
n we can first compute C,, and then apply the simulation we have described.

Theorem 14.3.2. The circuit family C = {Cn) for o decision problem Ay
can be simulated by a non-uniform Turing machine in space O(d*(n)).

Proof. We no longer have enough space to store the results of all the gates.
But this is only necessary if the results of some gates are used more than once.
This is not the case if the underlying graph of the circuit is a tree. It is possible
to “unfold” circuits in such a way that they become trees. To do this we go
through the graph of the circuit in topological order. As we encounter a vertex

208 14 The Complexity of Non-uniform Problems

with v immediate successors we replace it and all of its predecessors with r
copies. This increases the size but not the depth of the circuit. Circuits for
which all gates have at most one successor are called formulas. In Figure 14.3.1
we show the result of unfolding the circuit from Figure 14.1.1.

b Q\; ‘°’ K)

(AND)

Fig. 14.3.1. The 3-bit adder as a formula.

As help for inputs of length n we use a formula 7, of depth d(n) for f,. Its
description containg a list of all gates in the order of a post-order traversal.
For a tree with one vertex this order consists of that vertex. Qtherwise it
consists of the results of a post-order traversal of the left subtree followed
by that of the right subtree, followed by a description of the root. Gates will
once again be described as triples of operation, left input, and right input. It is
important that because we are using this order we will not need the numbers
of the inputs that are gates. This will be seen in the proof of correctness.
Formulas of depth d(n} have at most 24® — 1 gates, each of which can be
described with O{logn) bits. So all together the length of the description is
023} log n).

The Turing machine now processes the gates using post-order traversal.
The work tape will be used to store the sequence of gate outputs that have
not yet been used by their successor. Furthermore, as in the proof of Theo-
rem 14.3.1 we use O{log n)} space to locate values on the input tape. But how
do we find values of the inputs to a gate? Because they are processed in the
order of a post-order fraversal, the left and right subtrees of a gate are pro-
cessed immediately before that gate. The roots of these subtrees are the only
gates whose values have not yet been used. So the values we need are at the
right end of the list of gate outputs and the Turing machine works correctly.

Finally we show by induction on the depth d that there are never more
than d outputs stored on the work tape. This implies that the space used is
bounded by O(logn+d(n)) = O(d*(n)). The claim is clearly true when d = 1.
Now consider a formula of depth 4 > 1. By the inductive hypothesis, d ~ 1

14.4 Branching Programs and Space Bounds 209

tape cells are sufficient to evaluate the left subformula. This result is stored
in one cell, and along with the at most d — 1 tape cells needed to evaluate
the right subformula, at most d tape cells are required. In the end only two
tape cells are being used, and after evaluation of the root, only one tape cell
is being used. O

If the given circuit family is uniform, then the information about a gate can
be computed in space O{log 2%} = O{d(n)}. So in this case even a uniform
Turing machine can get by with space O(d*(n)).

There are close connections between circuit families and non-uniform
Turing machines, and between Turing machines and uniform families
of circuits. Circuit size is polynomially related to computation time,
and circuit depth is polynomially related to space.

£
14.4 Branching Programs and Space Bounds

Now we want to introduce a non-uniform model of computation, the size of
which characterizes the space used by non-uniforn Turing machines asymp-
totically exactly. This model of computation has roots not only in complexity
theory but also as a data structure for Boolean functions. For this reason there
are two names commonly given to this model: branching program and binary
decision diagram {abbreviated BDD).

A branching program works on n Boolean variables zy, ..., 2, and has only
two types of elementary commands, which are represented as the vertices of
a graph. A branching (or decision) vertex v is labeled with a variable z; and
has two gui-going edges: one labeled 0, the other labeled 1. If v is reached
in a.computation, then the edge leaving v corresponding to the value of x; is
used to arrive at the next vertex. An output vertex w is labeled with a value
¢ € {0,1} and has no out-going edges. If w is reached, then the computation
is complete and the value ¢ is given as output. A branching program is a
directed acyclic graph consisting of branching vertices (also called internal
vertices) and output vertices (also called sinks).

Each vertex v in a branching program realizes a Boolean function f, in
the following way. To compute f,(a) we start at vertex v and carry out the
commands at each vertex until we reach a sink. For branching programs there
are two obvious complexity measures. The length of a branching program is
the length of the longest computation path in the branching program and is
a measure of the worst-case time required to evaluate the function. The size
of a branching program is the number of vertices, and the branching program
complexity BP(f) of a Boolean function f is defined as the minimal size of
& branching program that computes f. This is the complexity measure that
we will be interested in here. Figure 14.4.1 contains a branching program the
input vertices of which realize the two output bits for the addition of three
bits. To make the diagram more readable we have included two 1-sinks.

