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JFLAP Startup 

Running JFLAP 

Download JFLAP and the files referenced in this book from www . j flap. org to get started. 

JFLAP is written in Java to allow it to run on a range of platforms. JFLAP requires that 

your computer have Java SE 1.4 or later installed. JFLAP works with Java 1.5. For the latest 

version, visit http://java.sun.com/ . Mac OS X's latest Java release, if not already preinstalled, 

is available from http://www.apple. com/j ava/, or from Software Update. 

With Java SE 1.4 or later installed on your computer, you may attempt to run JFLAP. JFLAP 

is distributed as an executable .jar (Java ARchive) file. JFLAP may be run as either an application 

or applet . The following table lists how to run the JFLAP . jar executable .jar as an application on 

your platform of choice . 
Windows Double click on JFLAP. jar; the file will appear as JFLAP if suffix hiding is 

on. 

Unix & Linux From a shell with the JFLAP. jar file m the current directory, enter the 

command java -jar JFLAP. jar. 

Mac OS X The Windows and Unix directions will work on a Mac. 

JFLAP Interface Primer 

We cover universal elements of the JFLAP interface here. To begin, start JFLAP. When JFLAP 

has finished loading, a window will appear similar to that shown in Figure 1. This window offers a 

choice of major structures if you wish to create a new structure; alternatively, the File menu allows 

you to open an existing saved structure or quit JFLAP. 

Throughout this book we shall review the creation of these structures. However, right now we 

are going to open a JFLAP saved file of an existing finite automaton (FA) . From the File menu, 

choose Open. JFLAP allows users to save and open files that contain a single structure . Select 

and open the file exO. 1 a. A new window will appear with an FA. 

We refer to all the things you can do to a structure as operators. (It is not necessary to under

stand what the operators are doing at this point; our purpose is to describe JFLAP's interface.) 
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Figure 1: The window that appears when you start JFLAP. 

Operators are typically activated through the menu items. Choose th 't . 
r ht N d 

e menu 1 em Test : HIgh-Ig on 
.
eter

.
minism. (This activates an operator that shades nondeterministic states in an automaton, m thIS case q and ) N t h o ql· ex , c oose the menu item Test ' Highlight A Tr 't' 

(Th' t' t ' - anSI IOns IS ac Iva es an operator that highlights A-tr 't ' . . 
. 

1 b 1 d 
anSI IOns m an automaton, m this case the arc a e e A . )  We chose these two operators because they require no intervention from the user. 

Nondet�rmhdstic states are highlighted. 

Figure 2: An illustration of the window for a structure, with three tabs active. 

The window for a structure consists of a menu bar that contains operators you may apply t th structure and a tabb d . t .f b 
0 e , e zn erJace elow the menu bar. Note that JFLAP k . eeps everythzng related 
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to a structure in a single window, and uses tabs to manage multiple operators active at the same 

time. The results of the two operators we invoked are displayed in tabs, so there are currently three 

tabs: Editor, Nondeterminism, and A-Transitions. In Figure 2, the Nondeterminism tab 

is selected, indicating that the interface for the "highlight nondeterminism" operator is currently 

active and displayed. To switch to another operator, click on its tab. (Note that you cannot switch 

to the Editor tab at this time. This is because the other two currently active operators depend 

on the automaton not changing.)  

We will now remove the Nondeterminism and A-Transitions tabs. To get rid of a tab, select 

the menu item File : Dismiss Tab. This will remove the currently active tab. When it is gone, 

remove the other tab as well. (JFLAP prevents removal of the Editor tab.)  

As a last step, peruse the contents of the File menu. Use New when you want to create a new 

h N 
. I cted JFLAP will display. the window shown in Figure 1 that allows 

structure; w en ew is se e , 

you to choose a type of structure to create. The Open, Save, and Save As menu items allow 

you to read and write structures to files like any other application that deals with documents. �he 

Close item will close the window of the structure. The Print item will print the currently active 

tab. Quit will stop JFLAP entirely. 

Chapter 1 

Finite Automata 

A finite automaton is the first type of representation for a regular language that we will examine. 

In this chapter we will construct a deterministic finite automaton (DFA) in JFLAP, illustrate 
several methods of simulating input on that automaton, discuss nondeterministic finite automata 

(NFAs) in JFLAP, and present simple analyses that JFLAP may apply to automata. We present a 
standard definition of a DFA in Sections 1 . 1-1.4, and show in the optional Section 1.5 how JFLAP 
handles a more general definition of a DFA with multiple character transitions. 

1.1 A Simple Finite Automaton 

a 

Figure 1 .1 :  A finite automaton (FA), which recognizes the language of any number of a's followed 

by any odd number of b's. 

In this section you will learn how to build automata in JFLAP by way of constructing, with 

help, the DFA that recognizes the language of strings of any number of a's followed by any odd 

number of b's (e.g., ab, bbb, aabbbbb) . This section will teach the essentials of automaton editing 

in JFLAP: creating and deleting states and transitions, moving existing states, editing existing 

transitions, and setting states to be initial and final. When you are done, you will have a machine 

like that pictured in Figure 1 .1! 

The first step is, of course, to start JFLAP. Once JFLAP is running, you begin building an FA 

by clicking on the button labeled Finite Automaton. A window will appear with (from top to 

bottom) a menu, a tab that says Editor, a tool bar, and a large blank area at the bottom. 

1 
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1.1.1 Create States 

All automata require a set of states. Before you can create states you must first activate the State 

Creator tool: click on the button below the window's menu bar. This button will now appear 

shaded to indicate that tool is active. 

The large blank area below the tools, called the canvas, is where the automaton is created and 

edited. Now that the State Creator tool is active, click on the canvas to create a state. A state will 

appear under the location where you clicked. As you will see, states in JFLAP are yellow circles 

with some identifying text inside. Click three more times in three other locations to create three 

more states. There will now be four states on the canvas, with the text qo, ql, q2, and q3 to identify 

,each of them. 

1.1.2 Define the Initial State and the Final State 

All automata require an initial state and a set of final states. In this automaton we will make qo 

the initial state, and ql the single final state. Select the Attribute Editor tool, by clicking the � 

button. Two of this tool's many functions are to define an initial state and to define the set of final 

states. (This tool's other functions are described in Section 1.1.5.) 

Now that the Attribute Editor tool is selected, right-click on qo (or, control-click if you are a 

Macintosh user with a single mouse button) . A pop-up menu above the state will appear with 

several items, including two items Final and Initial. Select the item Initial. The state qo will 

now have a white arrowhead appear to its left to indicate it is the initial state. Similarly, right-click 

on the state ql, and select the item Final. The state ql will now have a double outline instead of 

a single outline, indicating that this state is a member of the set of final states. 

