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Reasoning on UML Class Diagrams

We have seen that UML class diagrams are in tight correspondence with
ontology languages (in fact, they can be viewed as an ontology language).
Let’s consider again the two questions we asked before:

1. Can we develop sound, complete, and terminating procedures for reasoning
on UML Class Diagrams?

We can exploit the formalization of UML Class Diagrams in Description
Logics.

We will see that reasoning on UML Class Diagrams can be done in
ExpTime in general (and actually, it can be carried out by current
DLs-based systems such as FACT++, PELLET, or RACER-PRO).

2. How hard is it to reason on UML Class Diagrams in general?

We will see that is is ExpTime-hard in general.

However, we can single out interesting fragments on which to reason
efficiently.
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DLs vs. UML Class Diagrams

There is a tight correspondence between variants of DLs and UML Class
Diagrams [Berardi et al., 2005; Artale et al., 2007].

We can devise two transformations:

one that associates to each UML Class Diagram D a DL TBox TD.
one that associates to each DL TBox T a UML Class Diagram DT .

The transformations are not model-preserving, but are based on a
correspondence between instantiations of the Class Diagram and models of
the associated TBox.

The transformations are satisfiability-preserving, i.e., a class C is
consistent in D iff the corresponding concept is satisfiable in T .
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Encoding UML Class Diagrams in DLs

The ideas behind the encoding of a UML Class Diagram D in terms of a DL
TBox TD are quite natural:

Each class is represented by an atomic concept.

Each attribute is represented by a role.

Each binary association is represented by a role.

Each non-binary association is reified, i.e., represented as a concept
connected to its components by roles.

Each part of the diagram is encoded by suitable assertions.
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Encoding of classes and attributes

A UML class C is represented by an atomic concept C

Each attribute a of type T for C is represented by an atomic role a.

To encode the typing of a:

∃a v C ∃a− v T

To encode the multiplicity [m..n] of a:

C v (≥ ma) u (≤ na)

When m is 0, we omit the first conjunct.
When n is ∗, we omit the second conjunct.
When the multiplicity is [0..∗] we omit the whole assertion.
When the multiplicity is missing (i.e., [1..1]), the assertion becomes:

C v ∃a u (≤ 1 a)

Note: We have assumed that different classes don’t share attributes.

The encoding can be extended also to operations of classes.
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Encoding of classes and attributes – Example

number[1..*]: String

brand: String

lastDialed(): String

callLength(String): Integer

class name

attributes

operations

Phone

To encode the class Phone, we introduce a concept Phone.

Encoding of the attributes number and brand:

∃number v Phone
∃brand v Phone

∃number− v String
∃brand− v String

Encoding of the multiplicities of the attributes number and brand:

Phone v ∃number
Phone v ∃brand u (≤ 1 brand)

We do not consider the encoding of the operations: lastDialed() and
callLength(String).
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Encoding of associations

The encoding of associations depends on:

the presence/absence of an association class;

the arity of the association.

Without With
Arity association class association class

Binary via a DL role via reification
Non-binary via reification via reification

Note: an aggregation is just a particular kind of binary association without
association class and is encoded via a DL role.
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Encoding of binary associations without association class

min1 ..max1 C2

A
C1

min2 ..max2

An association A between C1 and C2 is represented by a DL role A, with:

∃A v C1 ∃A− v C2

To encode the multiplicities of A:

each instance of class C1 is connected through association A to at least
min1 and at most max1 instances of C2:

C1 v (≥ min1 A) u (≤ max1 A)

each instance of class C2 is connected through association A− to at least
min2 and at most max2 instances of C1:

C2 v (≥ min2 A
−) u (≤ max2 A

−)
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Binary associations without association class – Example

reference

1..1 1..∗ PhoneCallPhoneBill

∃reference v PhoneBill
∃reference− v PhoneCall

PhoneBill v (≥ 1 reference)
PhoneCall v (≥ 1 reference−) u (≤ 1 reference−)

Note: an aggregation is just a particular kind of binary association without
association class.
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Encoding of associations via reification

A

C1 Cn

C2

. . .
A1

A2
An

a

A1 An
A2

C1 C2
. . . Cn

o1 o2 on

A

An association A is represented by a concept A.

Each instance a of A represents an instance (o1, . . . , on) of the association.

n (binary) roles A1, . . . , An are used to connect an object a representing a
tuple to objects o1, . . . , on representing the components of the tuple.

To ensure that the instances of A correctly represent tuples:

∃Ai v A, for i ∈ {1, . . . , n}
∃A−i v Ci, for i ∈ {1, . . . , n}
A v ∃A1 u · · · u ∃An u (≤ 1A1) u · · · u (≤ 1An)

Note: when the roles of A are explicitly named in the class diagram, we can use
such role names instead of A1, . . . , An.
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Encoding of associations via reification

We have not ruled out the existence of two instances a1, a2 of concept A
representing the same instance (o1, . . . , on) of association A:

a2

a1

C1

A

. . .

A

An
A2

An
A2

A1

A1

Cno2 onC2o1

To rule out such a situation we could add
an identification assertion (see later):

(id A A1, . . . , An)

Note: in a tree-model the above situation cannot occur.

; By the tree-model property of DLs, when reasoning on a KB, we can restrict
the attention to tree-models.
Hence we can ignore the identification assertions.
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Multiplicities of binary associations with association class

A2

C2
min1 ..max1

C1
min2 ..max2

A

A1

We can encode the multiplicities of association A by means of number
restrictions on the inverses of roles A1 and A2:

each instance of class C1 is connected through association A to at least
min1 and at most max1 instances of C2:

C1 v (≥ min1 A
−
1 ) u (≤ max1 A

−
1 )

each instance of class C2 is connected through association A− to at least
min2 and at most max2 instances of C1:

C2 v (≥ min2 A
−
2 ) u (≤ max2 A

−
2 )
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Associations with association class – Example

from

0..∗
call

1..1 Phone

place: String

Origin

PhoneCall

∃place v Origin ∃place− v String
Origin v ∃place u (≤ 1 place)
∃call v Origin ∃call− v PhoneCall
∃from v Origin ∃from− v Phone
Origin v ∃call u (≤ 1 call) u

∃from u (≤ 1 from)
PhoneCall v (≥ 1 call−) u (≤ 1 call−)
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Encoding of ISA and generalization

C1

C

C1 v C

C2

C

C1 . . . Ck

C1 v C
...

Ck v C

When the generalization is disjoint:

Ci v ¬Cj for 1 ≤ i < j ≤ k

When the generalization is complete:

C v C1 t · · · t Ck
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Encoding of ISA between associations

Without reification:

C1 C2

C′
2C′

1

A

A′

Role inclusion assertion: A′ v A

With reification:

C1 C2

C′
1 C′

2

A′

A

A1

A′
1

A2

A′
2

Concept inclusion assert.: A′ v A

Role inclusion assertions: A′1 v A1

A′2 v A2
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ISA and generalization – Example

ETACSphone GSMphone UMTSphone

CellPhone

{disjoint, complete}

ETACSphone v CellPhone ETACSphone v ¬GSMPhone

GSMSphone v CellPhone ETACSphone v ¬UMTSPhone

UMTSSphone v CellPhone GSMphone v ¬UMTSPhone

CellPhone v ETACSphone t GSMphone t UMTSPhone
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Encoding UML Class Diagrams in DLs – Example

fromMO

reference
PhoneBill PhoneCall Phone

MobileCall CellPhone FixedPhone

MobileOrigin

Origin

{disjoint, complete}
place: String

callO fromO

callMO

1..1 1..*

0..*

0..* 0..*

1..1

∃reference v PhoneBill
∃reference− v PhoneCall

PhoneBill v (≥ 1 reference)
PhoneCall v (≥ 1 reference−) u

(≤ 1 reference−)

∃place v Origin
∃place− v String

Origin v ∃place u (≤ 1 place)

∃callO v Origin
∃callO− v PhoneCall
∃fromO v Origin
∃fromO− v Phone

Origin v ∃callO u (≤ 1 callO) u
∃fromO u (≤ 1 fromO)

PhoneCall v (≥ 1 callO−) u (≤ 1 callO−)

∃callMO v MobileOrigin
∃callMO− v MobileCall
∃fromMO v MobileOrigin
∃fromMO− v CellPhone

MobileOrigin v ∃callMO u (≤ 1 callMO) u
∃fromMO u (≤ 1 fromMO)

MobileOrigin v Origin
callMO v callO

fromMO v fromO

MobileCall v PhoneCall

CellPhone v Phone
FixedPhone v Phone u ¬CellPhone

Phone v CellPhone t FixedPhone
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Encoding UML Class Diagrams in DLs – Example 2

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

AreaManager v ¬TopManager
Manager v AreaManager t

TopManager

∃salary− v Integer
∃salary v Employee

Employee v ∃salary u (≤ 1 salary)

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

manages v worksFor
· · ·
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Reducing reasoning in ALC to reasoning in UML

We show how to reduce reasoning over ALC TBoxes to reasoning on UML
Class Diagrams:

We restrict the attention to so-called primitive ALC− TBoxes, where the
concept inclusion assertions have a simplified form:

there is a single atomic concept on the left-hand side;
there is a single concept constructor on the right-hand side.

Given a primitive ALC− TBox T , we construct a UML Class Diagram DT
such that:

an atomic concept A in T is satisfiable
iff

the corresponding class A in DT is satisfiable.

Note: We preserve satisfiability, but do not have a direct correspondence
between models of T and instantiations of DT .
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Encoding DL TBoxes in UML Class Diagrams

Given a primitive ALC− TBox T , we construct DT as follows:

For each atomic concept A in T , we introduce in DT a class A.

We introduce in DT an additional class O that generalizes all the classes
corresponding to atomic concepts.

For each atomic role P , we introduce in DT :

a class CP (that reifies P );
two functional associations P1, P2, representing the two components of P .

For each inclusion assertion in T , we introduce suitable parts of DT , as
shown in the following.
We need to encode the following kinds of inclusion assertions:

A v B
A v ¬B
A v B1 tB2

A v ∃P .B
A v ∀P .B
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Encoding of inclusion and of disjointness

For each assertion A v B of T , add the following to DT :

        A B

For each assertion A v ¬B of T , add the following to DT :

    

        

{disjoint}

O

A B
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Encoding of union

For each assertion A v B1 tB2 of T , introduce an auxiliary class B, and add
the following to DT :

        

        

{complete}

A B

B1 B2
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Encoding of existential quantification

For each assertion A v ∃P .B of T , introduce the auxiliary class CPAB and the
associations PAB1 and PAB2, and add the following to DT :

   

      

    

      

1..1

PAB1

1..1

1..*

PAB2
P2P1

1..1 1..1O

A B

CP

CPAB
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Encoding of universal quantification

For each assertion A v ∀P .B of T , introduce the auxiliary classes Ā, CPAB ,
and CPAB , and the associations PAB1, PĀB1, and PAB2, and add the following
to DT :

    

        

            

    

    

{disjoint}

{complete}

1..1

P1

1..1

P2

1..1

PAB1

PĀB1

1..1

PAB2

1..1

O

B

A Ā

CPAB CPAB

CP
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Complexity of reasoning on UML Class Diagrams

Lemma

An atomic concept A in a primitive ALC− TBox T is satisfiable if and only if
the class A is satisfiable in the UML Class Diagram DT .

Reasoning over primitive ALC− TBoxes is ExpTime-hard.
From this, we obtain:

Theorem

Reasoning over UML Class Diagrams is ExpTime-hard.
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Reasoning on UML Class Diagrams using DLs

The two encodings show that DL TBoxes and UML Class Diagrams
essentially have the same computational properties.

Hence, reasoning over UML Class Diagrams has the same complexity as
reasoning over ontologies in expressive DLs, i.e., ExpTime-complete.

This is somewhat surprising, since UML Class Diagrams are so widely used
and yet reasoning on them (and hence fully understanding the implication
they may give rise to), in general is a computationally very hard task.
The high complexity is caused by:

1 the possibility to use disjunction (covering constraints)
2 the interaction between role inclusions and functionality constraints

(maximum 1 cardinality – see encoding of universal and existential
quantification)

Note: Without (1) and restricting (2), reasoning becomes simpler [Artale et al., 2007]:

NLogSpace-complete in combined complexity

in LogSpace in data complexity (see later)

D. Calvanese Part 4: Ontology Based Data Access KRO – 2010/2011 (33/290)



unibz.itunibz.it

DLs and UML Class Diagrams The DL-Lite family of tractable DLs

Reasoning on UML Class Diagrams Part 4.1: Description Logics for data access

Efficient reasoning on UML Class Diagrams

We are interested in using UML Class Diagrams to specify ontologies in the
context of ontology-based data access.

Questions

Which is the right combination of constructs to allow in UML Class
Diagrams to be used for OBDA?

Are there techniques for query answering in this case that can be derived
from Description Logics?

Can query answering be done efficiently in the size of the data?

If yes, can we leverage relational database technology for query answering?
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The DL-Lite family Part 4.1: Description Logics for data access

The DL-Lite family

A family of DLs optimized according to the tradeoff between expressive
power and complexity of query answering, with emphasis on data.

Carefully designed to have nice computational properties for answering
UCQs (i.e., computing certain answers):

The same data complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally expressive
ontology languages enjoying these nice computational properties.

Captures conceptual modeling formalism.

The DL-Lite family provides new foundations for Ontology-Based Data Access.
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The DL-Lite family Part 4.1: Description Logics for data access

Basic features of DL-LiteA

DL-LiteA is an expressive member of the DL-Lite family.

Takes into account the distinction between objects and values:

Objects are elements of an abstract interpretation domain.
Values are elements of concrete data types, such as integers, strings, ecc.
Values are connected to objects through attributes (rather than roles).

Is equipped with identification assertions.

Captures most of UML class diagrams and Extended ER diagrams.

