
2

JFLAP Startup

Running JFLAP

Download JFLAP and the files referenced in this book from www . j flap. org to get started.

JFLAP is written in Java to allow it to run on a range of platforms. JFLAP requires that

your computer have Java SE 1.4 or later installed. JFLAP works with Java 1.5. For the latest

version, visit http://java.sun.com/ . Mac OS X's latest Java release, if not already preinstalled,

is available from http://www.apple. com/j ava/, or from Software Update.

With Java SE 1.4 or later installed on your computer, you may attempt to run JFLAP. JFLAP

is distributed as an executable .jar (Java ARchive) file. JFLAP may be run as either an application

or applet . The following table lists how to run the JFLAP . jar executable .jar as an application on

your platform of choice .
Windows Double click on JFLAP. jar; the file will appear as JFLAP if suffix hiding is

on.

Unix & Linux From a shell with the JFLAP. jar file m the current directory, enter the

command java -jar JFLAP. jar.

Mac OS X The Windows and Unix directions will work on a Mac.

JFLAP Interface Primer

We cover universal elements of the JFLAP interface here. To begin, start JFLAP. When JFLAP

has finished loading, a window will appear similar to that shown in Figure 1. This window offers a

choice of major structures if you wish to create a new structure; alternatively, the File menu allows

you to open an existing saved structure or quit JFLAP.

Throughout this book we shall review the creation of these structures. However, right now we

are going to open a JFLAP saved file of an existing finite automaton (FA) . From the File menu,

choose Open. JFLAP allows users to save and open files that contain a single structure . Select

and open the file exO. 1 a. A new window will appear with an FA.

We refer to all the things you can do to a structure as operators. (It is not necessary to under

stand what the operators are doing at this point; our purpose is to describe JFLAP's interface.)

xvi

xvii

Figure 1: The window that appears when you start JFLAP.

Operators are typically activated through the menu items. Choose th 't .
r ht N d

e menu 1 em Test : HIgh-Ig on
.
eter

.
minism. (This activates an operator that shades nondeterministic states in an automaton, m thIS case q and) N t h o ql· ex , c oose the menu item Test ' Highlight A Tr 't'

(Th' t' t ' - anSI IOns IS ac Iva es an operator that highlights A-tr 't ' . .
.

1 b 1 d
anSI IOns m an automaton, m this case the arc a e e A .) We chose these two operators because they require no intervention from the user.

Nondet�rmhdstic states are highlighted.

Figure 2: An illustration of the window for a structure, with three tabs active.

The window for a structure consists of a menu bar that contains operators you may apply t th structure and a tabb d . t .f b
0 e , e zn erJace elow the menu bar. Note that JFLAP k . eeps everythzng related

JFLAP STARTUP
XVlll

to a structure in a single window, and uses tabs to manage multiple operators active at the same

time. The results of the two operators we invoked are displayed in tabs, so there are currently three

tabs: Editor, Nondeterminism, and A-Transitions. In Figure 2, the Nondeterminism tab

is selected, indicating that the interface for the "highlight nondeterminism" operator is currently

active and displayed. To switch to another operator, click on its tab. (Note that you cannot switch

to the Editor tab at this time. This is because the other two currently active operators depend

on the automaton not changing.)

We will now remove the Nondeterminism and A-Transitions tabs. To get rid of a tab, select

the menu item File : Dismiss Tab. This will remove the currently active tab. When it is gone,

remove the other tab as well. (JFLAP prevents removal of the Editor tab.)

As a last step, peruse the contents of the File menu. Use New when you want to create a new

h N
. I cted JFLAP will display. the window shown in Figure 1 that allows

structure; w en ew is se e ,

you to choose a type of structure to create. The Open, Save, and Save As menu items allow

you to read and write structures to files like any other application that deals with documents. �he

Close item will close the window of the structure. The Print item will print the currently active

tab. Quit will stop JFLAP entirely.

Chapter 1

Finite Automata

A finite automaton is the first type of representation for a regular language that we will examine.

In this chapter we will construct a deterministic finite automaton (DFA) in JFLAP, illustrate
several methods of simulating input on that automaton, discuss nondeterministic finite automata

(NFAs) in JFLAP, and present simple analyses that JFLAP may apply to automata. We present a
standard definition of a DFA in Sections 1 . 1-1.4, and show in the optional Section 1.5 how JFLAP
handles a more general definition of a DFA with multiple character transitions.

1.1 A Simple Finite Automaton

a

Figure 1 .1 : A finite automaton (FA), which recognizes the language of any number of a's followed

by any odd number of b's.

In this section you will learn how to build automata in JFLAP by way of constructing, with

help, the DFA that recognizes the language of strings of any number of a's followed by any odd

number of b's (e.g., ab, bbb, aabbbbb) . This section will teach the essentials of automaton editing

in JFLAP: creating and deleting states and transitions, moving existing states, editing existing

transitions, and setting states to be initial and final. When you are done, you will have a machine

like that pictured in Figure 1 .1!

The first step is, of course, to start JFLAP. Once JFLAP is running, you begin building an FA

by clicking on the button labeled Finite Automaton. A window will appear with (from top to

bottom) a menu, a tab that says Editor, a tool bar, and a large blank area at the bottom.

1

CHAPTER 1. FINITE AUTOMATA
2

1.1.1 Create States

All automata require a set of states. Before you can create states you must first activate the State

Creator tool: click on the button below the window's menu bar. This button will now appear

shaded to indicate that tool is active.

The large blank area below the tools, called the canvas, is where the automaton is created and

edited. Now that the State Creator tool is active, click on the canvas to create a state. A state will

appear under the location where you clicked. As you will see, states in JFLAP are yellow circles

with some identifying text inside. Click three more times in three other locations to create three

more states. There will now be four states on the canvas, with the text qo, ql, q2, and q3 to identify

,each of them.

1.1.2 Define the Initial State and the Final State

All automata require an initial state and a set of final states. In this automaton we will make qo

the initial state, and ql the single final state. Select the Attribute Editor tool, by clicking the �

button. Two of this tool's many functions are to define an initial state and to define the set of final

states. (This tool's other functions are described in Section 1.1.5.)

Now that the Attribute Editor tool is selected, right-click on qo (or, control-click if you are a

Macintosh user with a single mouse button) . A pop-up menu above the state will appear with

several items, including two items Final and Initial. Select the item Initial. The state qo will

now have a white arrowhead appear to its left to indicate it is the initial state. Similarly, right-click

on the state ql, and select the item Final. The state ql will now have a double outline instead of

a single outline, indicating that this state is a member of the set of final states.

You may find it necessary to set a final state as nonfinal. To illustrate how, right-click on ql

once you have marked it as final. Notice that the item Final now has a check mark next to it .

Select the item Final again. This will toggle ql out of the set of final states. Before you proceed,

you must of course put ql in the set of final states again!

1.1.3 Creating Transitions

We will now create transitions. In this machine, three transitions are necessary: three on b from qo

to ql, ql to q2, and back again from q2 to ql, and a loop transition on a for state qo· We will create

others for illustrating some special features, and for later illustration of the Deleter tool.

To create these transitions, select the Transition Creator tool, denoted by the ..Y' icon. The

first transition we are going to create is the b transition from qo to ql· Once the Transition Creator

tool is selected, press the mouse cursor down on the qo state, drag the mouse cursor to the ql state,

and release the mouse button. A text field will appear between the two states. Type "b" and

1.1. A SIMPLE FINITE AUTOMATON 3

press return. A new b transition from qo to ql will appear. By the same method, create the two b

transitions from ql and q2 and from q2 and ql·

Tip As an alternative to pressing return, you can stop editing a transition merely by doing

something else like clicking in empty space (but not on a state!) , or creating another

transition by dragging between two other states. If you wish to cancel an edit of a

transition, press Escape.

The next transition is qo's loop transition on a. Creating loop transitions on a state is just like

other transitions: you press the mouse on the start state and release the mouse on the end state.

However, because the start and end states are the same for a loop transition, this is the same as

clicking on the state. So, click on state qo, and enter "a" and press return, just as you did for the

b transitions.

Lastly, create three transitions from qo to q3, the first on the terminal a, another on b, and a

third on c. Notice that JFLAP stacks the transition labels atop each other.

Tip If you are in the process of editing a transition from a state qi to a state qj and you

wish to create another transition from state qi to state qj without having to use the

mouse, press Shift-Return. This creates a new transition from qi to qj in addition to

ending your editing of the current transition.

1.1.4 Deleting States and Transitions ..
You probably noticed that the automaton built requires three states, not four. This fourth state q3

and the transitions going to it are unneccessary and can be removed. Deleting objects has a tool

all its own: click the:!: button to activate the Deleter tool.

First, we want to remove the transition on b from qo to q3 . To delete this transition, click on

the b. The b transition will be gone, leaving the a and c transitions. You can also click on the

transition arrow itself to delete a transition: click on the arrow from qo to q3, and notice that the a

transition disappears. The c transition remains. When you click on the arrow, the transition with

the label closest to the arrow is deleted.