210 14 The Complexity of Non-uniform Problems

Fig. 14.4.1. A branching program for the addition of three bits.

So why is there a tight connection between the size of branching pro-
grams and the space required by non-uniform Turing machines? To evaluate
fo it is sufficient to remember the currently reached vertex. On the other
hand, a branching program can directly simulate the configuration graph of a
space-bounded Turing machine used in the proof of Theorem 14.2.2. We will
formalize this in the theorem below, using BP*(f,,) to represent the larger of
BP(f.) and n, and letting s*(n) = max{s(n), [logn]} just as before.

Theorem 14.4.1. The decision problem A corresponding to f = (fn) can
be solved by o non-uniform Turing machine in space O(log BP*(f.)).

Proof. For help on inputs of length n we use a description of a branching
program (7, of minimal size for f,. This description includes a list of the
vertices, where each vertex is described by its type (inner vertex or sink),
its number, and its internal information. For a sink the latter counsists of the
value that is output by the sink, and for an inner vertex it consists of a
triple including the index of the variable to be processed, the index of the
(-successor, and the index of the l-successor. Furthermore, we will always
let the vertex representing f,, have index 1. In this way each of the BP(f,)
vertices has a description of length O{log BP*(£,)). We use the work tape
to remember the current vertex, so at the beginning of the computation it
contains the number 1. If a sink is reached, then we make the correct decision
and stop the computation. Otherwise we search for the value of the variable to
be processed on the input tape. After that the new current vertex is known,
namely the z;-successor. We look for its information on the help tape and
update the current vertex index on the work tape. |

Theorem 14.4.2. An s(n)-space bounded Turing machine can be simulated
by o branching program of size 200" (7)),

Proof. We already know that the number of different confipurations of the

Turing machine on an input of length n is bounded by 200" (")), The branching

14.5 Polynomial Circuits for Problems in BPP 211

program G, has a vertex for each of the configurations that is reachable from
the start configuration. Accepting configurations are l-sinks and rejecting
configurations are (-sinks. An inner vertex for configuration K is labeled with
the variable z; that is being read from the input tape in configuration K.
The 0-child of this vertex is the configuration that is reached in one step
from K if z; = 0. The 1-child is defined analogously. Since we only consider
Turing machines that halt on all inputs, the graph is acyclic and we have a
branching program. The Boolean function describing the acceptance behavior
of the Turing machine on inputs of length # is realized by the vertex labeled
with the initial configuration. a

What changes if the given Turing machine is non-uniform and the help
has length h(n)? The number of configurations and therefore the size of
the simulating branching program grows by a factor of h(n) < glog h{n)],
This has led to the convention of ,adding [logh{n)] to the space used
by a non-uniform Turing machine. Or we could instead define s**(n) =
max{s(n), [logn], [logh{n)]}. The term [logn| has the same function for
the input tape as the term [log h{n)] has for the help tape.

Corollary 14.4.3. An s(n)-space bounded non-uniform Turing machine con
be stmulated by a branching program of size 2007 (n)) O

These results can be summarized as follows for the “normal” case that
s(n) = logn, BP(f,.) > n, and h(n) is polynomially bounded:

Space and the logorithm of the branching program size have the same
order of magnitude.

For a9angnage L € NP, L € P, or L € NTAPE(logn), we can try to show
that L ¢ DTAPE(logn) by proving a superpolynomial lower bound for the
branching program size of the function f¥ = (fZ). This is the most common
line of attack for such resulis. To this point, such lower bounds for branching
program size grow more slowly than quadratically (see Chapter 16).

14.5 Polynomial Circuits for Problems in BPP

We have already discussed several times that BPP is “not much larger” than
P. It is possible that BPP = P, but this is still an open question. Now we want
to offer some support for the claim that problems in BPP are not much more
difficult than problems in P. For a decision problem A € BPP the Boolean
functions f4 = (f) can be computed by circuits of polynomial size. If these
circuits were uniform, then it would follow that BPP = P. But so far, only
non-uniform circuits for f2 have been found. The trick is that for a BPP algo-
rithm we can choose the erroz-probability to be so low that by the pigeonhole
principle there must be an assignment for the random bits for which the BPP