Enjoys nice computational properties, both w.r.t. the traditional reasoning
tasks, and w.r.t. query answering (see later).
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Syntax of the DL-LiteA description language

Concept expressions: atomic concept A

B −→ A | ∃Q | δ(U)
C −→ >C | B | ¬B

Role expressions: atomic role P

Q −→ P | P−
R −→ Q | ¬Q

Value-domain expressions: each Ti is one of the RDF datatypes

E −→ ρ(U)
F −→ >D | T1 | · · · | Tn

Attribute expressions: atomic attribute U

V −→ U | ¬U
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Semantics of DL-LiteA – Objects vs. values

Objects Values

Interpretation domain ∆I Domain of objects ∆ I
O Domain of values ∆ I

V

Alphabet Γ of constants Object constants ΓO Value constants ΓV

cI ∈ ∆ I
O dI = val(d) given a priori

Unary predicates Concept C RDF datatype Ti

CI ⊆ ∆ I
O T Ii ⊆ ∆ I

V given a priori

Binary predicates Role R Attribute V

RI ⊆ ∆ I
O ×∆ I

O V I ⊆ ∆ I
O ×∆ I

V
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Semantics of the DL-LiteA constructs

Construct Syntax Example Semantics

top concept >C >IC = ∆ I
O

atomic concept A Doctor AI ⊆ ∆ I
O

existential restriction ∃Q ∃child− {o | ∃o′. (o, o′) ∈ QI}
concept negation ¬B ¬∃child ∆I \BI
attribute domain δ(U) δ(salary) {o | ∃v. (o, v) ∈ UI}
atomic role P child P I ⊆ ∆ I

O ×∆ I
O

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆ I

O ×∆ I
O ) \QI

top domain >D >ID = ∆ I
V

datatype Ti xsd:int val(Ti) ⊆ ∆ I
V

attribute range ρ(U) ρ(salary) {v | ∃o. (o, v) ∈ UI}
atomic attribute U salary UI ⊆ ∆ I

O ×∆ I
V

attribute negation ¬U ¬salary (∆ I
O ×∆ I

V ) \ UI
object constant c john cI ∈ ∆ I

O

value constant d ’john’ val(d) ∈ ∆ I
V
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DL-LiteA assertions

TBox assertions can have the following forms:

Inclusion assertions:

B v C concept inclusion

Q v R role inclusion

E v F value-domain inclusion

U v V attribute inclusion

Functionality assertions:

(funct Q) role functionality (funct U) attribute functionality

Identification assertions: (id B I1, . . . , In)
where each Ij is a role, an inverse role, or an attribute

ABox assertions: A(c), P (c, c′), U(c, d),
where c, c′ are object constants and d is a value constant
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Semantics of the DL-LiteA assertions

Assertion Syntax Example Semantics

conc. incl. B v C Father v ∃child BI ⊆ CI

role incl. Q v R father v anc QI ⊆ RI

v.dom. incl. E v F ρ(age) v xsd:int EI ⊆ F I

attr. incl. U v V offPhone v phone UI ⊆ V I

role funct. (funct Q) (funct father) ∀o, o1, o2.(o, o1) ∈ QI ∧
(o, o2) ∈ QI → o1 = o2

att. funct. (funct U) (funct ssn) ∀o, v, v′.(o, v) ∈ UI ∧
(o, v′) ∈ UI → v = v′

id const. (id B I1, . . . , In) (id Person name, dob) I1, . . . , In identify
instances of B

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2 ) ∈ P I

mem. asser. U(c, d) phone(bob, ’2345’) (cI , val(d)) ∈ UI
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DL-LiteA – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 

TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

1..*

{disjoint}

Manager v Employee
AreaManager v Manager
TopManager v Manager

AreaManager v ¬TopManager

Employee v δ(empCode)
δ(empCode) v Employee
ρ(empCode) v xsd:int

(funct empCode)
(id Employee empCode)

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v ∃worksFor−

(funct manages)
(funct manages−)

manages v worksFor
...

Note: DL-LiteA cannot capture completeness of a
hierarchy. This would require disjunction (i.e., OR).
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Identification assertions – Example

 
code: Integer

Match

homeGoals: Integer
hostGoals: Integer
playedOn: Date

Played Match

 

 
 

Team 1..1 hostTeam

 
 

Referee 1..1
umpiredBy

1..1 homeTeam

 
code: Integer

Round1..1playedIn

 
year: Integer

League
1..1

belongsTo

 
 

Nation

1..1

of

What we would like to additionally capture:

1 No two leagues with the same year and the same nation exist

2 Within a certain league, the code associated to a round is unique

3 Every match is identified by its code within its round

4 Every referee can umpire at most one match in the same round

5 No team can be the home team of more than one match per round

6 No team can be the host team of more than one match per round
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Identification assertions – Example (cont’d)

League v ∃of PlayedMatch v Match
∃of v League Match v δ(code)
∃of− v Nation Round v δ(code)
Round v ∃belongsTo PlayedMatch v δ(playedOn)
∃belongsTo v Round . . .
∃belongsTo− v League ρ(playedOn) v xsd:date

Match v ∃playedIn ρ(code) v xsd:int

. . . . . .

(funct of) (funct hostTeam) (funct homeGoals)
(funct belongsTo) (funct umpiredBy) (funct hostGoals)
(funct playedIn) (funct code) (funct playedOn)
(funct homeTeam) (funct year)
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Identification assertions – Example (cont’d)

 
code: Integer

Match

homeGoals: Integer
hostGoals: Integer
playedOn: Date

Played Match

 

 
 

Team 1..1 hostTeam

 
 

Referee 1..1
umpiredBy

1..1 homeTeam

 
code: Integer

Round1..1playedIn

 
year: Integer

League
1..1

belongsTo

 
 

Nation

1..1

of

1 No two leagues with the same year and the same nation exist

2 Within a certain league, the code associated to a round is unique

3 Every match is identified by its code within its round

4 Every referee can umpire at most one match in the same round

5 No team can be the home team of more than one match per round

6 No team can be the host team of more than one match per round

(id League of, year) (id Match umpiredBy, playedIn)
(id Round belongsTo, code) (id Match homeTeam, playedIn)
(id Match playedIn, code) (id Match hostTeam, playedIn)
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Semantics of identification assertions

Let (id B I1, . . . , In) be an identification assertion in a DL-LiteA TBox.

An interpretation I satisfies such an assertion if for all o1, o2 ∈ BI and for all
objects or values u1, . . . , un, we have that

(o1, uj) ∈ IIj and (o2, uj) ∈ IIj , for j ∈ {1, . . . , n}, implies that o1 = o2.

In other words, the instance oi of B is identified by the tuple (u1, . . . , un) of
objects or values to which it is connected via I1, . . . , In, respectively.

Note: the roles or attributes Ij are not required to be functional or mandatory.

The above definition of semantics implies that, in the case where an instance
o ∈ BI is connected by means of IIj to a set u1

j , . . . , u
k
j of objects (or values),

it is each single uhj that contributes to the identification of o, and not the whole

set {u1
j , . . . , u

k
j }.
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Restriction on TBox assertions in DL-LiteA ontologies

We will see that, to ensure the good computational properties that we aim at,
we have to impose a restriction on the use of functionality and role/attribute
inclusions.

Restriction on DL-LiteA TBoxes

No functional or identifying role or attribute can be specialized
by using it in the right-hand side of a role or attribute inclusion assertion.

Formally:

If (funct P ), (funct P−), (id B . . . , P, . . .), or (id B . . . , P−, . . .) is in T ,
then Q v P and Q v P− are not in T .

If (funct U) or (id B . . . , U, . . .) is in T , then U ′ v U is not in T .
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DL-LiteF and DL-LiteR

We consider also two sub-languages of DL-LiteA (that trivially obey the
previous restriction):

DL-LiteF : Allows for functionality assertions, but does not allow for role
inclusion assertions.

DL-LiteR: Allows for role inclusion assertions, but does not allow for
functionality assertions.

In both DL-LiteF and DL-LiteR we do not consider data values (and hence
drop value domains and attributes).

Note: We simply use DL-Lite to refer to any of the logics of the DL-Lite family.
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Capturing basic ontology constructs in DL-LiteA

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Mandatory participation to relations A1 v ∃P A2 v ∃P−

Domain and range of relations ∃P v A1 ∃P− v A2

Functionality of relations (funct P ) (funct P−)

ISA between relations Q1 v Q2

Disjointness between relations Q1 v ¬Q2

Domain and range of attributes δ(U) v A ρ(U) v Ti
Mandatory and functional attributes A v δ(U) (funct U)

Identification constraints (id A P, . . . , P ′−, . . . , U, . . .)
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Properties of DL-Lite

The TBox may contain cyclic dependencies (which typically increase the
computational complexity of reasoning).

Example: A v ∃P , ∃P− v A

In the syntax, we have not included u on the right hand-side of inclusion
assertions, but it can trivially be added, since

B v C1 u C2 is equivalent to
B v C1

B v C2

A domain assertion on role P has the form: ∃P v A1

A range assertion on role P has the form: ∃P− v A2
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Properties of DL-LiteF

DL-LiteF does not enjoy the finite model property.

Example

TBox T : Nat v ∃succ ∃succ− v Nat

Zero v Nat u ¬∃succ− (funct succ−)

ABox A: Zero(0)

O = 〈T ,A〉 admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

Hence, reasoning w.r.t. arbitrary models is different from reasoning w.r.t. finite
models only.
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Properties of DL-LiteR

DL-LiteR does enjoy the finite model property. Hence, reasoning w.r.t.
finite models is the same as reasoning w.r.t. arbitrary models.

With role inclusion assertions, we can simulate qualified existential
quantification in the rhs of an inclusion assertion A1 v ∃Q.A2.

To do so, we introduce a new role QA2
and:

the role inclusion assertion QA2 v Q
the concept inclusion assertions: A1 v ∃QA2

∃Q−A2
v A2

In this way, we can consider ∃Q.A in the right-hand side of an inclusion
assertion as an abbreviation.
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Observations on DL-LiteA

Captures all the basic constructs of UML Class Diagrams and of the ER
Model . . .

. . . except covering constraints in generalizations.

Extends (the DL fragment of) the ontology language RDFS.

Is completely symmetric w.r.t. direct and inverse properties.

Is at the basis of the OWL2 QL profile of OWL2.
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The OWL2 QL Profile

OWL2 defines three profiles: OWL2 QL, OWL2 EL, OWL2 RL.

Each profile corresponds to a syntactic fragment (i.e., a sub-language) of
OWL2 DL that is targeted towards a specific use.

The restrictions in each profile guarantee better computational properties
than those of OWL2 DL.

The OWL2 QL profile is derived from the DLs of the DL-Lite family:

“[It] includes most of the main features of conceptual models such as UML
class diagrams and ER diagrams.”

“[It] is aimed at applications that use very large volumes of instance data,
and where query answering is the most important reasoning task. In
OWL2 QL, conjunctive query answering can be implemented using
conventional relational database systems.”
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Complexity of reasoning in DL-LiteA

1 We have seen that DL-LiteA can capture the essential features of
prominent conceptual modeling formalisms.

2 In the following, we will analyze reasoning in DL-Lite, and establish the
following characterization of its computational properties:

Ontology satisfiability and all classical DL reasoning tasks are:
Efficiently tractable in the size of the TBox (i.e., PTime).
Very efficiently tractable in the size of the ABox (i.e., AC0).

Query answering for CQs and UCQs is:
PTime in the size of the TBox.
AC0 in the size of the ABox.
Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

3 We will also see that DL-Lite is essentially the maximal DL enjoying these
nice computational properties.

From (1), (2), and (3) we get that:

DL-Lite is a representation formalism that is very well suited to underlie
ontology-based data management systems.
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Part 4.2: Query answering over databases and ontologies

Part 4.2

Query answering over databases and

ontologies
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Part 4.2: Query answering over databases and ontologies
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Outline of Part 4.2
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Queries

A query is a mechanism to extract new information from given information
stored in some form. The extracted information is called the answer to the
query.

In the most general sense, a query is an arbitrary (computable) function,
from some input to some output.

Typically, one is interested in queries expressed in some (restricted) query
language that provides guarantees on the computational properties of
computing answers to queries.

Here we consider queries that:

are expressed over a relational alphabet, and
return as result a relation, i.e., a set of tuples of objects satisfying a certain
condition.

A very prominent query language of this form is first-order logic.
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First-order logic

We consider now first-order logic with equality (FOL) as a mechanism to
express queries.

FOL is the logic to speak about objects, which constitute the domain of
discourse (or universe).

FOL is concerned about properties of these objects and relations over
objects (corresponding to unary and n-ary predicates, respectively).

FOL also has functions, including constants, that denote objects.
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FOL syntax – Terms

We first introduce:

A set Vars = {x1, . . . , xn} of individual variables (i.e., variables that
denote single objects).

A set of functions symbols, each of given arity ≥ 0.
Functions of arity 0 are called constants.

Def.: The set of Terms is defined inductively as follows:

Each variable is a term, i.e., Vars ⊆ Terms;

If t1, . . . , tk ∈ Terms and fk is a k-ary function symbol, then
fk(t1, . . . , tk) ∈ Terms;

Nothing else is in Terms.
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FOL syntax – Formulas

Def.: The set of Formulas is defined inductively as follows:

If t1, . . . , tk ∈ Terms and P k is a k-ary predicate, then
P k(t1, . . . , tk) ∈ Formulas (atomic formulas).

If t1, t2 ∈ Terms, then t1 = t2 ∈ Formulas.

If ϕ ∈ Formulas and ψ ∈ Formulas then

¬ϕ ∈ Formulas
ϕ ∧ ψ ∈ Formulas
ϕ ∨ ψ ∈ Formulas
ϕ→ ψ ∈ Formulas

If ϕ ∈ Formulas and x ∈ Vars then

∃x.ϕ ∈ Formulas
∀x.ϕ ∈ Formulas

Nothing else is in Formulas.

Note: a predicate of arity 0 is a proposition (as in propositional logic).
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Interpretations

Given an alphabet of predicates P1, P2, . . . and function symbols f1, f2, . . .,
each with an associated arity, a FOL interpretation is:

I = (∆I , ·I)

where:

∆I is the interpretation domain (a set of objects);

·I is the interpretation function that interprets predicates and function
symbols as follows:

if Pi is a k-ary predicate, then P Ii ⊆ ∆I × · · · ×∆I (k times)
if fi is a k-ary function, k ≥ 1, then fIi : ∆I × · · · ×∆I −→ ∆I

if fi is a constant (i.e., a 0-ary function), then fIi : () −→ ∆I

(i.e., fi denotes exactly one object of the domain)
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Assignment

Let Vars be a set of (individual) variables.

Def.: Given an interpretation I, an assignment is a function

α : Vars −→ ∆I

that assigns to each variable x ∈ Vars an object α(x) ∈ ∆I .

It is convenient to extend the notion of assignment to terms. We can do so by
defining a function α̂ : Terms −→ ∆I inductively as follows:

α̂(x) = α(x), if x ∈ Vars

α̂(f(t1, . . . , tk)) = fI(α̂(t1), . . . , α̂(tk))

Note: for constants α̂(c) = cI .
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Truth in an interpretation wrt an assignment

We define when a FOL formula ϕ is true in an interpretation I wrt an
assignment α, written I, α |= ϕ:

I, α |= P (t1, . . . , tk), if (α̂(t1), . . . , α̂(tk)) ∈ P I
I, α |= t1 = t2, if α̂(t1) = α̂(t2)

I, α |= ¬ϕ, if I, α 6|= ϕ

I, α |= ϕ ∧ ψ, if I, α |= ϕ and I, α |= ψ

I, α |= ϕ ∨ ψ, if I, α |= ϕ or I, α |= ψ

I, α |= ϕ→ ψ, if I, α |= ϕ implies I, α |= ψ

I, α |= ∃x.ϕ, if for some a ∈ ∆I we have I, α[x 7→ a] |= ϕ

I, α |= ∀x.ϕ, if for every a ∈ ∆I we have I, α[x 7→ a] |= ϕ

Here, α[x 7→ a] stands for the new assignment obtained from α as follows:

α[x 7→ a](x) = a
α[x 7→ a](y) = α(y), for y 6= x

Note: we have assumed that variables are standardized apart.
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Open vs. closed formulas

Definitions

A variable x in a formula ϕ is free if x does not occur in the scope of any
quantifier, otherwise it is bound.

An open formula is a formula that has some free variable.