You may find it necessary to set a final state as nonfinal. To illustrate how, right-click on ql 

once you have marked it as final. Notice that the item Final now has a check mark next to it . 

Select the item Final again. This will toggle ql out of the set of final states. Before you proceed, 

you must of course put ql in the set of final states again! 

1.1.3 Creating Transitions 

We will now create transitions. In this machine, three transitions are necessary: three on b from qo 

to ql, ql to q2, and back again from q2 to ql, and a loop transition on a for state qo· We will create 

others for illustrating some special features, and for later illustration of the Deleter tool. 

To create these transitions, select the Transition Creator tool, denoted by the ..Y' icon. The 

first transition we are going to create is the b transition from qo to ql· Once the Transition Creator 

tool is selected, press the mouse cursor down on the qo state, drag the mouse cursor to the ql state, 

and release the mouse button. A text field will appear between the two states. Type "b" and 
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press return. A new b transition from qo to ql will appear. By the same method, create the two b 

transitions from ql and q2 and from q2 and ql· 

Tip As an alternative to pressing return, you can stop editing a transition merely by doing 

something else like clicking in empty space (but not on a state! ) , or creating another 

transition by dragging between two other states. If you wish to cancel an edit of a 

transition, press Escape. 

The next transition is qo's loop transition on a. Creating loop transitions on a state is just like 

other transitions: you press the mouse on the start state and release the mouse on the end state. 

However, because the start and end states are the same for a loop transition, this is the same as 

clicking on the state. So, click on state qo, and enter "a" and press return, just as you did for the 

b transitions. 

Lastly, create three transitions from qo to q3, the first on the terminal a, another on b, and a 

third on c. Notice that JFLAP stacks the transition labels atop each other. 

Tip If you are in the process of editing a transition from a state qi to a state qj and you 

wish to create another transition from state qi to state qj without having to use the 

mouse, press Shift-Return. This creates a new transition from qi to qj in addition to 

ending your editing of the current transition. 

1.1.4 Deleting States and Transitions .. 
You probably noticed that the automaton built requires three states, not four. This fourth state q3 

and the transitions going to it are unneccessary and can be removed. Deleting objects has a tool 

all its own: click the:!: button to activate the Deleter tool. 

First, we want to remove the transition on b from qo to q3 . To delete this transition, click on 

the b. The b transition will be gone, leaving the a and c transitions. You can also click on the 

transition arrow itself to delete a transition: click on the arrow from qo to q3, and notice that the a 

transition disappears. The c transition remains. When you click on the arrow, the transition with 

the label closest to the arrow is deleted. 

Deleting states is similar. Click on the state q3. The state q3 will disappear, and notice that the 

c transition is gone as well. Deleting a state will also delete all transitions coming from or going 

to that state. You should now be left only with the other three states and the transitions between 

them. 

1.1.5 Attribute Editor Tool 

ec ion . . , ut it as many other functions We already used the Attribute Editor tool � l'n S t' 1 1 2 b . h 

related to modification of attributes of existing states and transitions. Select the Attribute Editor 

tool � once again as we walk through examples of its use. 
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Setting states as initial or final 

This tool may set states as initial or final states as described in Section 1.1.2. 

Moving states and transitions 

When you initially placed the states for the FA built earlier you may not have arranged them in 

a logical order. To move a state, press on the state and drag it to a new location. Dragging a 

transition will likewise move its two associated states. Attempt this now by dragging states and 

transitions . 

Editing existing transitions 

To edit an existing transition, simply click on it! Try clicking the transition from qo to ql · The 

same interface in which you initially defined this transition will appear on the transition and allow 

you to edit the input characters read by that transition. 

Labels 

When you set the state qo as the initial state and the state ql as a final state, perhaps you noticed 

the menu item Change Label. Right-click on q2 and select Change Label. A dialog box will 

appear, asking for a label. When processing input, while the machine is in state q2 , we shall have 

processed an even number of b's, so enter "even # of b's". A box will appear under the state with 

this label. By a similar token, label ql "odd # of b's". To delete an existing label from a state 

choose the menu item Clear Label from the same menu. Alternatively, the menu item Clear All 

Labels will delete all labels from all states. 

If you right-click in empty space, a different menu will appear, with the item Display State 

Labels. This will initially have a check mark next to it to indicate that it is active. Select it . 

The labels will become invisible . Hover the mouse cursor over q2; after a short time, a tool-tip will 

appear to display the label even # of b's. Right-click in empty space once more, and reactivate 

Display State Labels; the labels will appear again. 

Automatic layout 

Right-click in empty space again. Notice the menu item Layout Graph. When selected, JFLAP 

will apply a graph layout algorithm to the automaton. While usually not useful for automata you 

produce yourself, many of JFLAP's algorithms automatically produce automata, often with large 

numbers of states. If you find JFLAP's first attempt at automatic layout inappropriate, this may 

alleviate the tedium of moving those states yourself. 

1.2. SIMULATION OF INPUT 

1.2 

Tip 

Figure 1.2: In the midst of the simulation of aabbb on our FA. 

• 

In addition to activating a tool by clicking on its button in the tool bar, there are also 
shortcut keys available for quick ly switching tools. For example, hover the mouse over 
the State Creator tool after a little while a tool-tip will appear with the text (S)tate 
Creator. The parentheses enclosing the 5 indicate that this is the shortcut key for the 
State Creator tool. Note that in spite of appearances, shortcut keys are really lower 
case, so do not press Shift when typing the shortcut key for a tool! 

Simulation of Input 

5 

I� this section we cover three of JFLAP's methods to simulate input on an automaton: stepping 

WIth closure, fast simulation, and multiple simulation. The fourth, stepping by state, is discussed 

briefly in Section 1.3. 

1.2.1 Stepping Simulation 

The stepping simulation option allows you to view every configuration generated by an automaton in its attempt to process an input string. Figure 1.2 shows a snapshot of a stepping simulation of the i�put string aabbb on the automaton you built in Section 1. 1, also stored in file exl. la. The top portIOn of the window displays the automaton, with the state in the active configuration shaded darker. The portion below the automaton displays the current configuration. In Figure 1.2, notice the configuration is in state qo , and that the first two characters aa are grayed-out, indicating that they have been read, while the three characters bbb are not grayed-out, indicating that they remain to be read. 
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Try stepping 

We shall walk through the process of stepping through input in an automaton. First, select the 

menu item Input : Step with Closure. A dialog box will ask for input for the machine: enter 

"aabbb" and press Return or click OK. 