Deleting states is similar. Click on the state q3. The state q3 will disappear, and notice that the

c transition is gone as well. Deleting a state will also delete all transitions coming from or going

to that state. You should now be left only with the other three states and the transitions between

them.

1.1.5 Attribute Editor Tool

ec ion . . , ut it as many other functions We already used the Attribute Editor tool � l'n S t' 1 1 2 b . h

related to modification of attributes of existing states and transitions. Select the Attribute Editor

tool � once again as we walk through examples of its use.

4 CHAPTER 1. FINITE AUTOMATA

Setting states as initial or final

This tool may set states as initial or final states as described in Section 1.1.2.

Moving states and transitions

When you initially placed the states for the FA built earlier you may not have arranged them in

a logical order. To move a state, press on the state and drag it to a new location. Dragging a

transition will likewise move its two associated states. Attempt this now by dragging states and

transitions .

Editing existing transitions

To edit an existing transition, simply click on it! Try clicking the transition from qo to ql · The

same interface in which you initially defined this transition will appear on the transition and allow

you to edit the input characters read by that transition.

Labels

When you set the state qo as the initial state and the state ql as a final state, perhaps you noticed

the menu item Change Label. Right-click on q2 and select Change Label. A dialog box will

appear, asking for a label. When processing input, while the machine is in state q2 , we shall have

processed an even number of b's, so enter "even # of b's". A box will appear under the state with

this label. By a similar token, label ql "odd # of b's". To delete an existing label from a state

choose the menu item Clear Label from the same menu. Alternatively, the menu item Clear All

Labels will delete all labels from all states.

If you right-click in empty space, a different menu will appear, with the item Display State

Labels. This will initially have a check mark next to it to indicate that it is active. Select it .

The labels will become invisible . Hover the mouse cursor over q2; after a short time, a tool-tip will

appear to display the label even # of b's. Right-click in empty space once more, and reactivate

Display State Labels; the labels will appear again.

Automatic layout

Right-click in empty space again. Notice the menu item Layout Graph. When selected, JFLAP

will apply a graph layout algorithm to the automaton. While usually not useful for automata you

produce yourself, many of JFLAP's algorithms automatically produce automata, often with large

numbers of states. If you find JFLAP's first attempt at automatic layout inappropriate, this may

alleviate the tedium of moving those states yourself.

1.2. SIMULATION OF INPUT

1.2

Tip

Figure 1.2: In the midst of the simulation of aabbb on our FA.

•

In addition to activating a tool by clicking on its button in the tool bar, there are also
shortcut keys available for quick ly switching tools. For example, hover the mouse over
the State Creator tool after a little while a tool-tip will appear with the text (S)tate
Creator. The parentheses enclosing the 5 indicate that this is the shortcut key for the
State Creator tool. Note that in spite of appearances, shortcut keys are really lower
case, so do not press Shift when typing the shortcut key for a tool!

Simulation of Input

5

I� this section we cover three of JFLAP's methods to simulate input on an automaton: stepping

WIth closure, fast simulation, and multiple simulation. The fourth, stepping by state, is discussed

briefly in Section 1.3.

1.2.1 Stepping Simulation

The stepping simulation option allows you to view every configuration generated by an automaton in its attempt to process an input string. Figure 1.2 shows a snapshot of a stepping simulation of the i�put string aabbb on the automaton you built in Section 1. 1, also stored in file exl. la. The top portIOn of the window displays the automaton, with the state in the active configuration shaded darker. The portion below the automaton displays the current configuration. In Figure 1.2, notice the configuration is in state qo , and that the first two characters aa are grayed-out, indicating that they have been read, while the three characters bbb are not grayed-out, indicating that they remain to be read.

6 CHAPTER 1. FINITE AUTOMATA

Try stepping

We shall walk through the process of stepping through input in an automaton. First, select the

menu item Input : Step with Closure. A dialog box will ask for input for the machine: enter

"aabbb" and press Return or click OK.

Your window will now appear similar to Figure 1.2. The single configuration displayed will be

on the initial state qo, and have the unprocessed input aabbb.

The tool bar at the bottom is your interface to the simulator. Click Step. The old configuration

on qo has been replaced with a new configuration, again on the state qo, but with the character

a read. Notice that the first character a in the input has been lightened a bit to indicate that it

.has been read. Click Step twice more, and it will go from qo to go again, and then to qI, with the

input bb remaining.

Some of the operations in the tool bar below the configuration display act only on selected

configurations. Click on the configuration; this will select it (or deselect it if it is already selected) .

A selected configuration is drawn shaded. Click Remove. Unfortunately, this deletes the only

configuration! The simulator is useless. Oops! Click the Reset button; this will restart the

simulation, so you can try again.

With the simulation back to its original state, click Step repeatedly (five times) until all the

input is read. The configuration at this point should be drawn with � green background, indicating

that it is an accepting configuration, and that the machine accepts the input. FA configurations

are accepting configurations if all the input is read and it is in a final state. The configuration's

input is entirely gray, indicating that all the input has been read.

One can Trace a configuration to see its ancestry from the initial configuration. (Do not select

a configuration; press Trace instead. An error message indicates that Trace requires a selected

configuration!) Now select the single configuration, and click the Trace button. A window will

show the ancestry of this configuration, starting with the initial configuration on top and the

selected configuration on the bottom. When you've had a chance to look over the trace of the

configuration, close this window.

To return to the editor, choose File : Dismiss Tab to dismiss the simulator.

Failure

On the flip side of an accepting configuration is a rejected configuration. A rejected configuration

is one which (1) does not lead to any more configurations and (2) is not accepting. Run a stepping

simulation again, except this time with the input aabb. Since this has an even number of b's the

machine will not accept it . Click Step repeatedly, and note that eventually the configuration will

turn red. This indicates that it is a rejected configuration.

1.2. SIMULATION OF INPUT
7

Figure 1.3: The result of performing a fast simulation of aabbb on the automaton.

1.2.2 Fast Simulation

Step�ing thro
.
u�h simulation of input is fine, but Fast Run will reveal if the automaton accepts

a strmg and, If It does, the series of configurations leading to that string's acceptance without the
bother of having to repeatedly step through the machine watching for accepting configurations.

Choose Input : Fast Run. When prompted for input, enter the same "aabbb" string. The
result after JFLAP determines that the machine accepts this input is shown in Figure 1.3. The trace
of configurations from top to b tt (.

f . . . 1 .
. . ' 0 om 1.e . , rom Imtla to acceptmg configuration) , is displayed.

AlternatlVely, If the machine did not accept this input, JFLAP would report that the string was
not accepted.

Notice t�e t�o buttons near the bottom of the dialog box. I'm Done will close the display.
Keep Lookmg IS useful for nondeterministic machines and is covered later in Section 1.3.2.

1.2.3 Multiple Simulation

The third method for simulating input on an automaton is Multiple Run. This method allows

o�e to pe�form multiple runs on a machine quickly. Select Input : Multiple Run now. (Your

dIsplay WIll not resemble Figure 1.4 exactly, but do not worry!) The automaton is displayed to the

left, and on the right is an empty table where you may enter inputs for multiple runs. One enters

inputs in the Input column. Select the upper-left cell of this table, enter the input "aabbb", then

2

8 CHAPTER 1. FINITE AUTOMATA

Figure 1.4: An example of simulating multiple entries . The second-to-last

input is the empty string, entered with Enter Lambda.

press return. Notice that instead of one row there are now two: the table will grow to accommodate

more entries as you enter them.

Continue entering various inputs you wish to test on the machine; whichever you choose is up

to you. If you wish to make a lambda entry-that is, test to see if the automaton accepts the

empty string-then while entering an input, click the Enter Lambda button near the bottom of

the window, and that input field will hold the empty string. When you have entered all inputs and

wish JFLAP to simulate all these strings, click Run Inputs. Notice that the Result column is

now full of Accept and Reject entries, indicating whether an input was accepted or not. View

Trace will show the trace of the last configuration generated for each selected run in the table.

Clear will clear the table of all inputs.

Tip For convenience, the multiple run simulator will remember all inputs entered by the

user between machines. For example, suppose you have one automaton, and perform

multiple runs on that machine. If you later perform multiple run simulation on a different

automaton those same inputs will appear.

1.3 Nondeterminism

In this section we will talk about NFAs in JFLAP, using the automaton pictured in Figure 1.5 as

our example.

Either of two conditions imply that an FA is nondeterminstic. The first condition is, if the FA

has two transitions from the same state that read the same symbol, the FA is considered an NFA.

1.3. NONDETERMINISM

Figure 1.5: An NFA that accepts the language of a series of a's followed by a
series of b's, where the number of a's is nonzero and divisible by 2 or 3, and
the number of b's is divisible by 2 or 3.

9

For example, ql of the FA in Figure 1.5 has two outgoing transitions on a. The second condition

is: if the FA has any transitions that read the empty string for input , the FA is nondeterministic.

1.3.1 Creating Nondeterministic Finite Automata

Creating an NFA is much the same as creating a DFA. Select File : New, and then select Finite

Automaton to get a new window. In this window we will create the automaton shown in Figure 1.5,

that accepts the language anbm, where n > 0 and is divisible by 2 or 3 and m 2: 0 and is divisible

by 2 or 3. The first step is to create the thirteen states of the automaton, and to make qo the initial

state and make @ and ql1 the final states.