A closed formula, also called sentence, is a formula that has no free
variables.

For closed formulas (but not for open formulas) we can define what it means
to be true in an interpretation, written I |= ϕ, without mentioning the
assignment, since the assignment α does not play any role in verifying I, α |= ϕ.

Instead, open formulas are strongly related to queries — cf. relational
databases.
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FOL queries

Def.: A FOL query is an (open) FOL formula.

When ϕ is a FOL query with free variables (x1, . . . , xk), then we sometimes
write it as ϕ(x1, . . . , xk), and say that ϕ has arity k.

Given an interpretation I, we are interested in those assignments that map the
variables x1, . . . , xk (and only those).
We write an assignment α s.t. α(xi) = ai, for i = 1, . . . , k, as 〈a1, . . . , ak〉.

Def.: Given an interpretation I, the answer to a query ϕ(x1, . . . , xk) is

ϕ(x1, . . . , xk)I = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)}

Note: We will also use the notation ϕI , which keeps the free variables implicit,
and ϕ(I) making apparent that ϕ becomes a functions from interpretations to
set of tuples.
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FOL boolean queries

Def.: A FOL boolean query is a FOL query without free variables.

Hence, the answer to a boolean query ϕ() is defined as follows:

ϕ()I = {() | I, 〈〉 |= ϕ()}

Such an answer is

the empty tuple (), if I |= ϕ

the empty set ∅, if I 6|= ϕ.

As an obvious convention we read () as “true” and ∅ as “false”.
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FOL formulas: logical tasks

Definitions

Validity: ϕ is valid iff for all I and α we have that I, α |= ϕ.

Satisfiability: ϕ is satisfiable iff there exists an I and α such that
I, α |= ϕ, and unsatisfiable otherwise.

Logical implication: ϕ logically implies ψ, written ϕ |= ψ iff for all I and
α, if I, α |= ϕ then I, α |= ψ.

Logical equivalence: ϕ is logically equivalent to ψ, iff for all I and α, we
have that I, α |= ϕ iff I, α |= ψ (i.e., ϕ |= ψ and ψ |= ϕ).
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FOL queries – Logical tasks

Validity: if ϕ is valid, then ϕI = ∆I × · · · ×∆I for all I, i.e., the query
always returns all the tuples of I.

Satisfiability: if ϕ is satisfiable, then ϕI 6= ∅ for some I, i.e., the query
returns at least one tuple.

Logical implication: if ϕ logically implies ψ, then ϕI ⊆ ψI for all I,
written ϕ ⊆ ψ, i.e., the answer to ϕ is contained in that of ψ in every
interpretation. This is called query containment.

Logical equivalence: if ϕ is logically equivalent to ψ, then ϕI = ψI for all
I, written ϕ ≡ ψ, i.e., the answer to the two queries is the same in every
interpretation. This is called query equivalence and corresponds to query
containment in both directions.

Note: These definitions can be extended to the case where we have axioms,
i.e., constraints on the admissible interpretations.
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Query evaluation

Let us consider a finite interpretation I, i.e., an interpretation (over the finite
alphabet) for which ∆I is finite.

Note: whenever we have to evaluate a query, we are only interested in the
interpretation of the relation and function symbols that appear in the query,
which are finitely many.

Then we can consider query evaluation as an algorithmic problem, and study its
computational properties.

Note: To study the computational complexity of the problem, we need to
define a corresponding decision problem.
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Query evaluation problem

Definitions

Query answering problem: given a finite interpretation I and a FOL
query ϕ(x1, . . . , xk), compute

ϕI = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)}

Recognition problem (for query answering): given a finite
interpretation I, a FOL query ϕ(x1, . . . , xk), and a tuple (a1, . . . , ak),
with ai ∈ ∆I , check whether (a1, . . . , ak) ∈ ϕI , i.e., whether

I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)

Note: The recognition problem for query answering is the decision problem
corresponding to the query answering problem.
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Query evaluation algorithm

We define now an algorithm that computes the function Truth(I, α, ϕ) in such
a way that Truth(I, α, ϕ) = true iff I, α |= ϕ.

We make use of an auxiliary function TermEval(I, α, t) that, given an
interpretation I and an assignment α, evaluates a term t returning an object
o ∈ ∆I :

∆I TermEval(I,α,t) {

if (t is x ∈ Vars)
return α(x);

if (t is f(t 1, . . . , t k))
return fI(TermEval(I,α,t 1),...,TermEval(I,α,t k));

}

Note: constants are considered as function symbols of arity 0

Then, Truth(I, α, ϕ) can be defined by structural recursion on ϕ.
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Query evaluation algorithm (cont’d)

boolean Truth(I,α,ϕ) {
if (ϕ is t 1 = t 2)

return TermEval(I,α,t 1) = TermEval(I,α,t 2);
if (ϕ is P (t 1, . . . , t k))

return PI(TermEval(I,α,t 1),...,TermEval(I,α,t k));
if (ϕ is ¬ψ)

return ¬Truth(I,α,ψ);
if (ϕ is ψ ◦ ψ′)

return Truth(I,α,ψ) ◦ Truth(I,α,ψ′);
if (ϕ is ∃x.ψ) {

boolean b = false;
for all (a ∈ ∆I)

b = b ∨ Truth(I,α[x 7→ a],ψ);
return b;

}
if (ϕ is ∀x.ψ) {

boolean b = true;
for all (a ∈ ∆I)

b = b ∧ Truth(I,α[x 7→ a],ψ);
return b;

}
}
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Query evaluation – Results

Theorem (Termination of Truth(I, α, ϕ))

The algorithm Truth terminates.

Proof. Immediate.

Theorem (Correctness)

The algorithm Truth is sound and complete, i.e., I, α |= ϕ if and only if
Truth(I, α, ϕ) = true.

Proof. Easy, since the structure of the algorithm directly reflects the inductive
definition of I, α |= ϕ.
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Query evaluation – Time complexity I

Theorem (Time complexity of Truth(I, α, ϕ))

The time complexity of Truth(I, α, ϕ) is (|I|+ |α|+ |ϕ|)|ϕ|, i.e., polynomial in
the size of I and exponential in the size of ϕ.

Proof.

Each fI (of arity k) can be represented as a k-dimensional array, hence
accessing the required element can be done in time linear in |I|.

TermEval(. . .) visits the term, so it generates a polynomial number of
recursive calls, hence runs in time polynomial in (|I|+ |α|+ |ϕ|).

Each P I (of arity k) can be represented as a k-dimensional boolean array,
hence accessing the required element can be done in time linear in |I|.
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Query evaluation – Time complexity II

Truth(. . .) for the boolean cases simply visits the formula, so generates
either one or two recursive calls.

Truth(. . .) for the quantified cases ∃x.ϕ and ∀x.ψ involves looping for all
elements in ∆I and testing the resulting assignments.

The total number of such tests is O(|I|]Vars).

Hence the claim holds.
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Query evaluation – Space complexity I

Theorem (Space complexity of Truth(I, α, ϕ))

The space complexity of Truth(I, α, ϕ) is |ϕ| · (|ϕ| · log |I|), i.e., logarithmic in
the size of I and polynomial in the size of ϕ.

Proof.

Each fI(. . .) can be represented as a k-dimensional array, hence accessing
the required element requires O(log |I|) space.

TermEval(. . .) simply visits the term, so it generates a polynomial number
of recursive calls. Each activation record has O(log |I|) size, and we need
O(|ϕ|) activation records.

Each P I(. . .) can be represented as a k-dimensional boolean array, hence
accessing the required element requires O(log |I|) space.
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Query evaluation – Space complexity II

Truth(. . .) for the boolean cases simply visits the formula, so generates
either one or two recursive calls, each requiring constant space.

Truth(. . .) for the quantified cases ∃x.ϕ and ∀x.ψ involves looping for all
elements in ∆I and testing the resulting assignments.

The total number of activation records that need to be at the same time
on the stack is O(]Vars) ≤ O(|ϕ|).

Hence the claim holds.

Note: the worst case form for the formula is

Q1x1.Q2x2. · · ·Qnxn.P (x1, x2, . . . , xn−1, xn).

where each Qi is one of ∀ or ∃.
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Query evaluation – Complexity measures [Vardi, 1982]

Definition (Combined complexity)

The combined complexity is the complexity of {〈I, α, ϕ〉 | I, α |= ϕ}, i.e.,
interpretation, tuple, and query are all considered part of the input.

Definition (Data complexity)

The data complexity is the complexity of {〈I, α〉 | I, α |= ϕ}, i.e., the query ϕ
is fixed (and hence not considered part of the input).

Definition (Query complexity)

The query complexity is the complexity of {〈α,ϕ〉 | I, α |= ϕ}, i.e., the
interpretation I is fixed (and hence not considered part of the input).
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Query evaluation – Combined, data, query complexity

Theorem (Combined complexity of query evaluation)

The complexity of {〈I, α, ϕ〉 | I, α |= ϕ} is:

time: exponential
space: PSpace-complete — see [Vardi, 1982] for hardness

Theorem (Data complexity of query evaluation)

The complexity of {〈I, α〉 | I, α |= ϕ} is:

time: polynomial
space: in LogSpace

Theorem (Query complexity of query evaluation)

The complexity of {〈α,ϕ〉 | I, α |= ϕ} is:

time: exponential
space: PSpace-complete — see [Vardi, 1982] for hardness
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(Union of) Conjunctive queries – (U)CQs

(Unions of) conjunctive queries are an important class of queries:

A (U)CQ is a FOL query using only conjunction, existential quantification
(and disjunction).

Hence, UCQs contain no negation, no universal quantification, and no
function symbols besides constants.

Correspond to SQL/relational algebra (union) select-project-join (SPJ)
queries – the most frequently asked queries.

(U)CQs exhibit nice computational and semantic properties, and have been
studied extensively in database theory.

They are important in practice, since relational database engines are
specifically optimized for CQs.
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Definition of conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

∃~y.conj (~x, ~y)

where conj (~x, ~y) is a conjunction of atoms and equalities, over the free
variables ~x, the existentially quantified variables ~y, and possibly constants.

Note:

CQs contain no disjunction, no negation, no universal quantification, and
no function symbols besides constants.

Hence, they correspond to relational algebra select-project-join (SPJ)
queries.

CQs are the most frequently asked queries.
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Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as their
boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ: (the distinguished variables are the blue ones)

∃b, e, p1, c1, p2, c2.Person(n, a) ∧Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

Or simpler: ∃b, c.Person(n, a) ∧Manages(b, n) ∧ Lives(n, c) ∧ Lives(b, c)
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Datalog notation for CQs

A CQ q = ∃~y.conj (~x, ~y) can also be written using datalog notation as

q(~x1)← conj ′(~x1, ~y1)

where conj′(~x1, ~y1) is the list of atoms in conj (~x, ~y) obtained by equating the
variables ~x, ~y according to the equalities in conj (~x, ~y).

As a result of such an equality elimination, we have that ~x1 and ~y1 can contain
constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

q(~x1) the head;

conj ′(~x1, ~y1) the body;

the variables in ~x1 the distinguished variables;

the variables in ~y1 the non-distinguished variables.
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Conjunctive queries – Example

Consider the alphabet Σ = {E/2} and an interpretation I = (∆I , ·I).
Note that EI is a binary relation, i.e., I is a directed graph.

The following CQ q returns all nodes that participate to a triangle in the
graph:

∃y, z.E(x, y) ∧ E(y, z) ∧ E(z, x)

The query q in datalog notation becomes:

q(x)← E(x, y), E(y, z), E(z, x)

The query q in SQL is (we use Edge(f,s) for E(x, y):

SELECT E1.f

FROM Edge E1, Edge E2, Edge E3

WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f
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Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it by:

1 guessing a variable assignment for the non-distinguished variables;

2 evaluating the resulting formula (that has no quantifications).

We define a boolean function for CQ evaluation:

boolean ConjTruth(I,α,∃~y.conj(~x, ~y)) {

GUESS assignment α[~y 7→ ~a] {

return Truth(I,α[~y 7→ ~a],conj (~x, ~y));
}

where Truth(I, α, ϕ) is defined as for FOL queries, considering only the
required cases.
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Nondeterministic CQ evaluation algorithm

Specifically, for CQs, Truth(I, α, ϕ) is defined as follows:

boolean Truth(I,α,ϕ) {

if (ϕ is t 1 = t 2)
return TermEval(I,α,t 1) = TermEval(I,α,t 2);

if (ϕ is P (t 1, . . . , t k))
return P I(TermEval(I,α,t 1),...,TermEval(I,α,t k));

if (ϕ is ψ ∧ ψ′)
return Truth(I,α,ψ) ∧ Truth(I,α,ψ′);

}

∆I TermEval(I,α,t) {

if (t is a variable x) return α(x);
if (t is a constant c) return cI;

}
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CQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)

{〈I, α, q〉 | I, α |= q} is NP-complete — see below for hardness.

time: exponential
space: polynomial

Theorem (Data complexity of CQ evaluation)

{〈I, α〉 | I, α |= q} is in LogSpace

time: polynomial
space: logarithmic

Theorem (Query complexity of CQ evaluation)

{〈α, q〉 | I, α |= q} is NP-complete — see below for hardness.

time: exponential
space: polynomial
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3-colorability

An undirected graph is k-colorable if it is possible to assign to each node one
of k colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem

Given an undirected graph G = (V,E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query evaluation.
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Reduction from 3-colorability to CQ evaluation

Let G = (V,E) be an undirected graph (without edges connecting a node to
itself). We consider a relational alphabet consisting of a single binary relation
Edge and define:

An Interpretation: I = (∆I , ·I) where:

∆I = {r, g, b}
EdgeI = {(r, g), (g, r), (r, b), (b, r), (g, b), (b, g)}

A conjunctive query: Let V = {v1, . . . , vn}, then consider the boolean
conjunctive query defined as:

qG = ∃x1, . . . , xn.
∧

{vi,vj}∈E

Edge(xi, xj) ∧ Edge(xj , xi)

Theorem

G is 3-colorable iff I |= qG.
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NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on the
actual graph. Hence, the reduction provides also the lower-bound for query
complexity.

Theorem

CQ evaluation is NP-hard in query (and combined) complexity.
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Homomorphism

Let I = (∆I , ·I) and J = (∆J , ·J ) be two interpretations over the same
alphabet (for simplicity, we consider only constants as functions).

Def.: A homomorphism from I to J
is a mapping h : ∆I → ∆J that preserves constants and relations, i.e., such
that:

h(cI) = cJ

if (a1, . . . , ak) ∈ P I then (h(a1), . . . , h(ak)) ∈ PJ

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem

FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic.
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Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q of
arity k. Then

I, α |= q(x1, . . . , xk) iff Iα,~c |= q(c1, . . . , ck)

where Iα,~c is identical to I but includes new constants c1, . . . , ck that are

interpreted as c
Iα,~c
i = α(xi).

That is, we can reduce the recognition problem to the evaluation of a
boolean query.
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Canonical interpretation of a (boolean) CQ

Let q be a boolean conjunctive query ∃x1, . . . , xn.conj

Def.: The canonical interpretation Iq associated with q

is the interpretation Iq = (∆Iq , ·Iq ), where

∆Iq = {x1, . . . , xn} ∪ {c | c constant occurring in q},
i.e., all the variables and constants in q;

cIq = c, for each constant c in q;

(t1, . . . , tk) ∈ P Iq iff the atom P (t1, . . . , tk) occurs in q.