Your window will now appear similar to Figure 1.2. The single configuration displayed will be 

on the initial state qo, and have the unprocessed input aabbb. 

The tool bar at the bottom is your interface to the simulator. Click Step. The old configuration 

on qo has been replaced with a new configuration, again on the state qo, but with the character 

a read. Notice that the first character a in the input has been lightened a bit to indicate that it 

.has been read. Click Step twice more, and it will go from qo to go again, and then to qI, with the 

input bb remaining. 

Some of the operations in the tool bar below the configuration display act only on selected 

configurations. Click on the configuration; this will select it (or deselect it if it is already selected) . 

A selected configuration is drawn shaded. Click Remove. Unfortunately, this deletes the only 

configuration! The simulator is useless. Oops! Click the Reset button; this will restart the 

simulation, so you can try again. 

With the simulation back to its original state, click Step repeatedly (five times) until all the 

input is read. The configuration at this point should be drawn with � green background, indicating 

that it is an accepting configuration, and that the machine accepts the input. FA configurations 

are accepting configurations if all the input is read and it is in a final state. The configuration's 

input is entirely gray, indicating that all the input has been read. 

One can Trace a configuration to see its ancestry from the initial configuration. (Do not select 

a configuration; press Trace instead. An error message indicates that Trace requires a selected 

configuration! )  Now select the single configuration, and click the Trace button. A window will 

show the ancestry of this configuration, starting with the initial configuration on top and the 

selected configuration on the bottom. When you've had a chance to look over the trace of the 

configuration, close this window. 

To return to the editor, choose File : Dismiss Tab to dismiss the simulator. 

Failure 

On the flip side of an accepting configuration is a rejected configuration. A rejected configuration 

is one which (1) does not lead to any more configurations and (2) is not accepting. Run a stepping 

simulation again, except this time with the input aabb. Since this has an even number of b's the 

machine will not accept it . Click Step repeatedly, and note that eventually the configuration will 

turn red. This indicates that it is a rejected configuration. 

1.2. SIMULATION OF INPUT 
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Figure 1.3: The result of performing a fast simulation of aabbb on the automaton. 

1.2.2 Fast Simulation 

Step�ing thro
.
u�h simulation of input is fine, but Fast Run will reveal if the automaton accepts 

a strmg and, If It does, the series of configurations leading to that string's acceptance without the 
bother of having to repeatedly step through the machine watching for accepting configurations. 

Choose Input : Fast Run. When prompted for input, enter the same "aabbb" string. The 
result after JFLAP determines that the machine accepts this input is shown in Figure 1.3. The trace 
of configurations from top to b tt ( . 

f . .  . 1 . 
. . ' 0 om 1.e . ,  rom Imtla to acceptmg configuration) , is displayed. 

AlternatlVely, If the machine did not accept this input, JFLAP would report that the string was 
not accepted. 

Notice t�e t�o buttons near the bottom of the dialog box. I'm Done will close the display. 
Keep Lookmg IS useful for nondeterministic machines and is covered later in Section 1.3.2. 

1.2.3 Multiple Simulation 

The third method for simulating input on an automaton is Multiple Run. This method allows 

o�e to pe�form multiple runs on a machine quickly. Select Input : Multiple Run now. (Your 

dIsplay WIll not resemble Figure 1.4 exactly, but do not worry! )  The automaton is displayed to the 

left, and on the right is an empty table where you may enter inputs for multiple runs. One enters 

inputs in the Input column. Select the upper-left cell of this table, enter the input "aabbb", then 
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Figure 1.4: An example of simulating multiple entries . The second-to-last 

input is the empty string, entered with Enter Lambda. 

press return. Notice that instead of one row there are now two: the table will grow to accommodate 

more entries as you enter them. 

Continue entering various inputs you wish to test on the machine; whichever you choose is up 

to you. If you wish to make a lambda entry-that is, test to see if the automaton accepts the 

empty string-then while entering an input, click the Enter Lambda button near the bottom of 

the window, and that input field will hold the empty string. When you have entered all inputs and 

wish JFLAP to simulate all these strings, click Run Inputs. Notice that the Result column is 

now full of Accept and Reject entries, indicating whether an input was accepted or not. View 

Trace will show the trace of the last configuration generated for each selected run in the table. 

Clear will clear the table of all inputs. 

Tip For convenience, the multiple run simulator will remember all inputs entered by the 

user between machines. For example, suppose you have one automaton, and perform 

multiple runs on that machine. If you later perform multiple run simulation on a different 

automaton those same inputs will appear. 

1.3 Nondeterminism 

In this section we will talk about NFAs in JFLAP, using the automaton pictured in Figure 1.5 as 

our example. 

Either of two conditions imply that an FA is nondeterminstic. The first condition is, if the FA 

has two transitions from the same state that read the same symbol, the FA is considered an NFA. 

1.3. NONDETERMINISM 

Figure 1.5: An NFA that accepts the language of a series of a's followed by a 
series of b's, where the number of a's is nonzero and divisible by 2 or 3, and 
the number of b's is divisible by 2 or 3. 
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For example, ql of the FA in Figure 1.5 has two outgoing transitions on a. The second condition 

is: if the FA has any transitions that read the empty string for input , the FA is nondeterministic. 

1.3.1 Creating Nondeterministic Finite Automata 

Creating an NFA is much the same as creating a DFA. Select File : New, and then select Finite 

Automaton to get a new window. In this window we will create the automaton shown in Figure 1.5, 

that accepts the language anbm, where n > 0 and is divisible by 2 or 3 and m 2: 0 and is divisible 

by 2 or 3. The first step is to create the thirteen states of the automaton, and to make qo the initial 

state and make @ and ql1 the final states. 

Note that JFLAP numbers states in the order that you create them: the first state is qo , the 

second ql , and so on. It is important to respect this order: the following discussion assumes that 

you create the states in such an order that they are numbered as they are in Figure 1.5. 

Notice the four transitions in Figure 1.5 with a A (the Greek letter lambda) . These A-transitions 

are transitions on the empty string. To enter a A-transition, create a transition, but leave the 

field empty. When you finish editing, a transition with the label A will appear. Create the four 

A-transitions from q3 and qg to @ and qn . 

Once you have created the A-transitions , create the other transitions on the symbols a or b .  
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Figure 1.6: Step with closure simulation of aaaabb on our NFA after two steps. 