Note that JFLAP numbers states in the order that you create them: the first state is qo , the

second ql , and so on. It is important to respect this order: the following discussion assumes that

you create the states in such an order that they are numbered as they are in Figure 1.5.

Notice the four transitions in Figure 1.5 with a A (the Greek letter lambda) . These A-transitions

are transitions on the empty string. To enter a A-transition, create a transition, but leave the

field empty. When you finish editing, a transition with the label A will appear. Create the four

A-transitions from q3 and qg to @ and qn .

Once you have created the A-transitions , create the other transitions on the symbols a or b .

10 CHAPTER 1. FINITE AUTOMATA

Figure 1.6: Step with closure simulation of aaaabb on our NFA after two steps.

1.3.2 Simulation

D · . I t· . ut on a deterministic machine will produce a single path of configurations, unng Slmu a lOn, lnp
. ,

while input on a nondeterministic machine may produce multiple paths of configuratlOns. JFLAP s

simulators have features to deal with this possibility.

Stepping simulation: Step with Closure

.
I t · Step with Closure and input the string "aaaabb", that is, four Select the menu ltem npu .

,
a's followed by two b's. This is a string that will eventually be accepted since the numb�r

.
of a s

.
d d· . ·bl b 2 and the number of b's is divisible by 2. After you enter thlS mput, lS nonzero an lV1Sl e y

. h ld see the familiar step simulator, with a starting configuration on go with all the mput you s ou
. . r k . . b d cr ck Step once to move this configuratlOn to ql. However, lf you c lC remammg to e processe . 1

Step a second time you will see a rather unfamiliar sight, as shown in Figure 1.6.
. . Notice that there are four configurations in your simulator. This is because your machme lS

d . . t· . Th last configuration was on ql with the unread input aaabb, and ql has a non etermmlS lC . e
. However, what two configurations on q6 and qn? These configuratlOns transitions to q2 and qg.

are ue to e A- ransl 1 . d th \ t ·t·ons When a configuration proceeds to a state qi, Step with Closure
. t l .c . but for all states reachable on A-transitions from qi. The set creates configuratlOns no on y lor qz,

1.3. NONDETERMINISM
11

of states reachable from qi on A-transitions is called the closure of qi. So, when the configuration in qg with the remaining input aabb was created, configurations for q6 and qn were created as well because the closure of qg includes q6 and ql1.
As you may hav¥ figured out, of these two paths of configurations, the only one that will eventually lead to an accepting configuration is the configuration on qg. Click on this configuration to select it. With the configuration selected, click Freeze. The configuration will appear tinted light ice blue! Now try stepping again: While the other configurations move on (and are rejected), that configuration will not progress! Frozen configurations do not progress when the simulator steps. With that configuration still selected, click Thaw. Thaw "unfreezes" selected configurations. Click the Step button once more, and the now unfrozen configuration will continue, and one of its nondeterministic paths will be accepted.

Select the accepting configuration and click Trace to view the series of configurations that led to the accepting configuration. Notice that there is a configuration from qlQ directly to ql1, even though there is no transition from qlQ to ql1. In stepping by closure one does not explicitly traverse A-transitions in the same sense that one traverses regular transitions: Instead, no configuration was ever generated for qg, and the simulator implicitly traversed the A-transition.
When you have finished, dismiss the simulator tab.

Stepping simulation: Step by State

Select the menu item Input : Step by State, and input the string "aaaabb". In stepping by state, the closure is not taken, so the simulator explicitly traverses A-transitions. If you step twice, you will have configurations in q2 and qg, but not the configurations in q6 and qn that we saw when stepping by closure.

Notice that the unread input on the qg configuration is aabb. If you step again, the configuration on qg will split into three configurations, two of which are on q6 and qn. The A-transition was taken explicitly over a step action. If you continue stepping until an accepting configuration is encountered and run a trace, the configuration after qlQ is on qg, which then proceeds to ql1 after explicitly taking the A-transition.

Though stepping by state is in some ways less confusing, stepping with closure is often preferred because it guarantees that each step will read an input symbol.

Fast simulation

The fast simulator has some additional features specifically for nondeterminism. Select Input :

Fast Run, and enter the string "aaaaaabb". Once you enter this, JFLAP will display one trace of

accepting configurations.

c

CHAPTER 1. FINITE AUTOMATA
12

Figure l.7: Another FA, which also recognizes the language of the automaton in Figure 1.l .

The button Keep Looking is useful for nondeterministic machines, where multiple branches

of configurations may accept the same input. Note that there are six a's. Since six is divisible by

both two and three, there will be two paths of configurations that accept this input: one path leads

through state q3 (which verifies that the number of a's is divisible by three) , and another path

leads through state qg (which verifies that the number of a's is divisible by two) . The trace through

either q3 or qg should be visible now. Click Keep Looking, and it will search for and display

the trace through the other state. Click Keep Looking again. JFLAP will display a message, 2

configurations accepted, and all other possibilities are exhausted, which indicates that no

other accepting configurations are possible.

Multiple .simulation

Nondeterministic machines may produce multiple configuration paths per run. However, the mul

tiple run simulator's ability to view traces of selected runs will present only a single trace for each

run. Specifically, this feature displays only the trace of the last configuration generated for a run.

This means that for an accepting run JFLAP displays the trace of the first accepting configuration

encountered, and further for a rejecting run displays the trace of the last configuration rejected,

which may not provide enough information. Viewing a run in the stepwise simulator can give a

more complete picture if you want to debug a nondeterministic machine.

1.4 Simple Analysis Operators

In addition to the simulation of input , JFLAP offers a few simple operators from the Test menu

to determine various properties of the automaton.

1.4.1 Compare Equivalence

This operator compares two finite automata to see if they accept the same language. To illustrate

how this works, we shall load an automaton that recognizes the same language as the automaton

we have abused throughout much of this chapter: the automaton shown in Figure l.7, stored in

file ex1.4a. Open this file. Also, open the file ex1 .1 a; this contains the automaton of Figure l.l .

1.5. ALTERNATIVE MULTIPLE CHARACTER TRANSITIONS* 13

You will now hav; two windows, one with the original automaton of Figure l.1 (presumably

titled ex1.1a), the other with the automaton of Figure l.7 (presumably titled ex1.4a). Choose the

menu item Test : Compare Equivalence from the ex1.4a window. A prompt will appear where

you may choose from the names of one other automaton (i.e . , the title of another automaton's

window) from a list . After you select the original automaton's window's name (again, presumably

ex1.1a), click OK. You will then receive a dialog box telling you that they are equivalent ! Dismiss

this dialog. Edit the Figure l. 7 automaton so that the b transition from qo to q1 is instead an a

transition (so that the automaton now recognizes strings with any nonzero number of a's and an

even number of b's) , or make whatever other change is to your liking so that the automaton no

longer recognizes the same language as the original. Repeat the test for equivalence, and this time

you will receive a notice that it does not accept the same language.

Close the two files, but do not save the changes from the modified ex1.4a.

1.4.2 Highlight N ondeterminism

This operator will show the user which states in an automaton are nondeterministic states. Consider

again the automaton in Figure l.5, stored in the file ex1. 3a. Load this file. The state q1 is obviously

nondeterministic, and JFLAP considers all states with outgoing A-transitions to be nondeterministic

states, so q3 and qg are nondeterministic. Select Test : Highlight N ondeterminism: a new view

will display the automaton with these states highlighted.

1.4.3 Highlight.\-Transitions

This operator will highlight all A-transitions. Here we use the same automaton we built in Sec

tion l.3.1, the automaton shown in Figure l.5 and stored in the file ex1. 3a. Load this file if it is

not already present . When you select Test : Highlight A-Transitions, a new view will display

the automaton with the four A-transitions highlighted.

1.5 Alternative Multiple Character Transitions*

JFLAP provides a more general definition of an FA, allowing multiple characters on a transition.

This can result in simpler FAs. Pictured in Figure l.8 is a five-state NFA that accepts the same

language as the thirteen-state NFA in Figure l.5. Notice that the six transitions that are not

A-transitions are on multiple symbols, for example, aaa from qo to q1 . A configuration may proceed

on an n character transition of 8182 . . . 8n if the next unread input symbols are 5 1 , 82 , and so on

through 8n .

We will now run a simulation on this NFA. Load the file ex1. 5a, select Step With Closure,

and enter the same aaaabb string we used in Section l.3.2. After you enter the input, you will see

(

14
CHAPTER 1. FINITE AUTOMATA

bbb
aaa

Figure 1.8: An NFA equivalent to that of Figure 1.5.

the familiar step simulator , with a starting configuration on Go with all the input remaining to be

processed. Click Step once and you will see six configurations! There are two configurations for

q3, one closure from ql and one closure from q2. Note that these two configurations have different

amounts of remaining input since the transitions to ql and q2 process a different amount of input.