Sometimes the procedure for obtaining the canonical interpretation is called
freezing of q.
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Canonical interpretation of a (boolean) CQ – Example

Consider the boolean query q

q(c)← E(c, y), E(y, z), E(z, c)

Then, the canonical interpretation Iq is defined as

Iq = (∆Iq , ·Iq )

where

∆Iq = {y, z, c}
EIq = {(c, y), (y, z), (z, c)}
cIq = c
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Canonical interpretation and (boolean) CQ evaluation

Theorem ([Chandra and Merlin, 1977])

For boolean CQs, I |= q iff there exists a homomorphism from Iq to I.

Proof.
“⇒” Let I |= q, let α be an assignment to the existential variables that makes
q true in I, and let α̂ be its extension to constants. Then α̂ is a homomorphism
from Iq to I.

“⇐” Let h be a homomorphism from Iq to I. Then restricting h to the
variables only we obtain an assignment to the existential variables that makes q
true in I.
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Canonical interpretation and CQ evaluation – Example

Consider the boolean query q()← R1(x, y), R2(y, z), R1(x, z).

The canonical interpretation of q is Iq = (∆Iq , ·Iq ), where

∆Iq = {x, y, z}, R
Iq
1 = {(x, y), (x, z)} R

Iq
2 = {(y, z)}

Let I = (∆I , ·I), with

∆I = {a, b}, RI1 = {(a, b)} RI2 = {(b, b)}

Then h defined as follows is a homomorphism from Iq to I:

h(x) = a, h(y) = b, h(z) = b

This shows that I |= q.
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Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced to
finding a homomorphism.

Finding a homomorphism between two interpretations (i.e., relational
structures) is also known as solving a Constraint Satisfaction Problem
(CSP), a problem well-studied in AI – see also [Kolaitis and Vardi, 1998].
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Query containment

Def.: Query containment

Given two FOL queries ϕ and ψ of the same arity, ϕ is contained in ψ,
denoted ϕ ⊆ ψ, if for all interpretations I and all assignments α we have that

I, α |= ϕ implies I, α |= ψ

(In logical terms: ϕ |= ψ.)

Note: Query containment is of special interest in query optimization.

Theorem

For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication.
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Query containment for CQs

For CQs, query containment q1(~x) ⊆ q2(~x) can be reduced to query evaluation.

1 Freeze the free variables, i.e., consider them as constants.
This is possible, since q1(~x) ⊆ q2(~x) iff

I, α |= q1(~x) implies I, α |= q2(~x), for all I and α; or equivalently
Iα,~c |= q1(~c) implies Iα,~c |= q2(~c), for all Iα,~c, where ~c are new constants,
and Iα,~c extends I to the new constants with cIα,~c = α(x).

2 Construct the canonical interpretation Iq1(~c) of the CQ q1(~c) on the
left hand side . . .

3 . . . and evaluate on Iq1(~c) the CQ q2(~c) on the right hand side,
i.e., check whether Iq1(~c) |= q2(~c).
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Reducing containment of CQs to CQ evaluation

Theorem ([Chandra and Merlin, 1977])

For CQs, q1(~x) ⊆ q2(~x) iff Iq1(~c) |= q2(~c), where ~c are new constants.

Proof.
“⇒” Assume that q1(~x) ⊆ q2(~x).

Since Iq1(~c) |= q1(~c), it follows that Iq1(~c) |= q2(~c).

“⇐” Assume that Iq1(~c) |= q2(~c).

By [Chandra and Merlin, 1977] on hom., for every I such that I |= q1(~c) there
exists a homomorphism h from Iq1(~c) to I.

On the other hand, since Iq1(~c) |= q2(~c), again by [Chandra and Merlin, 1977] on
hom., there exists a homomorphism h′ from Iq2(~c) to Iq1(~c).
The mapping h ◦ h′ (obtained by composing h and h′) is a homomorphism from
Iq2(~c) to I. Hence, once again by [Chandra and Merlin, 1977] on hom.,
I |= q2(~c).

So we can conclude that q1(~c) ⊆ q2(~c), and hence q1(~x) ⊆ q2(~x).
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Query containment for CQs

For CQs, we also have that (boolean) query evaluation I |= q can be reduced to
query containment.

Let I = (∆I , ·I).
We construct the (boolean) CQ qI as follows:

qI has no existential variables (hence no variables at all);

the constants in qI are the elements of ∆I ;

for each relation P interpreted in I and for each fact (a1, . . . , ak) ∈ P I ,
qI contains one atom P (a1, . . . , ak) (note that each ai ∈ ∆I is a constant
in qI).

Theorem

For CQs, I |= q iff qI ⊆ q.
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Query containment for CQs – Complexity

From the previous results and NP-completenss of combined complexity of CQ
evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above result
can be strengthened:

Theorem

Containment q1(~x) ⊆ q2(~x) of CQs is NP-complete, even when q1 is considered
fixed.
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Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form∨
i=1,...,n

∃~yi.conj i(~x, ~yi)

where each ∃~yi.conj i(~x, ~yi) is a conjunctive query (note that all CQs in a UCQ
have the same set of distinguished variables).

Note: Obviously, each conjunctive query is also a union of conjunctive queries.
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Datalog notation for UCQs

A union of conjunctive queries

q =
∨

i=1,...,n

∃~yi.conj i(~x, ~yi)

is written in datalog notation as

{ q(~x) ← conj ′1(~x, ~y1
′)

...
q(~x) ← conj ′n(~x, ~yn

′) }

where each element of the set is the datalog expression corresponding to the
conjunctive query qi = ∃~yi.conj i(~x, ~yi).

Note: normally, we omit the set brackets.
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Evaluation of UCQs

From the definition of FOL query we have that:

I, α |=
∨

i=1,...,n

∃~yi.conj i(~x, ~yi)

if and only if

I, α |= ∃~yi.conj i(~x, ~yi), for some i ∈ {1, . . . , n}.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of
q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.
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UCQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)

{〈I, α, q〉 | I, α |= q} is NP-complete.

time: exponential
space: polynomial

Theorem (Data complexity of UCQ evaluation)

{〈I, q〉 | I, α |= q} is in LogSpace (query q fixed).

time: polynomial
space: logarithmic

Theorem (Query complexity of UCQ evaluation)

{〈α, q〉 | I, α |= q} is NP-complete (interpretation I fixed).

time: exponential
space: polynomial
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Query containment for UCQs

Theorem

For UCQs, the following holds:
{q1, . . . , qk} ⊆ {q′1, . . . , q′n} iff for each qi there is a q′j such that qi ⊆ q′j .

Proof.
“⇐” Obvious.

“⇒” If the containment holds, then we have
{q1(~c), . . . , qk(~c)} ⊆ {q′1(~c), . . . , q′n(~c)}, where ~c are new constants:

Now consider Iqi(~c). We have Iqi(~c) |= qi(~c), and hence
Iqi(~c) |= {q1(~c), . . . , qk(~c)}.
By the containment, we have that Iqi(~c) |= {q′1(~c), . . . , q′n(~c)}. I.e., there
exists a q′j(~c) such that Iqi(~c) |= q′j(~c).

Hence, by [Chandra and Merlin, 1977] on containment of CQs, we have that
qi ⊆ q′j .
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Query containment for UCQs – Complexity

From the previous result, we have that we can check
{q1, . . . , qk} ⊆ {q′1, . . . , q′n} by at most k · n CQ containment checks.

We immediately get:

Theorem

Containment of UCQs is NP-complete.
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Query answering

In ontology-based data access we are interested in a reasoning service that is
not typical in ontologies (or in a FOL theory, or in UML class diagrams, or in a
knowledge base) but it is very common in databases: query answering.

Def.: Query

Is an expression at the intensional level denoting a set of tuples of individuals
satisfying a given condition.

Def.: Query Answering

Is the reasoning service that actually computes the answer to a query.
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Example of query over an ontology

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

q(ce, cm, sa) ← ∃e, p,m.
worksFor(e, p) ∧manages(m, p) ∧ boss(m, e) ∧ empCode(e, ce) ∧
empCode(m, cm) ∧ salary(e, sa) ∧ salary(m, sa)
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Query answering under different assumptions

There are two fundamentally different assumptions when addressing query
answering:

Complete information on the data, as in traditional databases.

Incomplete information on the data, as in ontologies (aka knowledge
bases), but also information integration in databases.
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Query answering in traditional databases

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and therefore the
schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

; Query answering amounts to query evaluation, which is computationally
easy.

D. Calvanese Part 4: Ontology Based Data Access KRO – 2010/2011 (126/290)



unibz.itunibz.it

Query answering in databases Querying databases and ontologies Query answering in Description Logics

Query answering in traditional databases Part 4.2: Query answering over databases and ontologies

Query answering in traditional databases (cont’d)

Reasoning

ResultQuery

Data
Store

Logical
Schema

Conceptual 
Schema /
Ontology
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Query answering in traditional databases – Example

  
Manager

ProjectworksFor
 

Employee

For each concept/relationship we have a (complete) table in the DB.
DB: Employee = { john, mary, nick }

Manager = { john, nick }
Project = { prA, prB }
worksFor = { (john,prA), (mary,prB) }

Query: q(x) ← ∃p. Manager(x) ∧ Project(p) ∧ worksFor(x, p)

Answer: { john }

{
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Query answering in ontologies

An ontology (or conceptual schema, or knowledge base) imposes
constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

; Query answering amounts to logical inference, which is computationally
more costly.

Note:

The size of the data is not considered critical (comparable to the size of the
intensional information).

Queries are typically simple, i.e., atomic (a class name), and query answering
amounts to instance checking.
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Query answering in ontologies (cont’d)

Reasoning

Query Result

Reasoning

Data
Store

Logical
Schema

Conceptual 
Schema /
Ontology

D. Calvanese Part 4: Ontology Based Data Access KRO – 2010/2011 (131/290)



unibz.itunibz.it

Query answering in databases Querying databases and ontologies Query answering in Description Logics

Query answering in ontologies Part 4.2: Query answering over databases and ontologies

Query answering in ontologies – Example

  
Manager

ProjectworksFor
 

Employee

The tables in the database may be incompletely specified, or even missing for
some classes/properties.

DB: Manager ⊇ { john, nick }
Project ⊇ { prA, prB }
worksFor ⊇ { (john,prA), (mary,prB) }

Query: q(x) ← Employee(x)

Answer: { john, nick, mary }

{
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Query answering in ontologies – Example 2

 
Person

 

hasFather
1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }
hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x)← ∃y. hasFather(x, y)
q3(x)← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3)← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{
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QA in ontologies – Andrea’s Example(∗)

 
Employee

 

  
Manager

  
AreaManager

  
TopManager

supervisedBy 

{disjoint, complete}

officeMate

(∗) Due to Andrea Schaerf
[Schaerf, 1993].

Manager is partitioned into AreaManager and
TopManager.

Employee ⊇ { andrea, paul, mary, john }
Manager ⊇ { andrea, paul, mary }

AreaManager ⊇ { paul }
TopManager ⊇ { mary }
supervisedBy ⊇ { (john,andrea), (john,mary) }

officeMate ⊇ { (mary,andrea), (andrea,paul) }

john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate
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QA in ontologies – Andrea’s Example (cont’d)

 
Employee

 

  
Manager

  
AreaManager

  
TopManager

supervisedBy 

{disjoint, complete}

officeMate john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate

q(x)← ∃y, z. supervisedBy(x, y) ∧ TopManager(y) ∧
officeMate(y, z) ∧ AreaManager(z)

Answer: { john }

To determine this answer, we need to resort to reasoning by cases.

D. Calvanese Part 4: Ontology Based Data Access KRO – 2010/2011 (135/290)



unibz.itunibz.it

Query answering in databases Querying databases and ontologies Query answering in Description Logics

Query answering in ontology-based data access Part 4.2: Query answering over databases and ontologies

Outline of Part 4.2

3 Query answering in databases

4 Querying databases and ontologies
Query answering in traditional databases
Query answering in ontologies
Query answering in ontology-based data access

5 Query answering in Description Logics

D. Calvanese Part 4: Ontology Based Data Access KRO – 2010/2011 (136/290)



unibz.itunibz.it

Query answering in databases Querying databases and ontologies Query answering in Description Logics

Query answering in ontology-based data access Part 4.2: Query answering over databases and ontologies

Query answering in ontology-based data access

In OBDA, we have to face the difficulties of both settings:

The actual data is stored in external information sources (i.e., databases),
and thus its size is typically very large.

The ontology introduces incompleteness of information, and we have to
do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints expressed in the
ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus face also
the problems that are typical of data integration.
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Questions that need to be addressed

In the context of ontology-based data access:

1 Which is the “right” query language?

2 Which is the “right” ontology language?

3 How can we bridge the semantic mismatch between the ontology and the
data sources?

4 How can tools for ontology-based data access take into account these
issues?
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Which language to use for querying ontologies?

Two borderline cases:

1 Just classes and properties of the ontology ; instance checking

Ontology languages are tailored for capturing intensional relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the ontology,
i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)

Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

A good tradeoff is to use (unions of) conjunctive queries.
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Queries over Description Logics ontologies

Traditionally, simple concept (or role) expressions have been considered as
queries over DL ontologies.

We have seen that we need more complex forms of queries, such as those used
in databases.

Def.: A conjunctive query q(~x) over an ontology O = 〈T ,A〉
is a conjunctive query ∃~y. conj (~x, ~y)

whose predicate symbols are atomic concept and roles of T , and

that may contain constants that are individuals of A.

Remember: a CQ corresponds to a select-project-join SQL query.
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Queries over Description Logics ontologies – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Conjunctive query over the above ontology:

q(x, y) ← ∃p. Employee(x),Employee(y),Project(p),
boss(x, y),worksFor(x, p),worksFor(y, p)
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Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x) = ∃~y. conj (~x, ~y) a CQ.

Def.: The answer to q(~x) over I, denoted qI

is the set of tuples ~c of constants of A such that the formula ∃~y. conj (~c, ~y)
evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(~x) over O = 〈T ,A〉, denoted cert(q,O)

are the tuples ~c of constants of A such that ~c ∈ qI , for every model I of O.
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Query answering in ontologies

Def.: Query answering over an ontology O
Is the problem of computing the certain answers to a query over O.

Computing certain answers is a form of logical implication:

~c ∈ cert(q,O) iff O |= q(~c)

Note: A special case of query answering is instance checking: it amounts to
answering the boolean query q()← A(c) (resp., q()← P (c1, c2)) over O (in
this case ~c is the empty tuple).