1.3.2 Simulation 

D · . I t· . ut on a deterministic machine will produce a single path of configurations, unng Slmu a lOn, lnp 
. , 

while input on a nondeterministic machine may produce multiple paths of configuratlOns. JFLAP s 

simulators have features to deal with this possibility. 

Stepping simulation: Step with Closure 

. 
I t · Step with Closure and input the string "aaaabb", that is, four Select the menu ltem npu . 

, 
a's followed by two b's. This is a string that will eventually be accepted since the numb�r 

.
of a s  

. 
d d· . ·bl b 2 and the number of b's is divisible by 2. After you enter thlS mput, lS nonzero an lV1Sl e y 

. h ld see the familiar step simulator, with a starting configuration on go with all the mput you s ou 
. . r k . . b d cr ck Step once to move this configuratlOn to ql. However, lf you c lC remammg to e processe . 1 

Step a second time you will see a rather unfamiliar sight, as shown in Figure 1.6. 
. .  Notice that there are four configurations in your simulator. This is because your machme lS 

d . . t· . Th last configuration was on ql with the unread input aaabb, and ql has a non etermmlS lC . e 
. However, what two configurations on q6 and qn? These configuratlOns transitions to q2 and qg. 

are ue to e A- ransl 1 . d th \ t ·t·ons When a configuration proceeds to a state qi, Step with Closure 
. t l .c  . but for all states reachable on A-transitions from qi. The set creates configuratlOns no on y lor qz, 

1.3. NONDETERMINISM 
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of states reachable from qi on A-transitions is called the closure of qi. So, when the configuration in qg with the remaining input aabb was created, configurations for q6 and qn were created as well because the closure of qg includes q6 and ql1. 
As you may hav¥ figured out, of these two paths of configurations, the only one that will eventually lead to an accepting configuration is the configuration on qg. Click on this configuration to select it. With the configuration selected, click Freeze. The configuration will appear tinted light ice blue! Now try stepping again: While the other configurations move on (and are rejected), that configuration will not progress! Frozen configurations do not progress when the simulator steps. With that configuration still selected, click Thaw. Thaw "unfreezes" selected configurations. Click the Step button once more, and the now unfrozen configuration will continue, and one of its nondeterministic paths will be accepted. 

Select the accepting configuration and click Trace to view the series of configurations that led to the accepting configuration. Notice that there is a configuration from qlQ directly to ql1, even though there is no transition from qlQ to ql1. In stepping by closure one does not explicitly traverse A-transitions in the same sense that one traverses regular transitions: Instead, no configuration was ever generated for qg, and the simulator implicitly traversed the A-transition. 
When you have finished, dismiss the simulator tab. 

Stepping simulation: Step by State 

Select the menu item Input : Step by State, and input the string "aaaabb". In stepping by state, the closure is not taken, so the simulator explicitly traverses A-transitions. If you step twice, you will have configurations in q2 and qg, but not the configurations in q6 and qn that we saw when stepping by closure. 

Notice that the unread input on the qg configuration is aabb. If you step again, the configuration on qg will split into three configurations, two of which are on q6 and qn. The A-transition was taken explicitly over a step action. If you continue stepping until an accepting configuration is encountered and run a trace, the configuration after qlQ is on qg, which then proceeds to ql1 after explicitly taking the A-transition. 

Though stepping by state is in some ways less confusing, stepping with closure is often preferred because it guarantees that each step will read an input symbol. 

Fast simulation 

The fast simulator has some additional features specifically for nondeterminism. Select Input : 

Fast Run, and enter the string "aaaaaabb". Once you enter this, JFLAP will display one trace of 

accepting configurations. 
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Figure l.7: Another FA, which also recognizes the language of the automaton in Figure 1.l .  

The button Keep Looking is useful for nondeterministic machines, where multiple branches 

of configurations may accept the same input. Note that there are six a's. Since six is divisible by 

both two and three, there will be two paths of configurations that accept this input: one path leads 

through state q3 (which verifies that the number of a's is divisible by three) , and another path 

leads through state qg (which verifies that the number of a's is divisible by two) . The trace through 

either q3 or qg should be visible now. Click Keep Looking, and it will search for and display 

the trace through the other state. Click Keep Looking again. JFLAP will display a message, 2 

configurations accepted, and all other possibilities are exhausted, which indicates that no 

other accepting configurations are possible. 

Multiple .simulation 

Nondeterministic machines may produce multiple configuration paths per run. However, the mul

tiple run simulator's ability to view traces of selected runs will present only a single trace for each 

run. Specifically, this feature displays only the trace of the last configuration generated for a run. 

This means that for an accepting run JFLAP displays the trace of the first accepting configuration 

encountered, and further for a rejecting run displays the trace of the last configuration rejected, 

which may not provide enough information. Viewing a run in the stepwise simulator can give a 

more complete picture if you want to debug a nondeterministic machine. 

1.4 Simple Analysis Operators 

In addition to the simulation of input , JFLAP offers a few simple operators from the Test menu 

to determine various properties of the automaton. 

1.4.1 Compare Equivalence 

This operator compares two finite automata to see if they accept the same language. To illustrate 

how this works, we shall load an automaton that recognizes the same language as the automaton 

we have abused throughout much of this chapter: the automaton shown in Figure l.7, stored in 

file ex1.4a. Open this file. Also, open the file ex1 .1 a; this contains the automaton of Figure l.l .  
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You will now hav; two windows, one with the original automaton of Figure l.1 (presumably 

titled ex1.1a), the other with the automaton of Figure l.7 (presumably titled ex1.4a). Choose the 

menu item Test : Compare Equivalence from the ex1.4a window. A prompt will appear where 

you may choose from the names of one other automaton (i.e . ,  the title of another automaton's 

window) from a list . After you select the original automaton's window's name (again, presumably 

ex1.1a), click OK. You will then receive a dialog box telling you that they are equivalent ! Dismiss 

this dialog. Edit the Figure l. 7 automaton so that the b transition from qo to q1 is instead an a 

transition (so that the automaton now recognizes strings with any nonzero number of a's and an 

even number of b's) , or make whatever other change is to your liking so that the automaton no 

longer recognizes the same language as the original. Repeat the test for equivalence, and this time 

you will receive a notice that it does not accept the same language. 

Close the two files, but do not save the changes from the modified ex1.4a. 

1.4.2 Highlight N ondeterminism 

This operator will show the user which states in an automaton are nondeterministic states. Consider 

again the automaton in Figure l.5, stored in the file ex1. 3a. Load this file. The state q1 is obviously 

nondeterministic, and JFLAP considers all states with outgoing A-transitions to be nondeterministic 

states, so q3 and qg are nondeterministic. Select Test : Highlight N ondeterminism: a new view 

will display the automaton with these states highlighted. 