Similarly, there are two configurations for q4. Stepping twice more results in acceptance in Q3·

By allowing multiple character transitions, the first condition for FA nondeterminism in Sec

tion 1.3 changes . The first condition is now the following: if the FA has two transitions from the

same state that read strings A and B, where A is a prefix of B, the FA is considered an NFA. For

example, note that qo is a nondeterministic state: it has two transitions, one from aaa and the

other from aa; aa is a prefix of aaa, so the FA is nondeterministic. The NFA would use both of

these transitions while simulating the string aaaabb.

1.6 Definition of FA in JFLAP

JFLAP defines a finite automaton NI as the quintuple NI = (Q,� , 6, qs, F) where

Q is a finite set of states {qi Ii is a nonnegative integer}

� is the finite input alphabet

6 is the transition function, 6 : D -7 2Q where D is a finite subset of Q x �*

qs E Q is the initial state

F <;;;; Q is the set of final states

Users reading only Sections 1.1-1.4 will want to use a simpler definition of 6. In that case, for

a DFA 6 is the transition function 6 : Q x � -7 Q, and for an NFA 6 is the transition function

6 : Q x � U {A.} -7 2Q.

For those users reading Section 1.5, note that JFLAP allows for multiple characters on a tran-

sition. These multiple character transitions complicate the definition of the transition function's

domain: the set Q x �* is of infinite cardinality, though the transition function requires a finite

domain. �* means a string of 0 or more symbols from the input alphabet .

1.7 . SUMMARY 15

1.7 Summary

In Section 1.1 you learned how to create a deterministic finite automaton (DFA) in JFLAP. The

editor for an automaton has a tool bar along the top portion of the window, and the automaton

display on the bottom portion of the window. You create states with the tool, create transitions

with the>"" tool, delete states and transitions with the:!: tool, and edit attributes (position, labels,

setting final and initial) of existing states and transitions with the � tool.

In Section 1.2 you learned how to simulate input on automata. Each simulator accepts an input

string and determines if the automaton accepts that input . The step simulator is useful if you

are interested in seeing every configuration generated by a machine as it attempts to read your

input. The fast simulator is useful if you are interested only in those configurations that led to

an accepting configuration. The multiple input simulator is useful if you are interested in running

many inputs on an automaton quickly.

In Section 1.3 you learned about creating and simulating input on a nondeterministic finite

automaton (NFA) . Leaving the field blank when creating a transition will produce a A.-transition.

While simulating input, the step simulator may display multiple configurations at once as the

machine follows different paths attempting to read the input . The fast simulator can search for

multiple branches of nondeterminism accepting the same input.

In Section 1.4 we presented three analysis operators available from the Test menu. Compare

Equivalence checks if two finite automata accept the same language. Highlight Nondetermin

ism highlights nondeterministic states, and Highlight A.-Transitions highlights A.-transitions.

In Section 1.5 we presented an alternative definition of an FA that allows for multiple characters

on a transition. This can lead to an FA with a smaller number of states.

In Section 1.6 we presented JFLAP's formal definition of a finite automaton, which corresponds

to Section 1.5. We also presented a simpler definition corresponding to Sections 1. 1-1.4.

1.8 Exercises

1. Build FAs with JFLAP that accept the following languages:

(a) The language over � = {a} of any odd number of a's.

(b) The language over � = {a} of any even number of a's.

(c) The language over � = {a, b} of any even number of a's and any odd number of b's.

(d) The language over � = {a, b} of any even number of a's and at least three b's.

(

18
CHAPTER 1. FINITE AUTOMATA

(b) Repeat part (a) , but with the language of strings anbncn ··· alblClaoboco·

(c) Repeat part (a) , but with the language of strings aO··· anbo ··· bnco ··· Cn·

8. Given two FAs A with language LA and B with language LB, you can use JFLAP's Compare

Equivalence operator to determine whether or not LA = LB· Can you de�ise a general

method using JFLAP to determine whether LA C;;; LB (i .e., B accepts every stnng A a�cePts)
. C E I· valence? (Yes part of your instructions may, indeed must, mvolve

usmg ompare qu . ,

editing A or B. Your method must produce the right answer for any two FAs!)

Chapter 2

NFA to DFA to Minimal DFA

This chapter shows how each NFA can be converted into an equivalent DFA, and how each DFA

can be reduced to a DFA with a minimum number of states. Although an NFA might be easier to

construct than a DFA, the NFA is usually not efficient to run, as an input string may follow several

paths. Converting an NFA into an equivalent DFA ensures that each input string follows only one

path. The NFA to DFA algorithm in JFLAP combines similar states reached in the NFA into one

state in the DFA. The DFA to minimum state DFA algorithm in JFLAP determines which states

in the DFA have similar behavior with respect to incoming and outgoing transitions and combines

these states, resulting in a minimal state DFA.

2.1 NFA to DFA

In this section we use JFLAP to show how to convert an NFA into an equivalent DFA. The idea

in the conversion is to create states in the DFA that represent multiple states in the NFA. The

start state in the DFA represents the start state in the NFA and any states reachable from it on

A. For each new state in the DFA and each letter of the alphabet , one determines all the reachable

states from the corresponding NFA states and combines them into a new state for the DFA. This

state in the DFA will have a label that will contain the state numbers from the NFA that would

be reachable in taking the same path.

2.1.1 Idea for the Conversion

Load the NFA in file ex2. la as shown in Figure 2.1. We will refer to this example in explaining

the steps in converting this NFA to a DFA.

First examine the choices that occur when the NFA processes input . Select Input : Step with

Closure and enter the input string "aabbbaa" and press return. Clicking Step once shows that

processing a can result in arriving in both states qo and ql. Clicking Step six more times shows

19

c

20
CHAPTER 2. NFA TO DFA TO MINIMAL DFA

a b

a

Figure 2.1: Example from file ex2.1a.

that there are always three configurations (one of which is rejected) , and results in two paths of

acceptance in states q2 and q3 ·

The states in the constructed DFA will represent combined states from the NFA. For example,

processing an a resulted in either state qo or ql . The DFA would have a state that represents both

of these NFA states. Processing aabbbaa resulted in reaching final states q2 and q3 · The DFA would

have a state that represented both of these NFA states. Dismiss the tab for the step run (select

File : Dismiss Tab) to go back to the NFA editor.

2.1.2 Conversion Example

Now we will convert the NFA to a DFA (select Convert: Convert to DFA) , showing the NFA

on the left and the first state of the DFA on the right . The initial state in the DFA is named qo

and has the label 0, meaning it represents the qo state from the NFA.

Tip The NFA may be tiny. Adjust the size in one of two ways: either resize the window,

or drag the vertical bar between the NFA and the DFA to the right. In addition, the

states in the DFA can be dragged closer to each other, resulting in larger states.

We will now add the state that is reachable from qo on the substring a. Select the Expand

Group on Terminal tool n,? Click and hold the mouse on state qo , drag the cursor to where you

want the next state, and release it . When prompted by Expand on what terminal?, enter "a"

and press return. When prompted by Which group of NF A states will that go to on a?, enter

the numbers of the states that are reachable from qo on an a. In this case enter "0,1". (These NFA

states could also be entered with a blank separator and with or without the q, such as "qO,q1".)

The new state ql appears in Figure 2.2.

Use the Attribute Editor tool you learned about in Chapter 1 to move states around if you

don't like their placement.

2.1. NFA TO DFA 21

Figure 2.2: Expansion of state qo on a.

a

a b

Figure 2.3: Expansion of a and b from state ql .

Try expanding DFA state qo on the terminal b. Since there are no paths from NFA state qo on

a b, a warning message is displayed.

Next expand the DFA state ql on the terminal a. Note that DFA state ql represents both states

qo and ql from the NFA. In the NFA, state qo on an a reaches states qo and ql , and state ql on an a

reaches no state. The union of these results (0, 1) are the states reachable by DFA state ql , which

happens to be the DFA state ql . Upon the completion of the expansion a transition loop labeled

a is added to DFA state ql . Now expand DFA state ql on b. The result of these two expansions is

shown in Figure 2.3. Why is DFA state q2 a final state? If a DFA state represents any NFA state

that is a final state, then the substring processed is accepted on some path, and thus the DFA state

also must be a final state. NFA state q2 is a final state, so DFA state q2 (representing NFA states

ql and q2) is a final state.

Expand DFA state q2 on a. This state is represented by NFA states ql and q2 . NFA state ql

does not have an a transition. NFA state q2 on an a reaches state q3 and due to the A-transition

also reaches state q2 .

Note In using the Expand Group Terminal tool, if the destination state already exists, then

drag to the existing state and you will be prompted only for the terminal to expand.

Thus, to add a loop transition, just click on the state.

Expand DFA state q2 on b by clicking on state q2 . You are prompted for the b, but not the

states reachable, as that is interpreted as your selected state (itself in this case) . The resulting

DFA is shown in Figure 2.4.

There is another way to expand a state-the State Expander tool . When one selects this

tool and clicks on a state, all arcs out of the state are automatically expanded. In Figure 2.5 state

q3 was selected and expanded on both a and b, resulting in a new state q4 .

22
CHAPTER 2. NFA TO DFA TO MINIMAL DFA

a

Figure 2.4: Expansion of a and b from state q2 .