D. Calvanese Part 4: Ontology Based Data Access KRO – 2010/2011 (146/290)



unibz.itunibz.it

Query answering in databases Querying databases and ontologies Query answering in Description Logics

Certain answers Part 4.2: Query answering over databases and ontologies

Query answering in ontologies – Example

 
Person

 

hasFather
1..* TBox T : ∃hasFather v Person

∃hasFather− v Person
Person v ∃hasFather

ABox A: Person(john), Person(nick), Person(toni)
hasFather(john,nick), hasFather(nick,toni)

Queries:
q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Certain answers: cert(q1, 〈T ,A〉) = { (john,nick), (nick,toni) }

{

cert(q2, 〈T ,A〉) = { john, nick, toni }

{

cert(q3, 〈T ,A〉) = { john, nick, toni }

{

cert(q4, 〈T ,A〉) = { }

{
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Unions of conjunctive queries

We consider also unions of CQs over an ontology.

A union of conjunctive queries (UCQ) has the form:

∃~y1. conj (~x, ~y1) ∨ · · · ∨ ∃ ~yk. conj (~x, ~yk)

where each ∃~yi. conj (~x, ~yi) is a CQ.

The (certain) answers to a UCQ are defined analogously to those for CQs.

Example

q(x)← (Manager(x) ∧ worksFor(x, tones)) ∨
(∃y. boss(x, y) ∧ worksFor(y, tones))

In datalog notation:
q(x) ← Manager(x),worksFor(x, tones)
q(x) ← ∃y. boss(x, y) ∧ worksFor(y, tones)
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Complexity measures for queries over ontologies

When measuring the complexity of answering a query q(~x) over an ontology
O = 〈T ,A〉, various parameters are of importance.

Depending on which parameters we consider, we get different complexity
measures:

Data complexity: only the size of the ABox (i.e., the data) matters.
TBox and query are considered fixed.

Query complexity: only the size of the query matters.
TBox and ABox are considered fixed.

Schema complexity: only the size of the TBox (i.e., the schema) matters.
ABox and query are considered fixed.

Combined complexity: no parameter is considered fixed.

In the OBDA setting, the size of the data largely dominates the size of the
conceptual layer (and of the query).
; Data complexity is the relevant complexity measure.
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Data complexity of query answering

When studying the complexity of query answering, we need to consider the
associated decision problem:

Def.: Recognition problem for query answering

Given an ontology O, a query q over O, and a tuple ~c of constants, check
whether ~c ∈ cert(q,O).

We look mainly at the data complexity of query answering, i.e., complexity of
the recognition problem computed w.r.t. the size of the ABox only.
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Complexity of query answering in DLs

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in AC0 (1)

ALCI, SH, SHIQ, . . . 2ExpTime-complete (3) coNP-complete (2)

OWL 2 (and less) 3ExpTime-hard coNP-hard

(1) This is what we need to scale with the data.
(2) coNP-hard already for a TBox with a single disjunction

[Donini et al., 1994; Calvanese et al., 2006b].
In coNP for very expressive DLs

[Levy and Rousset, 1998; Ortiz et al., 2006; Glimm et al., 2007].
(3) [Calvanese et al., 1998a; Lutz, 2007]

Questions

Can we find interesting (description) logics for which query answering can
be done efficiently (i.e., in AC0)?

If yes, can we leverage relational database technology for query answering?
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Inference in query answering

cert(q, 〈T ,A〉)
Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the contribution of
A from the contribution of q and T .

; Query answering by query rewriting.
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Query rewriting

rq,TPerfect

(under OWA)
Query

(under CWA)

evaluation

reformulation
q

T

A cert(q, 〈T ,A〉)

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query rq,T
(called the perfect rewriting of q w.r.t. T ).

2 Query evaluation: evaluate rq,T over the ABox A seen as a complete
database (and without considering the TBox T ).
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .
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Q-rewritability

Let Q be a query language and L an ontology language.

Def.: Q-rewritability

For an ontology language L, query answering is Q-rewritable if for every TBox
T of L and for every query q, the perfect reformulation rq,T of q w.r.t. T can
be expressed in the query language Q.

Notice that the complexity of computing rq,T or the size of rq,T do not affect
data complexity.

Hence, Q-rewritability is tightly related to data complexity, i.e.:

complexity of computing cert(q, 〈T ,A〉) measured in the size of the ABox
A only,

which corresponds to the complexity of evaluating rq,T over A.
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Language of the rewriting

The expressiveness of the ontology language affects the rewriting
language, i.e., the language into which we are able to rewrite UCQs:

When we can rewrite into FOL/SQL (i.e., the ontology language enjoys
FOL-rewritability).
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in AC0).

When we can rewrite into an NLogSpace-hard language.
; Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
; Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
; Query evaluation requires (at least) power of Disjunctive Datalog.
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Part 4.3

Linking ontologies to relational data
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Managing ABoxes

In the traditional DL setting, it is assumed that the data is maintained in the
ABox of the ontology:

The ABox is perfectly compatible with the TBox:

the vocabulary of concepts, roles, and attributes is the one used in the
TBox.
The ABox “stores” abstract objects, and these objects and their properties
are those returned by queries over the ontology.

There may be different ways to manage the ABox from a physical point of
view:

Description Logics reasoners maintain the ABox is main-memory data
structures.
When an ABox becomes large, managing it in secondary storage may be
required, but this is again handled directly by the reasoner.

D. Calvanese Part 4: Ontology Based Data Access KRO – 2010/2011 (160/290)



unibz.itunibz.it

The impedance mismatch problem OBDA systems Query answering in OBDA systems The QuOnto system for OBDA

Part 4.3: Linking ontologies to relational data

Data in external sources

There are several situations where the assumptions of having the data in an
ABox managed directly by the ontology system (e.g., a Description Logics
reasoner) is not feasible or realistic:

When the ABox is very large, so that it requires relational database
technology.

When we have no direct control over the data since it belongs to some
external organization, which controls the access to it.

When multiple data sources need to be accessed, such as in Information
Integration.

We would like to deal with such a situation by keeping the data in the external
(relational) storage, and performing query answering by leveraging the
capabilities of the relational engine.
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The impedance mismatch problem

We have to deal with the impedance mismatch problem:

Sources store data, which is constituted by values taken from concrete
domains, such as strings, integers, codes, . . .

Instead, instances of concepts and relations in an ontology are (abstract)
objects.

Solution:

We need to specify how to construct from the data values in the relational
sources the (abstract) objects that populate the ABox of the ontology.

This specification is embedded in the mappings between the data sources
and the ontology.

Note: the ABox is only virtual, and the objects are not materialized.
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Solution to the impedance mismatch problem

We need to define a mapping language that allows for specifying how to
transform data into abstract objects:

Each mapping assertion maps:

a query that retrieves values from a data source to . . .
a set of atoms specified over the ontology.

Basic idea: use Skolem functions in the atoms over the ontology to
“generate” the objects from the data values.

Semantics of mappings:

Objects are denoted by terms (of exactly one level of nesting).
Different terms denote different objects (i.e., we make the unique name
assumption on terms).
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Impedance mismatch – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

Actual data is stored in a DB:
– An employee is identified by her SSN.
– A project is identified by its name.

D1[SSN: String,PrName: String]
Employees and projects they work for

D2[Code: String,Salary : Int]
Employee’s code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

Intuitively:

An employee should be created from her SSN: pers(SSN)

A project should be created from its name: proj(PrName)
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Creating object identifiers

We need to associate to the data in the tables objects in the ontology.

We introduce an alphabet Λ of function symbols, each with an associated
arity.

To denote values, we use value constants from an alphabet ΓV .

To denote objects, we use object terms instead of object constants.
An object term has the form f(d1, . . . , dn), with f ∈ Λ, and each di a value
constant in ΓV .

Example

If a person is identified by her SSN, we can introduce a function symbol
pers/1. If VRD56B25 is a SSN, then pers(VRD56B25) denotes a person.

If a person is identified by her name and dateOfBirth, we can introduce a
function symbol pers/2. Then pers(Vardi, 25/2/56) denotes a person.
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Mapping assertions

Mapping assertions are used to extract the data from the DB to populate the
ontology.

We make use of variable terms, which are like object terms, but with variables
instead of values as arguments of the functions.

Def.: A mapping assertion between a database D and a TBox T has the form

Φ(~x) ; Ψ(~t, ~y)
where

Φ is an arbitrary SQL query of arity n > 0 over D;

Ψ is a conjunctive query over T of arity n′ > 0 without
non-distinguished variables;

~x, ~y are variables, with ~y ⊆ ~x;

~t are variable terms of the form f(~z), with f ∈ Λ and ~z ⊆ ~x.
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Mapping assertions – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

D1[SSN: String,PrName: String]
Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s code with salary

D3[Code: String,SSN: String]
Employee’s code with SSN

. . .

m1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3

WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)
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Ontology-Based Data Access System

The mapping assertions are a crucial part of an Ontology-Based Data Access
System.

Def.: Ontology-Based Data Access System

is a triple O = 〈T ,M,D〉, where

T is a TBox.

D is a relational database.

M is a set of mapping assertions between T and D.
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Semantics of mappings

To define the semantics of an OBDA system O = 〈T ,M,D〉, we first need to
define the semantics of mappings.

Def.: Satisfaction of a mapping assertion with respect to a database

An interpretation I satisfies a mapping assertion Φ(~x) ; Ψ(~t, ~y) in M with
respect to a database D, if for each tuple of values ~v ∈ Eval(Φ,D), and for
each ground atom in Ψ[~x/~v], we have that:

if the ground atom is A(s), then sI ∈ AI .

if the ground atom is P (s1, s2), then (sI1 , s
I
2 ) ∈ P I .

Intuitively, I satisfies Φ ; Ψ w.r.t. D if all facts obtained by evaluating Φ
over D and then propagating the answers to Ψ, hold in I.

Note: Eval(Φ,D) denotes the result of evaluating Φ over the database D.
Ψ[~x/~v] denotes Ψ where each xi has been substituted with vi.
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Semantics of an OBDA system

Def.: Model of an OBDA system

An interpretation I is a model of O = 〈T ,M,D〉 if:

I is a model of T ;

I satisfies M w.r.t. D, i.e., I satisfies every assertion in M w.r.t. D.

An OBDA system O is satisfiable if it admits at least one model.
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Answering queries over an OBDA system

In an OBDA system O = 〈T ,M,D〉
Queries are posed over the TBox T .

The data needed to answer queries is stored in the database D.

The mapping M is used to bridge the gap between T and D.

Two approaches to exploit the mapping:

bottom-up approach: simpler, but less efficient

top-down approach: more sophisticated, but also more efficient

Note: Both approaches require to first split the TBox queries in the mapping
assertions into their constituent atoms.
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Splitting of mappings

A mapping assertion Φ ; Ψ, where the TBox query Ψ is constituted by the
atoms X1,. . . ,Xk, can be split into several mapping assertions:

Φ ; X1 · · · Φ ; Xk

This is possible, since Ψ does not contain non-distinguished variables.

Example

m1: SELECT SSN, PrName FROM D1 ; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

is split into
m1

1: SELECT SSN, PrName FROM D1 ; Employee(pers(SSN))
m2

1: SELECT SSN, PrName FROM D1 ; Project(proj(PrName))
m3

1: SELECT SSN, PrName FROM D1 ; projectName(proj(PrName), PrName)
m4

1: SELECT SSN, PrName FROM D1 ; worksFor(pers(SSN), proj(PrName))
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Bottom-up approach to query answering

Consists in a straightforward application of the mappings:

1 Propagate the data from D through M, materializing an ABox AM,D (the
constants in such an ABox are values and object terms).

2 Apply to AM,D and to the TBox T , the satisfiability and query answering
algorithms developed for DL-LiteA.

This approach has several drawbacks (hence is only theoretical):

The technique is no more AC0 in the data, since the ABox AM,D to
materialize is in general polynomial in the size of the data.

AM,D may be very large, and thus it may be infeasible to actually
materialize it.

Freshness of AM,D with respect to the underlying data source(s) may be
an issue, and one would need to propagate source updates (cf. Data
Warehousing).
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Top-down approach to query answering

Consists of three steps:

1 Reformulation: Compute the perfect reformulation
qpr = PerfectRef(q, TP ) of the original query q, using the inclusion
assertions of the TBox T (see later).

2 Unfolding: Compute from qpr a new query qunf by unfolding qpr using
(the split version of) the mappings M.

Essentially, each atom in qpr that unifies with an atom in Ψ is substituted
with the corresponding query Φ over the database.
The unfolded query is such that Eval(qunf ,D) = Eval(qpr ,AM,D).

3 Evaluation: Delegate the evaluation of qunf to the relational DBMS
managing D.
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Unfolding

To unfold a query qpr with respect to a set of mapping assertions:

1 For each non-split mapping assertion Φi(~x) ; Ψi(~t, ~y):
1 Introduce a view symbol Auxi of arity equal to that of Φi.
2 Add a view definition Auxi(~x)← Φi(~x).

2 For each split version Φi(~x) ; Xj(~t, ~y) of a mapping assertion, introduce
a clause Xj(~t, ~y)← Auxi(~x).

3 Obtain from qpr in all possible ways queries qaux defined over the view
symbols Auxi as follows:

1 Find a most general unifier ϑ that unifies each atom X(~z) in the body of
qpr with the head of a clause X(~t, ~y)← Auxi(~x).

2 Substitute each atom X(~z) with ϑ(Auxi(~x)), i.e., with the body the unified
clause to which the unifier ϑ is applied.

4 The unfolded query qunf is the union of all queries qaux , together with the
view definitions for the predicates Auxi appearing in qaux .
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Unfolding – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

m1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3
WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)

We define a view Auxi for the source query of each mapping mi.

For each (split) mapping assertion, we introduce a clause:

Employee(pers(SSN)) ← Aux1(SSN,PrName)
projectName(proj(PrName),PrName) ← Aux1(SSN,PrName)

Project(proj(PrName)) ← Aux1(SSN,PrName)
worksFor(pers(SSN), proj(PrName)) ← Aux1(SSN,PrName)

Employee(pers(SSN)) ← Aux2(SSN, Salary)
salary(pers(SSN),Salary) ← Aux2(SSN, Salary)
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Unfolding – Example (cont’d)

Query over ontology: employees who work for tones and their salary:
q(e, s)← Employee(e), salary(e, s),worksFor(e, p), projectName(p, tones)

A unifier between the atoms in q and the clause heads is:
ϑ(e) = pers(SSN) ϑ(s) = Salary
ϑ(PrName) = tones ϑ(p) = proj(tones)

After applying ϑ to q, we obtain:
q(pers(SSN),Salary)← Employee(pers(SSN)), salary(pers(SSN),Salary),

worksFor(pers(SSN),proj(tones)),
projectName(proj(tones), tones)

Substituting the atoms with the bodies of the unified clauses, we obtain:
q(pers(SSN),Salary)← Aux1(SSN, tones), Aux2(SSN,Salary),

Aux1(SSN, tones), Aux1(SSN, tones)
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Exponential blowup in the unfolding

When there are multiple mapping assertions for each atom, the unfolded query
may be exponential in the original one.

Consider a query: q(y)← A1(y), A2(y), . . . , An(y)

and the mappings: m1
i : Φ1

i (x) ; Ai(f(x))
m2
i : Φ2

i (x) ; Ai(f(x))
(for i ∈ {1, . . . , n})

We add the view definitions: Auxji (x)← Φji (x)

and introduce the clauses: Ai(f(x))← Auxji (x) (for i ∈ {1, . . . , n}, j ∈ {1, 2}).