1.4.3 Highlight.\-Transitions 

This operator will highlight all A-transitions. Here we use the same automaton we built in Sec

tion l.3.1, the automaton shown in Figure l.5 and stored in the file ex1. 3a. Load this file if it is 

not already present . When you select Test : Highlight A-Transitions, a new view will display 

the automaton with the four A-transitions highlighted. 

1.5 Alternative Multiple Character Transitions* 

JFLAP provides a more general definition of an FA, allowing multiple characters on a transition. 

This can result in simpler FAs. Pictured in Figure l.8 is a five-state NFA that accepts the same 

language as the thirteen-state NFA in Figure l.5. Notice that the six transitions that are not 

A-transitions are on multiple symbols, for example, aaa from qo to q1 . A configuration may proceed 

on an n character transition of 8182 . . .  8n if the next unread input symbols are 5 1 ,  82 ,  and so on 

through 8n . 

We will now run a simulation on this NFA. Load the file ex1. 5a, select Step With Closure, 

and enter the same aaaabb string we used in Section l.3.2. After you enter the input, you will see 
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bbb 
aaa 

Figure 1.8: An NFA equivalent to that of Figure 1.5. 

the familiar step simulator , with a starting configuration on Go with all the input remaining to be 

processed. Click Step once and you will see six configurations! There are two configurations for 

q3, one closure from ql and one closure from q2. Note that these two configurations have different 

amounts of remaining input since the transitions to ql and q2 process a different amount of input. 

Similarly, there are two configurations for q4. Stepping twice more results in acceptance in Q3· 

By allowing multiple character transitions, the first condition for FA nondeterminism in Sec

tion 1.3 changes . The first condition is now the following: if the FA has two transitions from the 

same state that read strings A and B, where A is a prefix of B, the FA is considered an NFA. For 

example, note that qo is a nondeterministic state: it has two transitions, one from aaa and the 

other from aa; aa is a prefix of aaa, so the FA is nondeterministic. The NFA would use both of 

these transitions while simulating the string aaaabb. 

1.6 Definition of FA in JFLAP 

JFLAP defines a finite automaton NI as the quintuple NI = (Q,� , 6, qs, F )  where 

Q is a finite set of states {qi Ii is a nonnegative integer} 

� is the finite input alphabet 

6 is the transition function, 6 : D -7 2Q where D is a finite subset of Q x �* 

qs E Q is the initial state 

F <;;;; Q is the set of final states 

Users reading only Sections 1.1-1.4 will want to use a simpler definition of 6. In that case, for 

a DFA 6 is the transition function 6 : Q x � -7 Q, and for an NFA 6 is the transition function 

6 : Q x � U {A.} -7 2Q. 

For those users reading Section 1.5, note that JFLAP allows for multiple characters on a tran-

sition. These multiple character transitions complicate the definition of the transition function's 

domain: the set Q x �* is of infinite cardinality, though the transition function requires a finite 

domain. �* means a string of 0 or more symbols from the input alphabet . 
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1.7 Summary 

In Section 1.1 you learned how to create a deterministic finite automaton (DFA) in JFLAP. The 

editor for an automaton has a tool bar along the top portion of the window, and the automaton 

display on the bottom portion of the window. You create states with the tool, create transitions 

with the>"" tool, delete states and transitions with the:!: tool, and edit attributes (position, labels, 

setting final and initial) of existing states and transitions with the � tool. 

In Section 1.2 you learned how to simulate input on automata. Each simulator accepts an input 

string and determines if the automaton accepts that input . The step simulator is useful if you 

are interested in seeing every configuration generated by a machine as it attempts to read your 

input. The fast simulator is useful if you are interested only in those configurations that led to 

an accepting configuration. The multiple input simulator is useful if you are interested in running 

many inputs on an automaton quickly. 

In Section 1.3 you learned about creating and simulating input on a nondeterministic finite 

automaton (NFA) . Leaving the field blank when creating a transition will produce a A.-transition. 

While simulating input, the step simulator may display multiple configurations at once as the 

machine follows different paths attempting to read the input . The fast simulator can search for 

multiple branches of nondeterminism accepting the same input. 

In Section 1.4 we presented three analysis operators available from the Test menu. Compare 

Equivalence checks if two finite automata accept the same language. Highlight Nondetermin

ism highlights nondeterministic states, and Highlight A.-Transitions highlights A.-transitions. 

In Section 1.5 we presented an alternative definition of an FA that allows for multiple characters 

on a transition. This can lead to an FA with a smaller number of states. 

In Section 1.6 we presented JFLAP's formal definition of a finite automaton, which corresponds 

to Section 1.5. We also presented a simpler definition corresponding to Sections 1. 1-1.4. 

1.8 Exercises 

1. Build FAs with JFLAP that accept the following languages: 

(a) The language over � = {a} of any odd number of a's. 

(b) The language over � = {a} of any even number of a's. 

(c) The language over � = {a, b} of any even number of a's and any odd number of b's. 

(d) The language over � = {a, b} of any even number of a's and at least three b's. 
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(b) Repeat part (a) , but with the language of strings anbncn ··· alblClaoboco· 

(c) Repeat part (a) , but with the language of strings aO··· anbo ··· bnco ··· Cn· 

8. Given two FAs A with language LA and B with language LB, you can use JFLAP's Compare 

Equivalence operator to determine whether or not LA = LB· Can you de�ise a general 

method using JFLAP to determine whether LA C;;; LB (i .e., B accepts every stnng A a�cePts) 
. C E I· valence? (Yes part of your instructions may, indeed must, mvolve 

usmg ompare qu . , 

editing A or B. Your method must produce the right answer for any two FAs! ) 

Chapter 2 

NFA to DFA to Minimal DFA 

This chapter shows how each NFA can be converted into an equivalent DFA, and how each DFA 

can be reduced to a DFA with a minimum number of states. Although an NFA might be easier to 

construct than a DFA, the NFA is usually not efficient to run, as an input string may follow several 

paths. Converting an NFA into an equivalent DFA ensures that each input string follows only one 

path. The NFA to DFA algorithm in JFLAP combines similar states reached in the NFA into one 

state in the DFA. The DFA to minimum state DFA algorithm in JFLAP determines which states 

in the DFA have similar behavior with respect to incoming and outgoing transitions and combines 

these states, resulting in a minimal state DFA. 