Figure 2.5: State Expander tool applied to state q3 ·

b

Figure 2.6: The completed DFA.

Is the DFA complete? Select the Done? button. If the DFA is not complete, a message

indicating items missing is displayed. At this time, one transition is missing.

Expand DFA state q4 on b by going back to the Expand Group on Terminal tool. Note that q4

on b goes to the existing DFA state q2 . Click on state q4 , drag to state q2 , and release. You will be

prompted for the terminal only.

Is the DFA complete? Select the Done? button. The DFA is complete and is exported to a

new window. The complete DFA is shown in Figure 2.6. Alternatively, the Complete button can

be selected at any time during the construction process and the complete DFA will be shown.

The constructed DFA should be equivalent to the NFA. To test this, in the DFA window select

Test : Compare Equivalence. Select file ex2 . la, the name of the NFA, and then press return.

The two machines are equivalent.

2.2. DFA TO MINIMAL DFA

2.1.3 Algorithm to Convert NFA M to DFA M'

23

We describe the algorithm to convert an NFA M to a DFA M' . We first define the closure of a set

of states to be those states unioned with all states reachable from these states on a A-transition.

1. The initial state in M' is the closure of the initial state from M .

2. For each state q' in M' and each terminal x do the following:

(a) States q and r are states in M . For each state q that is in state q' , if q on an x reaches

state r on an x, then place state r in new state p'.

(b) p' = closure(p')

(c) If another state is equivalent to state p' (represents the same states from M) , then set

p' to the state already existing.

(d) Add the transition to M': q' to p' on an x.

3. Each state q' in M' is a final state if it contains a final state from M .

2.2 DFA to Minimal DFA

In this section we show how to convert a DFA to a minimal state DFA. Consider two states p and q

from a DFA, each processing a string starting from their state. If there is at least one string w such

that states p and q process this string and one accepts w and one rejects w, then these states are

distinguishable and cannot be combined. Otherwise, states p and q "act the same way," meaning

that they are indistinguishable and can be combined.

2.2.1 Idea for the Conversion

Load the DFA in Figure 2.7 (file eX2. 2a) . We will refer to this example to explain the steps to

convert this DFA to a minimal state DFA.

We would like to examine pairs of states to see if they are distinguishable or not. To do this we

will need two separate windows for this DFA. JFLAP lets you open only one copy of each file, so if

you try to open the same file again, JFLAP will show just the one window. Instead we will make

a duplicate copy of this file by saving it with a different name (select File : Save as and type

the filename "ex2.2a-dup") . The current window is now associated with the duplicate file. Load

the original file ex2. 2a again and it will appear in a separate window (possibly on top of the first

window) . Move the two windows so you can see both of them.

24
CHAPTER 2. NFA TO DFA TO MINIMAL DFA

Figure 2.7: Example from file ex2. 2a.

We will examine the two states qo and ql to see if they are distinguishable. In one of the

windows, change the start state to ql . Examine the two DFA. Are there any strings that one DFA

accepts and the other DFA rejects?

We will examine several strings to see if there is any difference in acceptance and rejection. In

both DFA windows, select Input : Multiple Run. In both windows, enter the following strings

.. 1 'd l·k t t " " " b" " b" "b " "ba a" and "bba" Select
and any addltlOna ones you 1 e 0 ry: a , aa , aaaa , aa , a , .

Run Inputs and examine the results. Do the strings have the same result in both DFAs? There

is at least one string in which the result is Accept for one DFA, and Reject in the other DFA.

Thus the two states qo and ql are distinguishable and cannot be combined.

N ow we will examine the two states q2 and q5 to see if they are distinguishable. Dismiss the tab

in both windows to go back to the DFA window. In one window change the start state to q2 , and

in the other window change the start state to q5 . Select Input : Multiple Run again. Notice

that the strings from the last run still appear in the window. Select Run Inputs to try these

same strings. Type in additional strings and try them as well. Are these states distinguishable

or indistinguishable? They are distinguishable if there is one string that accepts in one and does

not accept in the other. All strings must be tested to determine if the states are indistinguishable.

Clearly it is impossible to test all strings, so a reasonable test set should be created.

2.2. DFA TO MINIMAL DFA 25

Figure 2.8: Initial split of final and nonfinal states.

2.2.2 Conversion Example

We go through an example of converting a DFA to a minimum state DFA. Remove the previous

windows (without saving them) and load the file ex2. 2a again, which should have the start state

qo . Select Convert : Minimize DFA. The window splits into two showing the DFA on the left

and a tree of states on the right.

We assume that all states are indistinguishable to start with. The root of the tree contains all

states. Each time we determine a distinction between states, we split a node in the tree to show

this distinction. We continue to split nodes until there are no more splits possible. Each leaf in the

final tree represents a group of states that are indistinguishable.

The first step in distinguishing states is to note that a final and a nonfinal state are different.

The former accepts A and the other does not. Thus the tree has already split the set of states into

two groups of nonfinal and final states as shown in Figure 2.8.

For additional splits, a terminal will be selected that distinguishes the states in the node. If

some of the states in a leaf node on that terminal go to states in one leaf node and other states on

that same terminal go to states that are in another leaf node, then the node should be split into

two groups of states (i .e. , two new leaf nodes) .

Let 's first examine the leaf node of the nonfinal states (0, 1, 2, 4, 5, 7) . What happens for each

of these states if they process a b? State qo on a b goes to state q2 , state ql on a b goes to state

qo , and so on. Each of these states on a b goes to a state already in this node. Thus, b does not

distinguish these states. In JFLAP, click on the tree node containing the nonfinal states. (Click on

the circle, not the label or the word Nonfinal .) The states in this node are highlighted in the DFA.

Try to split this node on the terminal b. Select Set Terminal and enter b. A message appears

informing you that b does not distinguish these states.

Again select Set Terminal and enter the terminal a. Since a does distinguish these states, the

node is split , resulting in two new leaf nodes. The set of states from the split node must be entered

into the new leaf nodes, into groups that are indistinguishable. A state number can be entered by

26 CHAPTER 2. NFA TO DFA TO MINIMAL DFA

Figure 2.9: Split node on a.

Figure 2 . 10: Node (0, 1, 2, 4, 5, 7) split on a.

first selecting the leaf node it will be assigned to, and then clicking on the corresponding state in

the DFA. Click on the left leaf node and then click on state qo in the DFA. The state number 0

should appear in the leaf node, as shown in Figure 2 .9 .

State qo on an a goes to state q5 , which is in the node we are splitting. Note that states ql , q4 ,

and q7 on an a also go to a state in the node we are splitting. Add all of them to the same new leaf

node as 0 by clicking on these states in the DFA. The remaining states, q2 and q5 on an a, go to a

final state, thus distinguishing them. Click on the right new leaf node, and then click on states q2

and q5 to enter them into this node, resulting in the tree shown in Figure 2 . 10. To see if we have

done this correctly, click on Check Node. Figure 2 . 10 shows the resulting tree after splitting this

node on a.

2.2. DFA TO MINIMAL DFA

Figure 2 . 1 1 : The completed tree of distinguished states.

r:;)
�

M
�

Figure 2. 12: The states for the minimum DFA.

27

We must continually try to split nodes on terminals until there is no further splitting. Each

time we split a node, we have created new groups that might now allow another group to be split

that could not be split before.

Next we try to split the leaf node with states 0,1,4, and 7. Which terminal do you try? In this

case either a or b will cause a split . We will try a. Select Set Terminal and enter a. Enter the

split groups. State qo on an a goes to state q5 , which is in leaf node group 2, 5, and states ql , Q4 ,

and Q7 on an a go to states in the leaf node we are splitting. Let's enter these states a different way.

Select Auto Partition and the states will automatically be entered in as shown in Figure 2 . 1 1 .

When the tree is complete (as it is now, convince yourself that none of the leaf nodes can be

further split) , then the only option visible is Finish. Select Finish and the right side of the window

is replaced by the new states for the minimum DFA. There is one state for each leaf node from the

tree (note the labels on the states correspond to the states from the original DFA) , as shown in

Figure 2 . 12 . You may want to rearrange the states using the Attribute Editor.

Now add in the missing arcs in the new DFA using the Transition Creator tool. In the

original DFA there is an a from state qo to state q5 , so in the new DFA a transition is added

28

6

a

b

a

CHAPTER 2. NFA TO DFA TO MINIMAL DFA

a

b

Figure 2 . 13: The minimum DFA.

from state ql (representing the old state qa) to state q2 (representing the old state q5). Selecting

Hint will add one transition for you and selecting Complete will complete the DFA, as shown in

Figure 2 .13 . Selecting Done? will export the new DFA to its own window.

The minimum state DFA should be equivalent to the original DFA. Test this using the Test :

Compare Equivalence option.

Note When you select a node and select Set Terminal, the node you select is split and two

children appear. It is possible that the node to be split might need more children; that

is, there may be 3 or more distinguished groups split on this terminal. In that case,

you must add the additional leaf nodes by selecting the Add Child option for each

additional child desired.

2.2.3 Algorithm

We describe the algorithm to convert a DFA !VI to a minimal state DFA M'.