There is a single unifier, namely ϑ(y) = f(x), but each atom Ai(y) in the query
unifies with the head of two clauses.

Hence, we obtain one unfolded query

q(f(x))← Auxj11 (x),Auxj22 (x), . . . ,Auxjnn (x)

for each possible combination of ji ∈ {1, 2}, for i ∈ {1, . . . , n}.
Hence, we obtain 2n unfolded queries.
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Computational complexity of query answering

From the top-down approach to query answering, and the complexity results for
DL-Lite, we obtain the following result.

Theorem

Query answering in a DL-Lite OBDM system O = 〈T ,M,D〉 is

1 NP-complete in the size of the query.

2 PTime in the size of the TBox T and the mappings M.

3 AC0 in the size of the database D.

Note: The AC0 result is a consequence of the fact that query answering in
such a setting can be reduced to evaluating an SQL query over the relational
database.
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Implementation of top-down approach to query answering

To implement the top-down approach, we need to generate an SQL query.

We can follow different strategies:
1 Substitute each view predicate in the unfolded queries with the

corresponding SQL query over the source:

+ joins are performed on the DB attributes;
+ does not generate doubly nested queries;
– the number of unfolded queries may be exponential.

2 Construct for each atom in the original query a new view. This view takes
the union of all SQL queries corresponding to the view predicates, and
constructs also the Skolem terms:

+ avoids exponential blow-up of the resulting query, since the union (of the
queries coming from multiple mappings) is done before the joins;

– joins are performed on Skolem terms;
– generates doubly nested queries.

Which method is better, depends on various parameters.
Experiments have shown that (1) behaves better in most cases.
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Towards answering arbitrary SQL queries

We have seen that answering full SQL (i.e., FOL) queries is undecidable.

However, we can treat the answers to an UCQ, as “knowledge”, and
perform further computations on that knowledge.

This corresponds to applying a knowledge operator to UCQs that are
embedded into an arbitrary SQL query (EQL queries) [Calvanese et al.,
2007b]

The UCQs are answered according to the certain answer semantics.
The SQL query is evaluated on the facts returned by the UCQs.

The approach can be implemented by rewriting the UCQs and embedding
the rewritten UCQs into SQL.

The user “sees” arbitrary SQL queries, but these SQL queries are evaluated
according to a weakened semantics.
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The QuOnto system

QuOnto is a tool for representing and reasoning over ontologies of the
DL-Lite family.
The basic functionalities it offers are:

Ontology representation
Ontology satisfiability check
Intensional reasoning services: concept/property subsumption and
disjunction, concept/property satisfiability
Query Answering of UCQs

Includes also support for:
Identification path constraints
Denial constraints
Epistemic queries (EQL-Lite on UCQs)
Epistemic constraints (EQL-Lite constraints)

Reasoning services are highly optimized.

Can be used with internal and external DBMS (include drivers for Oracle,
DB2, IBM Information Integrator, SQL Server, MySQL, etc.).

Implemented in Java – APIs are available for selected projects upon
request.
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Reasoning in the DL-Lite family
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Remarks

In the following, we make some simplifying assumptions:

We ignore the distinction between objects and values, since it is not
relevant for reasoning. Hence we do not use value domains and attributes.

We do not consider identification constraints.

Notation:

When the distinction between DL-LiteR, DL-LiteF , or DL-LiteA is not
important, we use just DL-Lite.

Q denotes a basic role, i.e., Q −→ P | P−.

R denotes a general role, i.e., R −→ Q | ¬Q.

C denotes a general concept, i.e., C −→ A | ¬A | ∃Q | ¬∃Q,
where A is an atomic concept.
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TBox Reasoning services

Concept Satisfiability: C is satisfiable wrt T , if there is a model I of T
such that CI is not empty, i.e., T 6|= C ≡ ⊥

Subsumption: C1 is subsumed by C2 wrt T , if for every model I of T we
have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I of T
we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of T we
have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥

Functionality implication: A functionality assertion (funct Q) is logically
implied by T if for every model I of T , we have that (o, o1) ∈ QI and
(o, o2) ∈ QI implies o1 = o2, i.e., T |= (funct Q).

Analogous definitions hold for role satisfiability, subsumption, equivalence, and
disjointness.
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From TBox reasoning to ontology (un)satisfiability

Basic reasoning service:

Ontology satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

In the following, we show how to reduce TBox reasoning to ontology
unsatisfiability:

1 We show how to reduce TBox reasoning services to concept/role
subsumption.

2 We provide reductions from concept/role subsumption to ontology
unsatisfiability.
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Concept/role satisfiability, equivalence, and disjointness

Theorem

1 C is unsatisfiable wrt T iff T |= C v ¬C.

2 T |= C1 ≡ C2 iff T |= C1 v C2 and T |= C2 v C1.

3 C1 and C2 are disjoint iff T |= C1 v ¬C2.

Proof (sketch).

1 “⇐” if T |= C v ¬C, then CI ⊆ ∆I \ CI , for every model I = 〈∆I , ·I〉
of T ; but this holds iff CI = ∅.
“⇒” if C is unsatisfiable, then CI = ∅, for every model I of T . Therefore
CI ⊆ (¬C)I .

2 Trivial.

3 Trivial.

Analogous reductions for role satisfiability, equivalence and disjointness.
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From implication of functionalities to subsumption

Theorem

T |= (funct Q) iff either

(funct Q) ∈ T (only for DL-LiteF or DL-LiteA), or

T |= Q v ¬Q.

Proof (sketch).

“⇐” The case in which (funct Q) ∈ T is trivial.
Instead, if T |= Q v ¬Q, then QI = ∅ and hence I |= (funct Q), for every
model I of T .

“⇒” When neither (funct Q) ∈ T nor T |= Q v ¬Q, we can construct a
model of T that is not a model of (funct Q).

The interesting part of this result is the “only-if” direction, telling us that in
DL-Lite functionality is implied only in trivial ways.
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From concept subsumption to ontology unsatisfiability

Theorem

T |= C1 v C2 iff the ontology OC1vC2
= 〈T ∪ {Â v C1, Â v ¬C2}, {Â(c)}〉

is unsatisfiable, where Â is an atomic concept not in T , and c is a constant.

Intuitively, C1 is subsumed by C2 iff the smallest ontology containing T and
implying both C1(c) and ¬C2(c) is unsatisfiable.

Proof (sketch).

“⇐” Let OC1vC2
be unsatisfiable, and suppose that T 6|= C1 v C2. Then there

exists a model I of T such that CI1 6⊆ CI2 . Hence CI1 \ CI2 6= ∅. We can
extend I to a model of OC1vC2 by taking cI = o, for some o ∈ CI1 \ CI2 , and

ÂI = {cI}. This contradicts OC1vC2
being unsatisfiable.

“⇒” Let T |= C1 v C2, and suppose that OC1vC2 is satisfiable. Then there
exists a model I be of OC1vC2 . Then I |= T , and I |= C1(c) and I |= ¬C2(c),
i.e., I 6|= C1 v C2. This contradicts T |= C1 v C2.
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From role subsumption to ont. unsatisfiability for DL-LiteR

Theorem

Let T be a DL-LiteR TBox and R1, R2 two general roles.
Then T |= R1 v R2 iff the ontology
OR1vR2

= 〈T ∪ {P̂ v R1, P̂ v ¬R2}, {P̂ (c1, c2)}〉 is unsatisfiable,

where P̂ is an atomic role not in T , and c1, c2 are two constants.

Intuitively, R1 is subsumed by R2 iff the smallest ontology containing T and
implying both R1(c1, c2) and ¬R2(c1, c2) is unsatisfiable.

Proof (sketch).

Analogous to the one for concept subsumption.

Notice that OR1vR2
is inherently a DL-LiteR ontology.
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From role subsumption to ont. unsatisfiability for DL-LiteF

Theorem

Let T be a DL-LiteF TBox, and Q1, Q2 two basic roles such that Q1 6= Q2.
Then,

1 T |= Q1 v Q2 iff Q1 is unsatisfiable iff
either ∃Q1 or ∃Q−1 is unsatisfiable wrt T ,
which can again be reduced to ontology unsatisfiability.

2 T |= ¬Q1 v Q2 iff T is unsatisfiable.

3 T |= Q1 v ¬Q2 iff
either ∃Q1 and ∃Q2 are disjoint, or ∃Q−1 and ∃Q−2 are disjoint, iff
either T |= ∃Q1 v ¬∃Q2, or T |= ∃Q−1 v ¬∃Q−2 ,
which can again be reduced to ontology unsatisfiability.

Notice that an inclusion of the form ¬Q1 v ¬Q2 is equivalent to Q2 v Q1, and
therefore is considered in the first item.
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From role subsumption to ont. unsatisfiability for DL-LiteA

Theorem

Let T be a DL-LiteA TBox, and Q1, Q2 two basic roles such that Q1 6= Q2.
Then,

1 T |= Q1 v Q2 iff
OQ1vQ2

= 〈T ∪ {P̂ v ¬Q2}, {Q1(c1, c2), P̂ (c1, c2)}〉 is unsatisfiable,

where P̂ is an atomic role not in T , and c1, c2 are two constants.

2 T |= ¬Q1 v Q2 iff
O¬Q1vQ2 = 〈T ∪ {P̂ v ¬Q1, P̂ v ¬Q2}, {P̂ (c1, c2)}〉 is unsatisfiable,

where P̂ is an atomic role not in T , and c1, c2 are two constants.

3 T |= Q1 v ¬Q2 iff
OQ1v¬Q2

= 〈T , {Q1(c1, c2), Q2(c1, c2)}〉 is unsatisfiable,
where c1, c2 are two constants.

Notice that an inclusion of the form ¬Q1 v ¬Q2 is equivalent to Q2 v Q1, and
therefore is considered in the first item.
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Summary

The results above tell us that we can support TBox reasoning services by
relying on the ontology (un)satisfiability service.

Ontology satisfiability is a form of reasoning over both the TBox and the
ABox of the ontology.

In the following, we first consider other TBox & ABox reasoning services, in
particular query answering, and then turn back to ontology satisfiability.
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TBox and ABox reasoning services

Ontology Satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

Concept Instance Checking: Verify whether an individual c is an
instance of a concept C in an ontology O, i.e., whether O |= C(c).

Role Instance Checking: Verify whether a pair (c1, c2) of individuals is
an instance of a role Q in an ontology O, i.e., whether O |= Q(c1, c2).

Query Answering Given a query q over an ontology O, find all tuples ~c of
constants such that O |= q(~c).
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Query answering and instance checking

For atomic concepts and roles, instance checking is a special case of query
answering, in which the query is boolean and constituted by a single atom in
the body.

O |= A(c) iff q()← A(c) evaluated over O is true.

O |= P (c1, c2) iff q()← P (c1, c2) evaluated over O is true.
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From instance checking to ontology unsatisfiability

Theorem

Let O = 〈T ,A〉 be a DL-Lite ontology, C a DL-Lite concept, and P an atomic
role. Then:

O |= C(c) iff OC(c) = 〈T ∪ {Â v ¬C}, A ∪ {Â(c)}〉 is unsatisfiable,

where Â is an atomic concept not in O.

O |= ¬P (c1, c2) iff O¬P (c1,c2) = 〈T , A ∪ {P (c1, c2)}〉 is unsatisfiable.

Theorem

Let O = 〈T ,A〉 be a DL-LiteF ontology and P an atomic role.
Then O |= P (c1, c2) iff O is unsatisfiable or P (c1, c2) ∈ A.

Theorem

Let O = 〈T ,A〉 be a DL-LiteR or DL-LiteA ontology and P an atomic role.
Then O |= P (c1, c2) iff OP (c1,c2) = 〈T ∪ {P̂ v ¬P}, A ∪ {P̂ (c1, c2)}〉 is

unsatisfiable, where P̂ is an atomic role not in O.
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Certain answers

We recall that

Query answering over an ontology O = 〈T ,A〉 is a form of logical implication:

find all tuples ~c of constants of A s.t. O |= q(~c)

A.k.a. certain answers in databases, i.e., the tuples that are answers to q in all
models of O = 〈T ,A〉:

cert(q,O) = { ~c | ~c ∈ qI , for every model I of O }

Note: We have assumed that the answer qI to a query q over an interpretation
I is constituted by a set of tuples of constants of A, rather than objects in ∆I .
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Q-rewritability for DL-Lite

We now study rewritability of query answering over DL-Lite ontologies.

In particular we will show that DL-LiteA (and hence DL-LiteF and
DL-LiteR) enjoy FOL-rewritability of answering union of conjunctive
queries.
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Query answering vs. ontology satisfiability

In the case in which an ontology is unsatisfiable, according to the “ex falso
quod libet” principle, reasoning is trivialized.

In particular, query answering is meaningless, since every tuple is in the
answer to every query.

We are not interested in encoding meaningless query answering into the
perfect reformulation of the input query. Therefore, before query
answering, we will always check ontology satisfiability to single out
meaningful cases.

Thus, we proceed as follows:

1 We show how to do query answering over satisfiable ontologies.

2 We show how we can exploit the query answering algorithm also to check
ontology satisfiability.
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Remark

We call positive inclusions (PIs) assertions of the form

Cl v A | ∃Q
Q1 v Q2

We call negative inclusions (NIs) assertions of the form

Cl v ¬A | ¬∃Q
Q1 v ¬Q2
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Query answering over satisfiable ontologies

Given a CQ q and a satisfiable ontology O = 〈T ,A〉, we compute cert(q,O) as
follows:

1 Using T , rewrite q into a UCQ rq,T (the perfect rewriting of q w.r.t. T ).

2 Evaluate rq,T over A (simply viewed as data), to return cert(q,O).

Correctness of this procedure shows FOL-rewritability of query answering in
DL-Lite.
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Query rewriting

Consider the query q(x) ← Professor(x)

Intuition: Use the PIs as basic rewriting rules:

AssistantProf v Professor
as a logic rule: Professor(z) ← AssistantProf(z)

Basic rewriting step:

when an atom in the query unifies with the head of the rule,

substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.

In the example, the PI AssistantProf v Professor applies to the atom
Professor(x). Towards the computation of the perfect rewriting, we add to the
input query above, the query

q(x) ← AssistantProf(x)
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Query rewriting (cont’d)

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI ∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

The PI applies to the atom Course(y), and we add to the perfect rewriting the
query

q(x) ← teaches(x, y), teaches(z1, y)

Consider now the query q(x) ← teaches(x, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI applies to the atom teaches(x, y), and we add to the perfect rewriting
the query

q(x) ← Professor(x)
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Query rewriting – Constants

Conversely, for the query q(x) ← teaches(x, fl)

and the same PI as before Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

teaches(x, fl) does not unify with teaches(z, f(z)), since the skolem term
f(z) in the head of the rule does not unify with the constant fl.
Remember: We adopt the unique name assumption.

In this case, we say that the PI does not apply to the atom teaches(x, fl).

The same holds for the following query, where y is distinguished, since unifying
f(z) with y would correspond to returning a skolem term as answer to the
query:

q(x, y) ← teaches(x, y)
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Query rewriting – Join variables

An analogous behavior to the one with constants and with distinguished
variables holds when the atom contains join variables that would have to be
unified with skolem terms.