2.1 NFA to DFA 

In this section we use JFLAP to show how to convert an NFA into an equivalent DFA. The idea 

in the conversion is to create states in the DFA that represent multiple states in the NFA. The 

start state in the DFA represents the start state in the NFA and any states reachable from it on 

A. For each new state in the DFA and each letter of the alphabet , one determines all the reachable 

states from the corresponding NFA states and combines them into a new state for the DFA. This 

state in the DFA will have a label that will contain the state numbers from the NFA that would 

be reachable in taking the same path. 

2.1.1 Idea for the Conversion 

Load the NFA in file ex2. la as shown in Figure 2.1. We will refer to this example in explaining 

the steps in converting this NFA to a DFA. 

First examine the choices that occur when the NFA processes input . Select Input : Step with 

Closure and enter the input string "aabbbaa" and press return. Clicking Step once shows that 

processing a can result in arriving in both states qo and ql. Clicking Step six more times shows 

19 
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a b 

a 

Figure 2.1: Example from file ex2.1a. 

that there are always three configurations (one of which is rejected) , and results in two paths of 

acceptance in states q2 and q3 · 

The states in the constructed DFA will represent combined states from the NFA. For example, 

processing an a resulted in either state qo or ql . The DFA would have a state that represents both 

of these NFA states. Processing aabbbaa resulted in reaching final states q2 and q3 · The DFA would 

have a state that represented both of these NFA states. Dismiss the tab for the step run (select 

File : Dismiss Tab) to go back to the NFA editor. 

2.1.2 Conversion Example 

Now we will convert the NFA to a DFA (select Convert: Convert to DFA) , showing the NFA 

on the left and the first state of the DFA on the right . The initial state in the DFA is named qo 

and has the label 0, meaning it represents the qo state from the NFA. 

Tip The NFA may be tiny. Adjust the size in one of two ways: either resize the window, 

or drag the vertical bar between the NFA and the DFA to the right. In addition, the 

states in the DFA can be dragged closer to each other, resulting in larger states. 

We will now add the state that is reachable from qo on the substring a. Select the Expand 

Group on Terminal tool n,? Click and hold the mouse on state qo , drag the cursor to where you 

want the next state, and release it . When prompted by Expand on what terminal?, enter "a" 

and press return. When prompted by Which group of NF A states will that go to on a?, enter 

the numbers of the states that are reachable from qo on an a. In this case enter "0,1". (These NFA 

states could also be entered with a blank separator and with or without the q, such as "qO,q1". )  

The new state ql appears in Figure 2.2. 

Use the Attribute Editor tool you learned about in Chapter 1 to move states around if you 

don't like their placement. 
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Figure 2.2: Expansion of state qo on a. 

a 

a b 

Figure 2.3: Expansion of a and b from state ql . 

Try expanding DFA state qo on the terminal b. Since there are no paths from NFA state qo on 

a b, a warning message is displayed. 

Next expand the DFA state ql on the terminal a. Note that DFA state ql represents both states 

qo and ql from the NFA. In the NFA, state qo on an a reaches states qo and ql , and state ql on an a 

reaches no state. The union of these results (0, 1) are the states reachable by DFA state ql , which 

happens to be the DFA state ql . Upon the completion of the expansion a transition loop labeled 

a is added to DFA state ql . Now expand DFA state ql on b. The result of these two expansions is 

shown in Figure 2.3. Why is DFA state q2 a final state? If a DFA state represents any NFA state 

that is a final state, then the substring processed is accepted on some path, and thus the DFA state 

also must be a final state. NFA state q2 is a final state, so DFA state q2 (representing NFA states 

ql and q2 ) is a final state. 

Expand DFA state q2 on a. This state is represented by NFA states ql and q2 . NFA state ql 

does not have an a transition. NFA state q2 on an a reaches state q3 and due to the A-transition 

also reaches state q2 . 

Note In using the Expand Group Terminal tool, if the destination state already exists, then 

drag to the existing state and you will be prompted only for the terminal to expand. 

Thus, to add a loop transition, just click on the state. 

Expand DFA state q2 on b by clicking on state q2 . You are prompted for the b, but not the 

states reachable, as that is interpreted as your selected state (itself in this case) . The resulting 

DFA is shown in Figure 2.4. 

There is another way to expand a state-the State Expander tool . When one selects this 

tool and clicks on a state, all arcs out of the state are automatically expanded. In Figure 2.5 state 

q3 was selected and expanded on both a and b, resulting in a new state q4 . 
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a 

Figure 2.4: Expansion of a and b from state q2 . 

Figure 2.5: State Expander tool applied to state q3 · 

b 

Figure 2.6: The completed DFA. 

Is the DFA complete? Select the Done? button. If the DFA is not complete, a message 

indicating items missing is displayed. At this time, one transition is missing. 

Expand DFA state q4 on b by going back to the Expand Group on Terminal tool. Note that q4 

on b goes to the existing DFA state q2 . Click on state q4 , drag to state q2 , and release. You will be 

prompted for the terminal only. 

Is the DFA complete? Select the Done? button. The DFA is complete and is exported to a 

new window. The complete DFA is shown in Figure 2.6. Alternatively, the Complete button can 

be selected at any time during the construction process and the complete DFA will be shown. 

The constructed DFA should be equivalent to the NFA. To test this, in the DFA window select 

Test : Compare Equivalence. Select file ex2 . la, the name of the NFA, and then press return. 

The two machines are equivalent. 

2.2. DFA TO MINIMAL DFA 

2.1.3 Algorithm to Convert NFA M to DFA M' 
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We describe the algorithm to convert an NFA M to a DFA M' . We first define the closure of a set 

of states to be those states unioned with all states reachable from these states on a A-transition. 

1. The initial state in M' is the closure of the initial state from M .  

2. For each state q' in M' and each terminal x do the following: 

(a) States q and r are states in M .  For each state q that is in state q' , if q on an x reaches 

state r on an x, then place state r in new state p'. 

(b) p' = closure(p') 

( c) If another state is equivalent to state p' (represents the same states from M ) , then set 

p' to the state already existing. 

(d) Add the transition to M': q' to p' on an x. 

3. Each state q' in M' is a final state if it contains a final state from M .  

2.2 DFA to Minimal DFA 

In this section we show how to convert a DFA to a minimal state DFA. Consider two states p and q 

from a DFA, each processing a string starting from their state. If there is at least one string w such 

that states p and q process this string and one accepts w and one rejects w, then these states are 

distinguishable and cannot be combined. Otherwise, states p and q "act the same way," meaning 

that they are indistinguishable and can be combined. 