1 . Create the tree of distinguished states as follows:

(a) The root of the tree contains all states from !VI

(b) If there are both final and nonfinal states in M, create two children of the root-one

containing all the nonfinal states from M and one containing all the final states from

M.

(c) For each leaf node N and terminal x, do the following until no node can be split:

1. If states in N on x go to states in k different leaf nodes, k > 1, then create k children

for node N and spread the states from N into the k nodes in indistinguishable groups.

2. Create the new DFA as follows:

(a) Each leaf node in the tree represents a state in the DFA M' with a label equal to the

states from M in the node. The start state in M' is the state that contains the start

2.3. EXERCISES
29

Figure 2 . 14: DFA from file ex2. 3a.

state from M in its label. A state in M' is a final state if it contains a final state from

M in its label.

(b) For each arc in M from states p to q, add an arc in M' from the state that has p in its

label to the state that has q in its label. Do not add any duplicate arcs.

2.3 Exercises

1 . Convert the NFAs in the given files into DFAs.

(a) ex2-nfa2dfa-a

(b) ex2-nfa2dfa-b

(c) ex2-nfa2dfa-c

(d) ex2-nfa2dfa-d

(e) ex2-nfa2dfa-e

(f) ex2-nfa2dfa-f

2. Consider the language L = {w E L;* I w does not have the substring a abb} , L; = {a , b} .

Load the DFA in file ex2.3a shown in Figure 2. 14. This DFA recognizes L.

Also load the file ex2. 3b. It is the NFA shown in Figure 2 . 15 that attempts to recognize L,

but fails.

Give an input string that shows why this NFA is not equivalent to this DFA.

(

44 CHAPTER 3. REGULAR GRAMMARS

(b) We now want to count the number of ways to generate some of these strings; the brute

force parser will find only one, but we convert the grammar to an equivalent FA and use

the fast simulator. Convert the right-linear grammar to an FA. Let aR be the string of

a's of length e. Run the fast simulator described in Section 1 .2 .2 on the strings aO
= A,

a1
= a, . . . , through a6

= aaaaaa, and count the number of ways the fast simulator finds

to accept each of these strings. Remember, you can keep pressing Keep Looking until

the final summary message appears saying how many accepting configurations it found.

(c) Let An be the number of ways the FA can accept (equivalently, that the grammar can

generate) the string an . We have Ao , Al , . . . , A6 . Present a recursive formula for An,

that is, determine a formula for An in terms of values of Ai , where i < n . Hint: Use

a counting argument. If we use the production S --+ aaS, how many ways are there to

generate the rest of the string without the aa ?

(d) Load the right-linear grammar in the file ex3.6b. Let Bn be the number of ways to

generate an with this new grammar. Using your knowledge in determining a recursive

formula for An, determine a recursive formula for Bn· Hint: If you convert this to an

FA, the number of accepting configurations during simulation of an is the same as the

number of ways to generate an. For various an, do a fast simulation as described in

Section 1 . 2. 2 to count accepting configurations. You can manually find specific Bn this

way until you see the pattern.

8. Consider the conversion of a right-linear grammar to an FA. Sometimes the conversion of a

right-linear grammar will result in a DFA, and sometimes it will result in an NFA, depending

on the structure of the grammar. In this problem we explore theoretical properties of JFLAP's

converter of right-linear grammars to FAs.

(a) In Chapter 1 we explored a DFA that accepted the language over 'E = {a, b} of any

number of a's followed by any odd number of b's. Can you create a right-linear grammar

that generates this language and converts directly to a DFA? If you can, create the

grammar with JFLAP and convert it to a DFA.

(b) Consider a second language, the language over 'E = {a, b, c} of any number of a's followed

by any odd number of b's, and finally suffixed with a single c. Can you create a right

linear grammar that generates this language and converts directly to a DFA? If you can,

create the grammar with JFLAP and convert it to a DFA.

(c) What is the general characteristic of a language for which one may construct a right

linear grammar that converts directly to a DFA? Hint: The string aabbb is in the first

language. Does any other string in that language start with aabbb ? The string aabbbc is

in the second language. Does any other string in the language start with aabbbc ?

Chapter 4

Regular Expressions

In this chapter we introduce a third type of representation of regular languages: regular expressions

(REs) . We describe how to edit REs, convert an RE to an equivalent NFA, and convert an FA to

an equivalent RE, and then give JFLAP's formal definition of an RE.

4.1 Regular Expression Editing

Figure 4. 1 : The editor for REs where the

RE (q+a) . . . + b*+cd has been entered.

In this section we learn how to edit REs. Start JFLAP' if it is al e d .
h , r a y runnmg, c oose to create a new structure via the menu item File : New. Select Regular Expression from the list of new str�cture choices. A window will appear that is similar to Figure 4.1 . Since an RE is essentially a strmg, JFLAP's RE editor consists of a small text field in the middle of the wind ow.

JFLAP' RE h . s s use t ree baSiC operators. To clarify, these are not operators in the JFLAP sense, but rather the mathematical sense (e.g., pluses and minuses) . The three operators in order of dec�easing precedence are: the Kleene star (represented by the asterisk character *) , the concatenatlOn operator (implicit by making two expressions adjacent), and the union operator (also called th " " e or operator, represented by the plus sign +) . You may use parentheses to specify the order

45

46 CHAPTER 4. REGULAR EXPRESSIONS

of operations. Lastly, the exclamation point (!) designates the empty string, and is an easy way

to enter A.

A few examples of REs will help clarify JFLAP's operators ' precedence. The expression a+b+cd

describes the language {a, b, cd} , whereas abcd describes the singleton language {abcd} . The expres

sion a(b+c)d describes the language {abd, acd} , whereas ab+cd describes the language {ab, cd} . The

expression abc* describes the language {ab, abc, abcc, abccc, . . . } , whereas (abc) * describes the language

{A, abc, abcabc, abcabcabc, . . . } . The expression a + b* describes the language {a, A, b, bb, bbb, . . . } ,

whereas (a+ b)* describes the language {A, a, b, aa, ab, ba, bb, aaa, aab, . . . } . The expression O + a)bc

describes the language {bc, abc} ; recall that ! is the user's way of entering A.

In this chapter we restrict ourselves to languages over lowercase letters, but JFLAP allows any

character except * , +, (,) , or ! as part of an RE's language. Specifically, beware that the space

key is a perfectly legal character for a language. For example, a * where a space follows the a (so

a is followed by any number of spaces) is distinct from a* (any number of a's) . Note that none of

the regular expressions in this chapter or its exercises have spaces in them, so do not type them in.

We are going to enter the RE (q+a)+ b*+ cd, a very simple RE that indicates that we want a

string consisting of either q or a, or of any number of b's, or the string cd. Type this RE into the

text field.

4.2 Convert a Regular Expression to an NFA

Since REs are equivalent in power to FAs, we may convert between the two. In this section we will

illustrate the conversion of an RE to an NFA. For this example we use the RE defined in Figure 4.1,

the expression (q+ a}+b*+cd, also stored in file ex4. la. In the window with the RE, select the menu

item Convert : Convert to NFA to start the converter.

Figure 4.2: The starting GTG in the conversion.

For the purpose of the converter, we use a generalized transition graph (GTG) , an extension of

the NFA that allows expression transitions, transitions that contain REs. In a GTG, a configuration

may proceed on a transition on a regular expression R if its unread input starts with a string s E R;

this configuration leads to another configuration with the input s read. We start with a GTG of

two states, and a single expression transition with our regular expression from the initial to the

final state. The idea of the converter is that we replace each transition with new states connected

by transitions on the operands of that expression's top-level operator. (Intuitively, the top-level

4.2. CONVERT A REGULAR EXPRESSION TO AN NFA
47

operator is the operator in an expression that must be evaluated last . For example, in ab+ c, the
top-level operator is + since the concatenation operator has higher priority and will be evaluated
before the +.) We then connect these operands with A-transitions to duplicate the functionality
of the lost operator. In this way, at each step we maintain a GTG equivalent to the original RE.
Eventually all operators are removed and we are left with single character and A-transitions at ,
which point the GTG can be considered a proper NFA.

Tip You may use the Attribute Editor tool � at any point to move states around. In addition
to moving states manually, with this tool the automatic graph layout algorithm may be
applied, as described in Section 1 . 1 .5 .

4.2.1 "De 0 · " E . Tr . . - rIng an xpresslon ansltlOn

Figure 4.3: The GTG after "de-expressionifying" the

first transition, but before we add the supporting

A-transitions.

To start converting, select the De-expressionify Transition tool A . With this tool active click ,
on the (q+a)+b*+cd transition. The GTG will be reformed as shown in Figure 4.3. Note that the
transition has been broken up according to the top-level + union operator, and that the operands
that were being "ored" have now received their own transitions . The De-expressionify Transition
tool :.:.. determines the top-level operator for an expression, and then puts the operands of that
operator into new expression transitions.

Note the labels near the top of the converter view: De-oring (q+a)+b* +cd, and 6 more
A-transitions needed. These labels give an idea of what you must do next .