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI above does not apply to the atom teaches(x, y).
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Query rewriting – Reduce step

Consider now the query q(x) ← teaches(x, y), teaches(z, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

This PI does not apply to teaches(x, y) or teaches(z, y), since y is in join, and
we would again introduce the skolem term in the rewritten query.

However, we can transform the above query by unifying the atoms teaches(x, y)
and teaches(z, y). This rewriting step is called reduce, and produces the query

q(x) ← teaches(x, y)

Now, we can apply the PI above, and add to the rewriting the query

q(x) ← Professor(x)
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Query rewriting – Summary

Reformulate the CQ q into a set of queries:

Apply to q and the computed queries in all possible ways the PIs in T :

A1 v A2 . . . , A2(x), . . . ; . . . , A1(x), . . .
∃P v A . . . , A(x), . . . ; . . . , P (x, ), . . .
∃P− v A . . . , A(x), . . . ; . . . , P ( , x), . . .
A v ∃P . . . , P (x, ), . . . ; . . . , A(x), . . .
A v ∃P− . . . , P ( , x), . . . ; . . . , A(x), . . .
∃P1 v ∃P2 . . . , P2(x, ), . . . ; . . . , P1(x, ), . . .
P1 v P2 . . . , P2(x, y), . . . ; . . . , P1(x, y), . . .
· · ·

(’ ’ denotes an unbound variable, i.e., a variable that appears only once)

This corresponds to exploiting ISAs, role typing, and mandatory
participation to obtain new queries that could contribute to the answer.

Apply in all possible ways unification between atoms in a query.

Unifying atoms can make rules applicable that were not so before, and is
required for completeness of the method.

The UCQ resulting from this process is the perfect rewriting rq,T .
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Query rewriting algorithm

Algorithm PerfectRef(Q, TP )
Input: union of conjunctive queries Q, set of DL-LiteA PIs TP
Output: union of conjunctive queries PR
PR := Q;
repeat
PR′ := PR;
for each q ∈ PR′ do

for each g in q do
for each PI I in TP do

if I is applicable to g then PR := PR ∪ {ApplyPI(q, g, I) };
for each g1, g2 in q do

if g1 and g2 unify then PR := PR ∪ {τ(Reduce(q, g1, g2))};
until PR′ = PR;
return PR

Observations:

Termination follows from having only finitely many different rewritings.

NIs or functionalities do not play any role in the rewriting of the query.
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Query answering in DL-Lite – Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x, y),Course(y)

Perfect Rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches( , y)
q(x)← teaches(x, )
q(x)← Professor(x)

ABox: teaches(john, fl)
Professor(mary)

It is easy to see that evaluating the perfect rewriting over the ABox viewed as a
database produces as answer {john, mary}.
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Query answering in DL-Lite – An interesting example

TBox: Person v ∃hasFather
∃hasFather− v Person

ABox: Person(mary)

Query: q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, )
� Apply Person v ∃hasFather to the atom hasFather(y2, )

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2),Person(y2)
� Apply ∃hasFather− v Person to the atom Person(y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather( , y2)
� Unify atoms hasFather(y1, y2) and hasFather( , y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2)
�
· · ·

q(x)← Person(x), hasFather(x, )
� Apply Person v ∃hasFather to the atom hasFather(x, )

q(x)← Person(x)
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Query answering over satisfiable DL-Lite ontologies

For an ABox A and a query q over A, let Evalcwa(q,A) denote the evaluation
of q over A considered as a database (i.e., considered under the CWA).

Theorem

Let T be a DL-Lite TBox, TP the set of PIs in T , and q a CQ over T .
Then, for each ABox A such that 〈T ,A〉 is satisfiable, we have that

cert(q, 〈T ,A〉) = Evalcwa(PerfectRef(q, TP ),A).

As a consequence, query answering over a satisfiable DL-Lite ontology is
FOL-rewritable.

Notice that we did not use NIs or functionality assertions of T in computing
cert(q, 〈T ,A〉. Indeed, when the ontology is satisfiable, we can ignore NIs
and functionality assertions for query answering.
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Canonical model of a DL-Lite ontology

The proof of the previous result exploits a fundamental property of DL-Lite,
that relies on the following notion.

Def.: Canonical model

Let O = 〈T ,A〉 be a DL-Lite ontology. A model IO of O is called canonical if
for every model I of O there is a homomorphism from IO to I.

Theorem

Every satisfiable DL-Lite ontology has a canonical model.

Properties of the canonical models of a DL-Lite ontology:

A canonical model is in general infinite.

All canonical models are homomorphically equivalent, hence we can do as
if there was a single canonical model.
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Query answering in DL-Lite – Canonical model

From the definition of canonical model, and since homomorphisms are closed
under composition, we get that:

To compute the certain answer to a query q over an ontology O, one could in
principle evaluate q over a canonical model IO of O.

This does not give us directly an algorithm for query answering over an
ontology O = 〈T ,A〉, since IO may be infinite.

However, one can show that evaluating q over IO amounts to evaluating
the perfect rewriting rq,T over A.
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Using RDBMS technology for query answering

The ABox A can be stored as a relational database in a standard RDBMS:

For each atomic concept A of the ontology:

define a unary relational table tabA,
populate tabA with each 〈c〉 such that A(c) ∈ A.

For each atomic role P of the ontology,

define a binary relational table tabP ,
populate tabP with each 〈c1, c2〉 such that P (c1, c2) ∈ A.

We have that query answering over satisfiable DL-Lite ontologies can be done
effectively using RDBMS technology:

cert(q, 〈T ,A〉) = Eval(SQL(PerfectRef(q, TP )),DB(A))

Where:
– Eval(qs,DB) denotes the evaluation of an SQL query qs over a database DB.
– SQL(q) denotes the SQL encoding of a UCQ q.
– DB(A) denotes the database obtained as above.
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Satisfiability of ontologies with only PIs

Let us now consider the problem of establishing whether an ontology is
satisfiable.

A first notable result tells us that PIs alone cannot generate ontology
unsatisfiability.

Theorem

Let O = 〈T ,A〉 be a DL-Lite ontology where T contains only PIs.
Then, O is satisfiable.
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Satisfiability of DL-LiteA ontologies

Unsatisfiability in DL-LiteA ontologies can be caused by NIs or by
functionality assertions.

Example

TBox T : Professor v ¬Student
∃teaches v Professor
(funct teaches−)

ABox A: Student(john)
teaches(john, fl)
teaches(michael, fl)
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Checking satisfiability of DL-LiteA ontologies

Satisfiability of a DL-LiteA ontology O = 〈T ,A〉 is reduced to evaluating over
DB(A) a UCQ that asks for the existence of objects violating the NI and
functionality assertions.

Let TP the set of PIs in T .
We deal with NIs and functionality assertions differently.

For each NI N ∈ T :
1 we construct a boolean CQ qN () such that

〈TP ,A〉 |= qN () iff 〈TP ∪ {N},A〉 is unsatisfiable
2 We check whether 〈TP ,A〉 |= qN () using PerfectRef , i.e., we compute

PerfectRef(qN , TP ), and evaluate it over DB(A).

For each functionality assertion F ∈ T :
1 we construct a boolean CQ qF () such that

A |= qF () iff 〈{F},A〉 is unsatisfiable.
2 We check whether A |= qF (), by simply evaluating qF over DB(A).
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Checking violations of negative inclusions

For each NI N in T we compute a boolean CQ qN () according to the following
rules:

A1 v ¬A2 ; qN ()← A1(x), A2(x)
∃P v ¬A or A v ¬∃P ; qN ()← P (x, y), A(x)
∃P− v ¬A or A v ¬∃P− ; qN ()← P (y, x), A(x)
∃P1 v ¬∃P2 ; qN ()← P1(x, y), P2(x, z)
∃P1 v ¬∃P−2 ; qN ()← P1(x, y), P2(z, x)
∃P−1 v ¬∃P2 ; qN ()← P1(x, y), P2(y, z)
∃P−1 v ¬∃P−2 ; qN ()← P1(x, y), P2(z, y)
P1 v ¬P2 or P−1 v ¬P−2 ; qN ()← P1(x, y), P2(x, y)
P−1 v ¬P2 or P1 v ¬P−2 ; qN ()← P1(x, y), P2(y, x)
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Checking violations of negative inclusions – Example

PIs TP : ∃teaches v Professor
NIs N : Professor v ¬Student

Query qN : qN ()← Student(x),Professor(x)

Perfect Rewriting: qN ()← Student(x),Professor(x)
qN ()← Student(x), teaches(x, )

ABox A: teaches(john, fl)
Student(john)

It is easy to see that 〈TP ,A〉 |= qN (), and that the ontology
〈TP ∪ {Professor v ¬Student}, A〉 is unsatisfiable.
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Boolean queries vs. non-boolean queries for NIs

To ensure correctness of the method, the queries used to check for the violation
of a NI need to be boolean.

Example

TBox T : A1 v ¬A0

A1 v A0

∃P v A1

A2 v ∃P−
ABox A: A2(c)

Since A1, P , and A2 are unsatisfiable, also 〈T ,A〉 is unsatisfiable.

Consider the query corresponding to the NI A1 v ¬A0.

qN ()← A1(x), A0(x)

Then PerfectRef(qN , TP ) is:

qN ()← A1(x), A0(x)
qN ()← A1(x)
qN ()← P (x, )
qN ()← A2( )

We have that 〈TP ,A〉 |= qN ().

q′N (x)← A1(x), A0(x)

Then PerfectRef(q′N , TP ) is

q′N (x)← A1(x), A0(x)
q′N (x)← A1(x)
q′N (x)← P (x, )

cert(q′N , 〈TP ,A〉) = ∅, hence q′N (x)
does not detect unsatisfiability.
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Checking violations of functionality assertions

For each functionality assertion F in T we compute a boolean FOL query
qF () according to the following rules:

(funct P ) ; qF ()← P (x, y), P (x, z), y 6= z
(funct P−) ; qF ()← P (x, y), P (z, y), x 6= z

Example

Functionality F : (funct teaches−)

Query qF : qF ()← teaches(x, y), teaches(z, y), x 6= z

ABox A: teaches(john, fl)
teaches(michael, fl)

It is easy to see that A |= qF (), and that 〈{(funct teaches−)},A〉, is
unsatisfiable.
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From satisfiability to query answering in DL-LiteA

Lemma (Separation for DL-LiteA)

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T such that 〈TP ,A〉 |= qN ().

(b) There exists a functionality assertion F ∈ T such that A |= qF ().

(a) relies on the properties that NIs do not interact with each other, and
that interaction between NIs and PIs is captured through PerfectRef .

(b) exploits the property that NIs and PIs do not interact with
functionalities: indeed, no functionality assertion is contradicted in a DL-LiteA
ontology O, beyond those explicitly contradicted by the ABox.

Notably, to check ontology satisfiability, each NI and each functionality
assertion can be processed individually.
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FOL-rewritability of satisfiability in DL-LiteA

From the previous lemma and the theorem on query answering for satisfiable
DL-LiteA ontologies, we get the following result.

Theorem

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T s.t. Evalcwa(PerfectRef(qN , TP ),A) returns true.

(b) There exists a func. assertion F ∈ T s.t. Evalcwa(qF ,A) returns true.

Note: All the queries qN () and qF () can be combined into a single UCQ.
Hence, satisfiability of a DL-LiteA ontology is reduced to evaluating a
FOL-query over an ontology whose TBox consists of positive inclusions only
(and hence is satisfiable).
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Complexity of query answering over satisfiable ontologies

Theorem

Query answering over DL-LiteA ontologies is

1 NP-complete in the size of query and ontology (combined complexity).

2 PTime in the size of the ontology. (schema+data complexity)

3 AC0 in the size of the ABox (data complexity).

Proof (sketch).

1 Guess together the derivation of one of the CQs of the perfect rewriting,
and an assignment to its existential variables. Checking the derivation and
evaluating the guessed CQ over the ABox is then polynomial in combined
complexity. NP-hardness follows from combined complexity of evaluating
CQs over a database.

2 The number of CQs in the perfect rewriting is polynomial in the size of the
TBox, and we can compute them in PTime.

3 AC0 is the data complexity of evaluating FOL queries over a DB.
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Complexity of ontology satisfiability

Theorem

Checking satisfiability of DL-LiteA ontologies is

1 PTime in the size of the ontology (combined complexity).

2 AC0 in the size of the ABox (data complexity).

Proof (sketch).

We observe that all the queries qN () and qF () checking for violations of
negative inclusions N and functionality assertions F can be combined into a
single UCQ whose size is linear in the TBox, and does not depend on the ABox.
Hence, the result follows directly from the complexity of query answering over
satisfiable ontologies.
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Complexity of TBox reasoning

Theorem

TBox reasoning over DL-LiteA ontologies is PTime in the size of the TBox
(schema complexity).

Proof (sketch).

Follows from the previous theorem, and from the fact that all TBox reasoning
tasks can be reduced to ontology satisfiability.
Indeed, the size of the ontology constructed in the reduction is polynomial in
the size of the input TBox.
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Beyond DL-Lite

We consider now DL languages that extend DL-Lite with additional DL
constructs or with combinations of constructs that are not legal in DL-Lite.

We show that (essentially) all such extensions of DL-Lite make it lose its nice
computational properties.

Specifically, we consider the following DL constructs:

Construct Syntax Example Semantics

conjunction C1 u C2 Doctor uMale CI1 ∩ CI2
disjunction C1 t C2 Doctor t Lawyer CI1 ∪ CI2
qual. exist. restr. ∃Q.C ∃child.Male {a | ∃b. (a, b) ∈ QI ∧ b ∈ CI }

qual. univ. restr. ∀Q.C ∀child.Male {a | ∀b. (a, b) ∈ QI → b ∈ CI }
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Beyond DL-LiteA: results on data complexity

Lhs Rhs Funct.
Role
incl.

Data complexity
of query answering

0 DL-LiteA
√

*
√

* in AC0

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

Notes:

* with the “proviso” of not specializing functional properties.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT tAF suffices! ; No hope of including covering constraints.
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Observations

DL-Lite-family is FOL-rewritable, hence AC0 – holds also with n-ary
relations ; DLR-LiteF and DLR-LiteR.

RDFS is a subset of DL-LiteR ; is FOL-rewritable, hence AC0.

Horn-SHIQ [Hustadt et al., 2005] is PTime-hard even for instance
checking (line 8).

DLP [Grosof et al., 2003] is PTime-hard (line 4)

EL [Baader et al., 2005] is PTime-hard (line 4).