2.2.1 Idea for the Conversion 

Load the DFA in Figure 2.7 (file eX2. 2a) . We will refer to this example to explain the steps to 

convert this DFA to a minimal state DFA. 

We would like to examine pairs of states to see if they are distinguishable or not. To do this we 

will need two separate windows for this DFA. JFLAP lets you open only one copy of each file, so if 

you try to open the same file again, JFLAP will show just the one window. Instead we will make 

a duplicate copy of this file by saving it with a different name (select File : Save as and type 

the filename "ex2.2a-dup") . The current window is now associated with the duplicate file. Load 

the original file ex2. 2a again and it will appear in a separate window (possibly on top of the first 

window) . Move the two windows so you can see both of them. 
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Figure 2.7: Example from file ex2. 2a. 

We will examine the two states qo and ql to see if they are distinguishable. In one of the 

windows, change the start state to ql . Examine the two DFA. Are there any strings that one DFA 

accepts and the other DFA rejects? 

We will examine several strings to see if there is any difference in acceptance and rejection. In 

both DFA windows, select Input : Multiple Run. In both windows, enter the following strings 

.. 1 'd l·k t t " " " b" " b" "b " "ba a" and "bba" Select 
and any addltlOna ones you 1 e 0 ry: a ,  aa , aaaa , aa , a ,  . 

Run Inputs and examine the results. Do the strings have the same result in both DFAs? There 

is at least one string in which the result is Accept for one DFA, and Reject in the other DFA. 

Thus the two states qo and ql are distinguishable and cannot be combined. 

N ow we will examine the two states q2 and q5 to see if they are distinguishable. Dismiss the tab 

in both windows to go back to the DFA window. In one window change the start state to q2 , and 

in the other window change the start state to q5 . Select Input : Multiple Run again. Notice 

that the strings from the last run still appear in the window. Select Run Inputs to try these 

same strings. Type in additional strings and try them as well. Are these states distinguishable 

or indistinguishable? They are distinguishable if there is one string that accepts in one and does 

not accept in the other. All strings must be tested to determine if the states are indistinguishable. 

Clearly it is impossible to test all strings, so a reasonable test set should be created. 
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Figure 2.8: Initial split of final and nonfinal states. 

2.2.2 Conversion Example 

We go through an example of converting a DFA to a minimum state DFA. Remove the previous 

windows (without saving them) and load the file ex2. 2a again, which should have the start state 

qo . Select Convert : Minimize DFA. The window splits into two showing the DFA on the left 

and a tree of states on the right. 

We assume that all states are indistinguishable to start with. The root of the tree contains all 

states. Each time we determine a distinction between states, we split a node in the tree to show 

this distinction. We continue to split nodes until there are no more splits possible. Each leaf in the 

final tree represents a group of states that are indistinguishable. 

The first step in distinguishing states is to note that a final and a nonfinal state are different. 

The former accepts A and the other does not. Thus the tree has already split the set of states into 

two groups of nonfinal and final states as shown in Figure 2.8. 

For additional splits, a terminal will be selected that distinguishes the states in the node. If 

some of the states in a leaf node on that terminal go to states in one leaf node and other states on 

that same terminal go to states that are in another leaf node, then the node should be split into 

two groups of states (i .e. ,  two new leaf nodes) . 

Let 's first examine the leaf node of the nonfinal states (0, 1, 2, 4, 5, 7) . What happens for each 

of these states if they process a b? State qo on a b goes to state q2 , state ql on a b goes to state 

qo , and so on. Each of these states on a b goes to a state already in this node. Thus, b does not 

distinguish these states. In JFLAP, click on the tree node containing the nonfinal states. (Click on 

the circle, not the label or the word Nonfinal . )  The states in this node are highlighted in the DFA. 

Try to split this node on the terminal b. Select Set Terminal and enter b. A message appears 

informing you that b does not distinguish these states. 

Again select Set Terminal and enter the terminal a. Since a does distinguish these states, the 

node is split , resulting in two new leaf nodes. The set of states from the split node must be entered 

into the new leaf nodes, into groups that are indistinguishable. A state number can be entered by 
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Figure 2.9: Split node on a. 

Figure 2 . 10: Node (0, 1, 2, 4, 5, 7) split on a. 

first selecting the leaf node it will be assigned to, and then clicking on the corresponding state in 

the DFA. Click on the left leaf node and then click on state qo in the DFA. The state number 0 

should appear in the leaf node, as shown in Figure 2 .9 .  

State qo on an a goes to state q5 , which is  in the node we are splitting. Note that states ql , q4 , 

and q7 on an a also go to a state in the node we are splitting. Add all of them to the same new leaf 

node as 0 by clicking on these states in the DFA. The remaining states, q2 and q5 on an a, go to a 

final state, thus distinguishing them. Click on the right new leaf node, and then click on states q2 

and q5 to enter them into this node, resulting in the tree shown in Figure 2 . 10. To see if we have 

done this correctly, click on Check Node. Figure 2 . 10  shows the resulting tree after splitting this 

node on a. 
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Figure 2 . 1 1 :  The completed tree of distinguished states. 
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Figure 2. 12: The states for the minimum DFA. 

27 

We must continually try to split nodes on terminals until there is no further splitting. Each 

time we split a node, we have created new groups that might now allow another group to be split 

that could not be split before. 

Next we try to split the leaf node with states 0,1,4, and 7. Which terminal do you try? In this 

case either a or b will cause a split . We will try a. Select Set Terminal and enter a. Enter the 

split groups. State qo on an a goes to state q5 , which is in leaf node group 2, 5, and states ql , Q4 , 

and Q7 on an a go to states in the leaf node we are splitting. Let's enter these states a different way. 

Select Auto Partition and the states will automatically be entered in as shown in Figure 2 . 1 1 .  

When the tree is complete (as it is now, convince yourself that none of the leaf nodes can be 

further split) , then the only option visible is Finish. Select Finish and the right side of the window 

is replaced by the new states for the minimum DFA. There is one state for each leaf node from the 

tree (note the labels on the states correspond to the states from the original DFA) , as shown in 

Figure 2 . 12 .  You may want to rearrange the states using the Attribute Editor. 

Now add in the missing arcs in the new DFA using the Transition Creator tool. In the 

original DFA there is an a from state qo to state q5 , so in the new DFA a transition is added 
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a 

b 

Figure 2 . 13: The minimum DFA. 

from state ql (representing the old state qa) to state q2 (representing the old state q5). Selecting 

Hint will add one transition for you and selecting Complete will complete the DFA, as shown in 

Figure 2 .13 . Selecting Done? will export the new DFA to its own window. 