In this case, you must produce six A-transitions so that these new six states (q2 through q7) and
their associated transitions act like the + union operator that we have lost. To add these transitions,
select the Transition Creator tool � . To approximate the union functionality, you must add six
A-transitions, three from qo to q2 , q4 , and q6 , and three more to ql from q3 , q5 , and q7 . Intuitively,

48 CHAPTER 4. REGULAR EXPRESSIONS

CmWl'!rt RE to NfA

De- oring (q+a)+b" +cd
1 more �-Hans i uons needed.

Figure 4.4: The converter window in the midst of "de-oring"

the first transition. All the A-transitions for this de-oring

have been added, except the transition from q7 to ql .

in going from qo to ql , a simulation may take the path through the (q +a) expression transition or

the b* expression transition or the cd expression transition. In short , these A-transitions help to

approximate the functionality of the lost + operator on these operands. Use the Transition Creator

tool >'" to create these. All transitions are A-transitions, so JFLAP does not bother asking for

labels. As you add transitions, the label at the top of the window decrements the number of

transitions needed. Figure 4.4 shows an intermediate point in adding these transitions, with only

the transition from q7 to ql not created. When you finish adding these transitions to the GTG,

JFLAP allows you to "de-expressionify" another transition.

4.2.2 "De-concatenating" an Expression Transition

Once you finish "de-oring" the first transition, you have three expression transitions. We will

reduce cd next; the top-level operator for this expression is the concatenation operator. Select

the De-expressionify Transition tool �i� once more, and click on the cd transition. In Figure 4.5

you see the result. Note that JFLAP informs us that we are De-concatenating cd and that we

have 3 more A-transitions needed; similar to de-oring, de-concatenating requires the addition

of A-transitions to approximate the lost concatenation operator.

4.2. CONVERT A REGULAR EXPRESSION TO AN NFA

i(:i) �>0 81
� I

Figure 4.5: The beginning of de-con-

catenating the expression transition cd.

States and transitions extraneous to the de

concatenating are cropped out.

49

We require three A-transitions: one from q6 to qs , another from qg to qlQ , and a last one from
ql1 to q7 · Configurations on @ will have to satisfy the c expression (between qs and qg) , and
then satisfy the d expression (between qlQ and ql1) before proceeding to q7 . This arrangement is
functionally equivalent to c concatenated with d.

A remedy of errors

Select the Transition Creator tool >"' . Instead of adding the right transitions, let 's add an incorrect

transition! Create a transition from q6 to qlQ . With this transition, the configuration can proceed

from @ to the d portion, bypassing c. This is incorrect. A dialog box will report A transition

there is invalid, and the transition will not be added.

Although checking for wrong transitions is universal to the converter no matter what operator
you are splitting on, the de-concatenating process has some additional restrictions. Add a transition
from ql1 to q7 · This is perfectly valid! However, JFLAP reports in a dialog, That may be
correct, but the transitions must be connected in order. In this case, this means you must
first connect @ to qs , and then qg to qlQ , and only then may you connect ql1 to q7 . Add these
transitions now.

Figure 4.6: The finished de-concatenating of

the expression transition cd.

50 CHAPTER 4. REGULAR EXPRESSIONS

The relevant portion of the automaton will resemble Figure 4.6 . Since you have finished the de

concatenation of cd, you may now reduce another expression transition. Select the De-expressionify

Transition tool -:J:. again. Recall that the converter recursively breaks down expression transitions

until they are either one character or A-transitions. If you click on the c transition, the message

That's as good as it gets appears to inform you that you needn't reduce that transition .

4.2.3 "De-staring" a Transition

We will reduce the b* transition next. With the De-expressionify Transition tool �t4 active, click the

b* transition. Kleene stars may have only one operand, in this case b. As we see in Figure 4.7, the b

has been separated into a new portion of the automaton. JFLAP tells us that we are De-staring

h* and that there are 4 more A-transitions needed.

Similar to concatenations and ors, we must add A-transitions to duplicate the functionality of

the Kleene star. The four transitions that JFLAP wants are from q4 to q12 and q13 to q5 (to allow

configurations to read a b from their input) , and another from q4 to q5 (to allow zero b's to be

read) , and the last from q5 to q4 (to allow for repeat reading of b) . Select the Transition Creator

tool >" and add these transitions so the relevant portion of the GTG resembles Figure 4.8 . ,

Figure 4.7: The beginning of de-staring

the expression transition b*. States and

transitions extraneous to the de-staring are

cropped out.

Figure 4 .8 : The finished de-staring of the

expression transition b*.

4.2. CONVERT A REGULAR EXPRESSION TO AN NFA

4 .2.4 Surrounding Parentheses

51

The only remaining existing transition incompatible with an NFA is the (q+a) transition, which has

sur�ounding parentheses. The parentheses are the top-level operator since they indicate that their

contents must be evaluated first, and only when that evaluation finishes do the parentheses finish

evaluating. However, when the parentheses surround the entire expression, they are completely

unnecessary. Activate the De-expressionify Transition tool J:" , and click on the (q+a) transition.

The surrounding parentheses will disappear, leaving you with q+a. No A-transitions are needed.

q

a

Figure 4.9 : The finished de-oring of the expression tran

sition q+a.

Figure 4.10: The NFA that recognizes the language

(q+a)+b*+cd.

To finish, use the De-expressionify Transition tool -:J:. tool once more to break q + a by the +

operator. Connect A-transitions similar to the procedure described in Section 4 .2 .1, so that the

52 CHAPTER 4. REGULAR EXPRESSIONS

relevant section of the GTG resembles Figure 4.9, and overall the automaton resembles Figure 4.10 .

The GTG is now a proper NFA, so the conversion to an NFA is finished! You may press the Export

button to put the automaton in a new window.

4.2.5 Automatic Conversion

Dismiss the Convert RE to NFA tab now. Once you have returned to the RE editor, select the

menu item Convert : Convert to NFA. We shall convert the same RE again, but we'll do it

automatically this time!

Once you see the converter view with the GTG as pictured in Figure 4.2, press Do Step. A step

in this conversion is the reduction of a single expression transition. There is only one expression

transition, the (q+a)+b*+cd transition, so that is reduced and the requisite A-transitions are added

without intervention from the user.

The second option is Do All; this is functionally equivalent to pressing Do Step until the

conversion finishes. This is useful if you want the equivalent NFA immediately. Press Do All; the

finished NFA will appear in the window, ready to be exported.

4.2.6 Algorithm to Convert an RE to an NFA

1 . Start with an RE R.

2 . Create a GTG G with a single initial state qo , single final state q1 , and a single transition

from qo to q1 on the expression R.

3. Although there exists some transition t E G from states qi to qj on the expression S longer

than one character, let ¢ be the top-level operator of the expression S, and let [aI , a2, . . . , a,p]
be the ordered list of operands of the operator ¢ (since parenthetical and Kleene star operators

take exactly one operand 1jJ = 1 in those cases) .

(a) If ¢ is a parenthetical operator, replace t with an expression transition on a 1 from qi to

qj .

(b) If ¢ is a Kleene star operator (*) , create two new states qx and qy for G, remove t , and

create an expression transition on a1 from qx to qy , and create four A-transitions from

qi to qx , qy to qj , qi to qj , and qj to qi ·

(c) If ¢ is a union operator (+) , remove t, and for each k from 1 through 1jJ (i) create two

new states qXk and qYk ' (ii) create an expression transition on ak from qXk to qYk ' and

(iii) create two A-transitions, from qi to qXk and from qYk to qj .

(d) If ¢ is a concatenation operator, remove t , and for each k from 1 through 1jJ (i) create two

new states qXk and qYk ' (ii) create an expression transition on ak from qXk to qYk ' and

4.3. CONVERT AN FA TO A REGULAR EXPRESSION 53

(iii) if k > 1 create a A-transition from qYk-l to qXk . Finally, create two A-transitions,

one from qi to qXl and another from qy'iJ to qj .

4. The GTG is now a proper NFA. The conversion is finished.

I'

4.3 Convert an FA to a Regular Expression

The conversion of an FA to an RE follows logic that is in some respects reminiscent of the RE to

NFA conversion described in Section 4.2 . We start with an FA that we consider a GTG for the

purposes of conversion. We then remove states successively, generating equivalent GTGs until only

a single initial and single final state remain. JFLAP then uses a formula to express the simplified

GTG as a regular expression.

e
d

Figure 4. 1 1 : The FA we convert to an RE.

In this walk-through we convert the automata pictured in Figure 4. 1 1 to a regular expression.

This automata is stored in the file ex4. 3a. Open this automata. Choose the menu item Convert

: Convert FA to RE to begin converting. Your window will resemble Figure 4 .12 .

4.3.1 Reforming the FA to a GTG

The algorithm to convert an FA to an RE requires first that the FA be reformed into a GTG with

a single final state, an initial state that is not a final state, and exactly one transition from qi to qj

for every pair of states qi and qj (i may equal j) .

Reform FA to have a single noninitial final state

There are two things wrong with our FA's final states: there are two final states, and one of them

is also the initial state. We must reform the automaton so that it has exactly one final state and

ensure that that final state is not the initial state. To do this JFLAP first requires that a new state

be created: select the State Creator tool and click somewhere on the canvas to create a new

state. (Similar to the conversion from an RE to an NFA, this converter also displays directions

above the editor. At this stage it tells you Create a new state to make a single final state.)