Although used in ER and UML, no hope of including covering
constraints, since we get coNP-hardness for trivial DLs (line 10)
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Qualified existential quantification in the lhs of inclusions

Adding qualified existential on the lhs of inclusions makes instance checking
(and hence query answering) NLogSpace-hard:

Lhs Rhs F R Data complexity

1 A | ∃P .A A − − NLogSpace-hard

Hardness proof is by a reduction from reachability in directed graphs:

TBox T : a single inclusion assertion ∃P .A v A
ABox A: encodes graph using P and asserts A(d)

NLOGSPACE-hard cases

Adding qualified existential on the lhs of inclusions makes instance checking (and
hence query answering) NLOGSPACE-hard:

Cl Cr F R Data complexity

5 A | ∃P .A A − − NLOGSPACE-hard

Hardness proof is by a reduction from reachability in directed graphs:

• Ontology O: a single inclusion assertion ∃P .A ⊑ A

• Database D: encodes graph using P and asserts A(d)

P

s

d

A

A

A

A

A

P

P
P

P
P

Result:
(O,D) |= A(s) iff d is reachable from s in the graph

Diego Calvanese Ontology Based Data Access 28/40

Result:
〈T ,A〉 |= A(s) iff d is reachable from s in the graph.

Note: Since the reduction has to show hardness in data complexity, the graph
must be encoded in the ABox (while the TBox has to be fixed).
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NLogSpace-hard cases

Instance checking (and hence query answering) is NLogSpace-hard in data
complexity for:

Lhs Rhs F R Data complexity

1 A | ∃P .A A − − NLogSpace-hard

By reduction from reachability in directed graphs.

2 A A | ∀P .A − − NLogSpace-hard

Follows from 1 by replacing ∃P .A1 v A2 with A1 v ∀P−.A2,
and by replacing each occurrence of P− with P ′, for a new role P ′.

3 A A | ∃P .A
√ − NLogSpace-hard

Proved by simulating in the reduction ∃P .A1 v A2

via A1 v ∃P−.A2 and (funct P−),
and by replacing again each occurrence of P− with P ′, for a new role P ′.
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Path System Accessibility

To show PTime-hardness, we use a reduction from a PTime-complete
problem. We use Path System Accessibility.

Instance of Path System Accessibility: PS = (N,E, S, t) with

N a set of nodes

E ⊆ N ×N ×N an accessibility relation

S ⊆ N a set of source nodes

t ∈ N a terminal node

Accessibility of nodes is defined inductively:

each n ∈ S is accessible

if (n, n1, n2) ∈ E and n1, n2 are accessible, then also n is accessible

Given an instance PS of Path System Accessibility, deciding whether t is
accessible, is PTime-complete.
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Reduction from Path System Accessibility

We construct a TBox T consisting of the inclusion assertions:

∃P1.A v B1

∃P2.A v B2

B1 uB2 v A
∃P3.A v A

Given an instance PS = (N,E, S, t), we construct an ABox A that:

encodes the accessibility relation using P1, P2, and P3, and
asserts A(s) for each source node s ∈ S.

e1 = (n, . , . )
e2 = (n, s1, s2)
e3 = (n, . , . )

Reduction from Path System Accessibility

Given an instance PS = (N,E, S, t), we construct

• Ontology O consisting of the inclusion assertions

∃P1.A ⊑ B1

∃P2.A ⊑ B2

B1 ⊓ B2 ⊑ A

∃P3.A ⊑ A

• Database D encoding the accessibility relation using P1, P2, and P3, and
asserting A(s) for each source node s ∈ S

e1 = (n, . , . )

e2 = (n, s1, s2)

e3 = (n, . , . )

A
n

P1 P2

P3 P3 P3

A A
s1 s2

e3e2e1

A
B2B1A

Result:
(O,D) |= A(t) iff t is accessible in PS

Diego Calvanese Ontology Based Data Access 31/40

Result:
〈T ,A〉 |= A(t) iff t is accessible in PS .
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coNP-hard cases

Are obtained when we can use in the query two concepts that cover another
concept. This forces reasoning by cases on the data.

Query answering is coNP-hard in data complexity for:

Lhs Rhs F R Data complexity

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

All three cases are proved by adapting the proof of coNP-hardness of instance
checking for ALE by [Donini et al., 1994].
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2+2-SAT

2+2-SAT: satisfiability of a 2+2-CNF formula, i.e., a CNF formula where each
clause has exactly 2 positive and 2 negative literals.

Example: ϕ = c1 ∧ c2 ∧ c3, with
c1 = v1 ∨ v2 ∨ ¬v3 ∨ ¬v4

c2 = false ∨ false ∨ ¬v1 ∨ ¬v4

c3 = false ∨ v4 ∨ ¬true ∨ ¬v2

2+2-SAT is NP-complete [Donini et al., 1994].
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Reduction from 2+2-SAT

We construct a TBox T and a query q() over concepts L, T , F and roles P1,
P2, N1, N2.

TBox T = { L v T t F }
q()← P1(c, v1), P2(c, v2), N1(c, v3), N2(c, v4),

F (v1), F (v2), T (v3), T (v4)

Given a 2+2-CNF formula ϕ = c1 ∧ · · · ∧ ck over vars v1, . . . , vn, true, false,
we construct an ABox Aϕ using individuals c1, . . . ck, v1, . . . , vn, true, false:

for each propositional variable vi: L(vi)

for each clause cj = vj1 ∨ vj2 ∨ ¬vj3 ∨ ¬vj4 :
P1(cj , vj1), P2(cj , vj2), N1(cj , vj3), N2(cj , vj4)

T (true), F (false)

Note: the TBox T and the query q do not depend on ϕ, hence this reduction
works for data complexity.
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Reduction from 2+2-SAT (cont’d)

Lemma

〈T , Aϕ〉 6|= q() iff ϕ is satisfiable.

Proof (sketch).

“⇒” If 〈T , Aϕ〉 6|= q(), then there is a model I of 〈T , Aϕ〉 s.t. I 6|= q(). We
define a truth assignment αI by setting αI(vi) = true iff vIi ∈ T I . Notice that,
since L v T t F , if vIi /∈ T I , then vIi ∈ F I .
It is easy to see that, since q() asks for a false clause and I 6|= q(), for each
clause cj , one of the literals in cj evaluates to true in αI .
“⇐” From a truth assignment α that satisfies ϕ, we construct an interpretation
Iα with ∆Iα = {c1, . . . , ck, v1, . . . , vn, t, f}, and:

cIαj = cj , vIαi = vi, trueIα = t, falseIα = f

T Iα = {vi | α(vi) = true} ∪ {t}, F Iα = {vi | α(vi) = false} ∪ {f}
It is easy to see that Iα is a model of 〈T , Aϕ〉 and that Iα 6|= q().
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Combining functionalities and role inclusions

Let DL-LiteFR be the DL that is the union of DL-LiteF and DL-LiteR, i.e.,
the DL-Lite logic that allows for using both role functionality and role inclusions
without any restrictions.

Due to the unrestricted interaction of functionality and role inclusions
DL-LiteFR is significantly more complicated than the logics of the DL-Lite
family:

One can force the unification of existentially implied objects
(i.e., separation does not hold anymore).

Additional constructs besides those present in DL-Lite can be simulated.

The computational complexity of reasoning increases significantly.
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Unification of existentially implied objects – Example

TBox T : A v ∃P P v S
∃P− v A (funct S)

ABox A: A(c1), S(c1, c2), S(c2, c3), . . . , S(cn−1, cn)

A(c1), A v ∃P |= P (c1, x), for some x
P (c1, x), P v S |= S(c1, x)

S(c1, x), S(c1, c2), (funct S) |= x = c2
P (c1, c2), ∃P− v A |= A(c2)

A(c2), A v ∃P . . .
|= A(cn)

Hence, we get:

If we add B(cn) and B v ¬A, the ontology becomes inconsistent.

Similarly, the answer to the following query over 〈T ,A〉 is true:

q() ← A(z1), S(z1, z2), S(z2, z3), . . . , S(zn−1, zn), A(zn)
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Unification of existentially implied objects

Note: The number of unification steps above depends on the data. Hence
this kind of deduction cannot be mimicked by a FOL (or SQL) query, since it
requires a form of recursion. As a consequence, we get:

Combining functionality and role inclusions is problematic.

It breaks separability, i.e., functionality assertions may force existentially
quantified objects to be unified with existing objects.

Note: the problems are caused by the interaction among:

an inclusion P v S between roles,

a functionality assertion (funct S) on the super-role, and

a cycle of concept inclusion assertions A v ∃P and ∃P− v A.
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Simulation of constructs using funct. and role inclusions

In fact, by exploiting the interaction between functionality and role inclusions,
we can simulate typical DL constructs not present in DL-Lite:

Simulation of A v ∃R.C: (Note: this does not require functionality)

A v ∃RC RC v R ∃R−C v C

Simulation of A1 uA2 v C:

A1 v ∃R1 A2 v ∃R2

R1 v R12 R2 v R12 (funct R12)

∃R−1 v ∃R−3
∃R3 v C

R3 v R23 R2 v R23 (funct R−23)
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Simulation of constructs (cont’d)

Simulation of A v ∀R.C:

We use reification of roles:
S2S1R

S1,C v S1 S1,¬C v S1 (funct S1)

S2,C v S2 S2,¬C v S2 (funct S2)

∃S1,C ≡ ∃S2,C ∃S1,¬C ≡ ∃S2,¬C

∃S2 v ∃S2,C t ∃S2,¬C

∃S−2,C v C ∃S−2,¬C v ¬C
A v ¬∃S−1,¬C
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Complexity of DL-Lite with funct. and role inclusions

We can exploit the above constructions that simulate DL constructs to show
lower bounds for reasoning with both functionality and role inclusions.

Theorem [Artale et al., 2009]

For DL-LiteFR ontologies:

Checking satisfiability of the ontology is

ExpTime-complete in the size of the ontology (combined complexity).
PTime-complete in the size of the ABox (data complexity).

TBox reasoning is ExpTime-complete in the size of the TBox.

Query answering is

NP-complete in the size of the query and the ontology (comb. com.).
ExpTime-complete in the size of the ontology.
PTime-complete in the size of the ABox (data complexity).
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Combining functionalities and role inclusions

We have seen that:

By including in DL-Lite both functionality of roles and role inclusions
without restrictions on their interaction, query answering becomes
PTime-hard.

When the data complexity of query answering is NLogSpace or above,
the DL does not enjoy FOL-rewritability.

As a consequence of these results, we get:

To preserve FOL-rewritability, the restriction on the interaction of functionality
and role inclusions of DL-LiteA is necessary.
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Dropping the unique name assumption

Recall: the unique name assumption (UNA) states that different individuals
must be interpreted as different domain objects.

We reconsider the complexity of query evaluation in DL-LiteF , and show that
without the UNA the data complexity increases.

We show how to reduce reachability in directed graphs to instance
checking in DL-LiteF without the UNA. This gives us an NLogSpace
lower bound.

We assume that the graph is represented through the first-child and
next-sibling functional relations:

v0

v1 v2 vn

v0

v1 v2 vn

...

...

E E E

F

S S SN N N
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Dropping the unique name assumption (cont’d)

From G and two vertexes s and t of G, we define Ouna = 〈Tuna ,AG〉:
TBox uses an atomic concept A, and atomic roles P0, PF , PN , PS :

Tuna = {(funct P0)} ∪ {(funct PR) | R ∈ {F,N, S}}.
ABox is defined from G and the two vertexes s and t:

AG = {PR(a1, a2), PR(a′1, a
′
2) | (a1, a2) ∈ R, for R ∈ {F,N, S}} ∪

{A(t), P0(ainit , s), P0(ainit , s
′)}

ts G

t'
s' G'

P0

P0

ainit

A This means that we encode in AG two copies of G.

Note: AG depends on G, but Tuna does not.

We can show by induction on the length of paths from s that . . .

t is reachable from s in G if and only if Ouna |= A(t′).
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Dropping the unique name assumption – Complexity

The previous reduction shows that instance checking in DL-LiteF (and hence
also DL-LiteA) without the UNA is NLogSpace-hard.

With a more involved reduction, one can show an even stronger lower bound,
that turns out to be tight.

Theorem [Artale et al., 2009]

Instance checking in DL-LiteF and DL-LiteA without the UNA is
PTime-complete in data complexity.
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Main publications

The results presented in Part 4 of the course have been published in the
following papers:

Reasoning and query answering in DL-Lite: [Calvanese et al., 2005b;

Calvanese et al., 2006b; Calvanese et al., 2007c; Calvanese et al., 2007a; Artale

et al., 2009]

Mapping to data sources and OBDA: [Calvanese et al., 2006a; Calvanese et

al., 2008a; Poggi et al., 2008a]

Connection between description logics and conceptual modeling
formalisms: [Calvanese et al., 1998b; Berardi et al., 2005; Artale et al., 2007;

Calvanese et al., 2009b]

Tool descriptions: [Acciarri et al., 2005; Poggi et al., 2008b; Rodŕıguez-Muro

and Calvanese, 2008]

Case studies: [Keet et al., 2008; Amoroso et al., 2008; Savo et al., 2010]

A summary of most of the presented results and techniques, with detailed
proofs is given in [Calvanese et al., 2009a].
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Query rewriting for more expressive ontology languages

The result presented in Part 4 of the course have recently been extended to
more expressive ontology languages, using different techniques:

In [Artale et al., 2009] various DL-Lite extensions are considered, providing a
comprehensive treatment of the expressiveness/complexity trade-off for the
DL-Lite family and related logics:

number restrictions besides functionality;
conjunction on the left-hand side of inclusions (horn logics);
boolean constructs;
constraints on roles, such as (ir)reflexivity, (a)symmetry, transitivity;
presence and absence of the unique name assumption.

Alternative query rewriting techniques based on resolution, and applicable
also to more expressive logics (leading to recursive rewritings)
[Pérez-Urbina et al., 2009].

Query rewriting techniques for database inspired constraint languages
[Cal̀ı et al., 2009a; Cal̀ı et al., 2009b].
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Further theoretical work

The results presented in this course have also inspired additional work relevant
for ontology-based data access:

We have considered mainly query answering. However, several other
ontology-based services are of importance:

write-also access: updating a data source through an ontology
[De Giacomo et al., 2009; Calvanese et al., 2010; Zheleznyakov et al., 2010]

modularity and minimal module extraction
[Kontchakov et al., 2008; Kontchakov et al., 2009]

privacy aware data access [Calvanese et al., 2008b]

meta-level reasoning and query answering, a la RDFS
[De Giacomo et al., 2008]

provenance and explanation [Borgida et al., 2008]

Reasoning with respect to finite models only [Rosati, 2008].

We have dealt only with the static aspects of information systems. However
a crucial issue is how to deal with dynamic aspects. Preliminary results
are in [Calvanese et al., 2007d]. The general problem is largely unexplored.

Work on most of these issues is still ongoing.
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Further practical and experimental work

The theoretical results indicate a good computational behaviour in the size of
the data. However, performance is a critical issue in practice:

The rewriting consists of a large number of CQs. Query containment can
be used to prune the rewriting. This is already implemented in the
QuOnto system, but requires further optimizations.

The SQL queries generated by the mapping unfolding are not easy to
process by the DBMS engine (e.g., they may contain complex joins on
skolem terms computed on the fly).
Different mapping unfolding strategies have a strong impact on
computational complexity. Experimentation is ongoing to assess the
tradeoff.

Further extensive experimentations are ongoing:

on artificially generated data;
on real-world use cases.
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Conclusions

Ontology-based data access is ready for prime time.

QuOnto provides serious proof of concept of this.

We are successfully applying QuOnto in various full-fledged case
studies.

We are currently looking for projects where to apply such technology
further!
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