54 CHAPTER 4. REGULAR EXPRESSIONS

JHAP :
file Input Test Convert Help

Convert FA to RE. .

fI.·1ake Srngie Noni niha! Final State
Create a t�ew sta(e to m ake a s i n g l e final s tale.

-, . i�irD� 't Export

Figure 4 .12 : The starting window when con

verting an FA to an RE.

e
d

Figure 4. 13: The FA after a new final state is created.

Once this new state is created, the FA will resemble Figure 4.13 . Note that this new state is the

final state, and those states that were previously final states are now regular states and have been

highlighted. JFLAP directs you to put A-transitions from old final states to new. Select

the Transition Creator tool .Y' and create transitions from each of the highlighted states to the

new final states. JFLAP assumes that every transition is a A-transition and does not query for the

4.3. CONVERT AN FA TO A REGULAR EXPRESSION

e
d

Figure 4. 14: The FA after the A-transitions

have been made from the old final states to

the new final state.

55

transition label. As you create each A-transition, the source state will be de-highlighted. When

you finish, your FA will resemble Figure 4.14 .

Collapse multiple transitions

One of the requirements of this algorithm is that for every pair of states qi and qj there must be

exactly one transition from qi to qj . Half of this requirement is that there cannot be more than

one transition from qi to qj . Consider the two loop transitions for ql on d and e . We can satisfy

the requirement by replacing these two transitions with the single expression transition d+e, which

indicates that we may proceed on either d or e .

Select the Transition Collapser tool ��+� , and click on either the d or e . When you click on

a transition that goes from qi to qj , this tool reforms all transitions from qi to qj into a single

transition where the labels of the removed transitions are separated by + operators. The new

transition will be either d + e or e + d, either of these is equivalent, of course, but for the sake of

this discussion's simplicity we assume the result was d+e . With this step, our GTG is no longer a

proper FA. The GTG is shown in Figure 4 .15 .

In general, i f more than one pair of states have more than one transition, use the Transition

Collapser tool """l on their transitions as well .

Add empty transitions

Recall once more that every pair of states qi and qj must have exactly one transition from qi to

qj . This means that if no transition exists, an empty transition (on the empty set symbol 0) must

56
CHAPTER 4. REGULAR EXPRESSIONS

d + e

Figure 4 . 15 : The GTG after the d and e

loop transitions on ql are combined into

d+e.

be created! Select the Transition Creator tool .Y' again, and create a transition from qo to q2 . A

transition on 0 will appear.

d + e

Figure 4 .16: The FA after the addition of

empty transitions.

The essential distinction between GTGs and FAs is that FA transitions describe a single string,

while GTG transitions describes sets of strings. In this particular case, we are creating transitions

on the empty set of strings, hence transitions on 0. Similar to the earlier creation of A-transitions,

JFLAP assumes you are creating empty transitions. As you proceed, JFLAP will inform you how

many more empty transitions are required. Seven are required in all: from qo to q2, ql to q3 , q2 to

qo , q3 to qo , q3 to ql , q3 to q2, and a loop transition on q3 (q3 to q3) . When you finish, your GTG

will resemble Figure 4 . 16 .

4.3. CONVERT AN FA TO A REGULAR EXPRESSION

4.3.2 Collapse Nonfinal, Noninitial States

57

Now we have a GTG with a single final state, an initial state that is not a final state, and for every

pair of states qi and qj there is exactly one transition from qi to qj . The next step is to iteratively

r�move every state in the GTG except the final state and the initial state. As each state is removed,

we adjust the transitions remaining to ensure the GTG after the state removal is equivalent to the

G TG before the state removal.

0 0 a
0 1 b
0 3 A
1 0 b
1 1 (e+d)+ca"'c
1 3 ca'"
3 0 121
3 1 121
:3 3 121

Finalize

Figure 4 .17: The window that shows the

replacement transitions when removing a

state.

,

The states can be collapsed in any order. However, to understand the following discussion, you

will need to collapse states in the given order. Select the State Collapser tool . Once selected,

click first on state q2· A window like the one shown in Figure 4 .17 appears that informs you of the

new labels for transitions before the collapse occurs. Let 7"ij be the expression of the transition from

qi to qj . The rule is, if we are removing qk , for all states qi and qj so that i i= k and j i= k, 7"ij is

replaced with 7"ij + 7"ik7"kk7"kj . In other words, we compensate for the removal of qk by encapsulating

in the walk from qi to qj the effect of going from qi to qk (hence 7"ik) , then looping on qk as much

as we please (hence 7"kk) ' and then proceeding from qk to qj (hence 7"kj) . Lastly, note that 0 obeys

the following relations: if 7" is any regular expression, 7" + 0 = 7", 7"0 = 0, and 0* = A.

Select the row that describes the new transition from ql to ql (the loop transition on ql) ,

d+e+ca*c. The transitions from which this new transition is composed are highlighted in the GTG.

There are two paths that must be combined into one expression transition, the walk from ql to ql ,

d+e, and the alternative walk from ql to ql that goes through q2 , ca*c. More formally, 7"1,1 = d+e,

7"1 ,2 = 7"2,1 = c, and 7"2,2 = a, so the new transition is 7"1 1 + 7"1 27"2* 27"2 1 = d + e + ca* c as JFLAP , ' "

2

58 CHAPTER 4. REGULAR EXPRESSIONS

indicates.
The rules for operations on the empty set are more unfamiliar. Select the row that describes

the new transition from qo to ql . There are two paths that must be combined into one expression

transition, the walk from qo to qo , b, and the alternative walk from qo to q1 that goes through

q2 , 0a*c. More formally, rO ,l = b, rO,2 = 0, r2,2 = a, and r2 ,l = c, so the new transition is

rO,l + ro,2r2,2r2,1 = b+0a*c. The concatentation of any expression with the empty set is the empty

set , so 0a*c = 0, so b+0a*c = b+0. The union of the empty set with any expression is that expression,

so b+0 = b, which is the new expression from qo to ql ·

Figure 4. 18 : The finished GTG after the

removal of q2 and q1 ·
Inspect all the other replacements to see if you can figure out the formula, and then reduce it to

the label shown in Figure 4. 1 7. Then click Finalize. The transitions listed will be replaced, and q2

will be removed. Repeat this process with q1 . Note there are only four replacements, and some of

the labels are quite long. (You might have to resize the window to see the complete labels.) When

ql is removed, your GTG will resemble Figure 4. 18.

4.3.3 Regular Expression Formula

At this point your GTG should have two states-one final and one initial-and resemble Figure 4. 18 .

Let rxy be the expression of the transition from qx to qy . For a GTG in this form, where qi is the

initial state and qj is the final state, the equivalent RE r is given by equation 4. l .

(4. 1)

The conversion is now finished, and JFLAP displays the RE of equation 4.2, derived from

equation 4. 1 .

(a+b (d+e+ ca*c) *b)* (A+b (d+e+ca*c)* ca*) (4.2)

At this point, you may press Export to put the finished RE in a new window.

4.4. DEFINITION OF AN RE IN JFLAP

Note If for your input FA any of these steps are unnecessary, JFLA P will skip over them. In

the extreme case, if you have an FA with two states (one initial, the other final) , and

with four transitions (a loop on the initial, a loop on the final, another from the initial

to final , and a last one from the final to the initial) , JFLA P will skip everything and

display the finished RE!

4.3.4 Algorithm to Convert an FA to an RE

1 . Start with an FA, though we consider it a GTG G for the purpose of the algorithm.

59

2. Let F be the set of G's final states, and qo be its initial state. If IF I > 1 or F = {qo} , create

a new state qf , produce A-transitions for every qi E F from qi to qf , and make qf the only

final state.

3. Let S be the set of G's states. For every (qi , qj) E S x S, let L = {£,! , £'2 , . . . , £'n} be the set

of expressions of transitions from qi to qj . Let e = 0 if IL l = 0 and e = £'1 + £'2 + . . . + £'n

otherwise , and replace all transitions from qi to qj with a single transition from qi to qj on

the expression e .

4 . Let T be the set of G's nonfinal, noninitial states. Let rxy be the expression of the transition

from qx to qy . For every qk E T, for every (qi , qj) E (T - {qk}) x (T - {qk}) replace rij with

rij + rikrkkrkj , and finally remove qk from G. (Note: If r is any regular expression, r + 0 = r,
r0 = 0, and 0* = A.)

5 . G now has two states: the initial state qo and single final state qf . The equivalent regular

expression is r = (r�orofrffrfo) * r�orofr;f '

4.4 Definition of an RE in JFLAP

Let "E be some alphabet. The set of all possible regular expressions is given by R.

R = {0, A} U "E U {ab la , b E R} U {a+b la, b E R} U {a*la E R} U {(a) la E R}

4.5 Summary

In Section 4 . 1 we learned how to edit regular expressions (REs) . JFLAP respects the following

operators in order of decreasing precedence: the Kleene star (the * character) , concatenation

(implicit by making two expressions adjacent) , and lastly, union (the + character) . Parentheses