The minimum state DFA should be equivalent to the original DFA. Test this using the Test : 

Compare Equivalence option. 

Note When you select a node and select Set Terminal, the node you select is split and two 

children appear. It is possible that the node to be split might need more children; that 

is, there may be 3 or more distinguished groups split on this terminal. In that case, 

you must add the additional leaf nodes by selecting the Add Child option for each 

additional child desired. 

2.2.3 Algorithm 

We describe the algorithm to convert a DFA !VI to a minimal state DFA M'. 

1 .  Create the tree of distinguished states as follows: 

(a) The root of the tree contains all states from !VI 

(b) If there are both final and nonfinal states in M, create two children of the root-one 

containing all the nonfinal states from M and one containing all the final states from 

M. 

( c) For each leaf node N and terminal x, do the following until no node can be split: 

1. If states in N on x go to states in k different leaf nodes, k > 1, then create k children 

for node N and spread the states from N into the k nodes in indistinguishable groups. 

2. Create the new DFA as follows: 

(a) Each leaf node in the tree represents a state in the DFA M' with a label equal to the 

states from M in the node. The start state in M' is the state that contains the start 
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Figure 2 . 14: DFA from file ex2. 3a. 

state from M in its label. A state in M' is a final state if it contains a final state from 

M in its label. 

(b) For each arc in M from states p to q, add an arc in M' from the state that has p in its 

label to the state that has q in its label. Do not add any duplicate arcs. 

2.3 Exercises 

1 .  Convert the NFAs in the given files into DFAs. 

(a) ex2-nfa2dfa-a 

(b) ex2-nfa2dfa-b 

(c) ex2-nfa2dfa-c 

(d) ex2-nfa2dfa-d 

(e) ex2-nfa2dfa-e 

(f) ex2-nfa2dfa-f 

2. Consider the language L = {w E L;* I w does not have the substring a abb} , L; = {a ,  b} . 

Load the DFA in file ex2.3a shown in Figure 2. 14. This DFA recognizes L. 

Also load the file ex2. 3b. It is the NFA shown in Figure 2 . 15  that attempts to recognize L, 

but fails. 

Give an input string that shows why this NFA is not equivalent to this DFA. 
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(b) We now want to count the number of ways to generate some of these strings; the brute

force parser will find only one, but we convert the grammar to an equivalent FA and use 

the fast simulator. Convert the right-linear grammar to an FA. Let aR be the string of 

a's of length e. Run the fast simulator described in Section 1 .2 .2 on the strings aO 
= A, 

a1 
= a, . . .  , through a6 

= aaaaaa, and count the number of ways the fast simulator finds 

to accept each of these strings. Remember, you can keep pressing Keep Looking until 

the final summary message appears saying how many accepting configurations it found. 

(c) Let An be the number of ways the FA can accept (equivalently, that the grammar can 

generate) the string an . We have Ao , Al ,  . . . , A6 . Present a recursive formula for An, 

that is, determine a formula for An in terms of values of Ai , where i < n .  Hint: Use 

a counting argument. If we use the production S --+ aaS, how many ways are there to 

generate the rest of the string without the aa ? 

(d) Load the right-linear grammar in the file ex3.6b. Let Bn be the number of ways to 

generate an with this new grammar. Using your knowledge in determining a recursive 

formula for An, determine a recursive formula for Bn· Hint: If you convert this to an 

FA, the number of accepting configurations during simulation of an is the same as the 

number of ways to generate an. For various an, do a fast simulation as described in 

Section 1 . 2. 2  to count accepting configurations. You can manually find specific Bn this 

way until you see the pattern. 

8. Consider the conversion of a right-linear grammar to an FA. Sometimes the conversion of a 

right-linear grammar will result in a DFA, and sometimes it will result in an NFA, depending 

on the structure of the grammar. In this problem we explore theoretical properties of JFLAP's 

converter of right-linear grammars to FAs. 

(a) In Chapter 1 we explored a DFA that accepted the language over 'E = {a, b} of any 

number of a's followed by any odd number of b's. Can you create a right-linear grammar 

that generates this language and converts directly to a DFA? If you can, create the 

grammar with JFLAP and convert it to a DFA. 

(b) Consider a second language, the language over 'E = {a, b, c} of any number of a's followed 

by any odd number of b's, and finally suffixed with a single c. Can you create a right

linear grammar that generates this language and converts directly to a DFA? If you can, 

create the grammar with JFLAP and convert it to a DFA. 

( c) What is the general characteristic of a language for which one may construct a right

linear grammar that converts directly to a DFA? Hint: The string aabbb is in the first 

language. Does any other string in that language start with aabbb ? The string aabbbc is 

in the second language. Does any other string in the language start with aabbbc ? 

Chapter 4 

Regular Expressions 

In this chapter we introduce a third type of representation of regular languages: regular expressions 

(REs) .  We describe how to edit REs, convert an RE to an equivalent NFA, and convert an FA to 

an equivalent RE, and then give JFLAP's formal definition of an RE. 

4.1 Regular Expression Editing 

Figure 4. 1 :  The editor for REs where the 

RE (q+a) . . .  + b*+cd has been entered. 

In this section we learn how to edit REs. Start JFLAP' if it is al e d . 
h , r a y runnmg, c oose to create a new structure via the menu item File : New. Select Regular Expression from the list of new str�cture choices. A window will appear that is similar to Figure 4.1 .  Since an RE is essentially a strmg, JFLAP's RE editor consists of a small text field in the middle of the wind ow. 

JFLAP' RE h . s s use t ree baSiC operators. To clarify, these are not operators in the JFLAP sense, but rather the mathematical sense (e.g., pluses and minuses) . The three operators in order of dec�easing precedence are: the Kleene star (represented by the asterisk character *) , the concatenatlOn operator (implicit by making two expressions adjacent), and the union operator (also called th " " e or operator, represented by the plus sign +) . You may use parentheses to specify the order 
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of operations. Lastly, the exclamation point ( ! )  designates the empty string, and is an easy way 

to enter A. 

A few examples of REs will help clarify JFLAP's operators ' precedence. The expression a+b+cd 

describes the language {a, b, cd} ,  whereas abcd describes the singleton language {abcd} . The expres

sion a(b+c)d describes the language {abd, acd} , whereas ab+cd describes the language {ab, cd} . The 

expression abc* describes the language {ab, abc, abcc, abccc, . . .  } ,  whereas (abc) * describes the language 

{A, abc, abcabc, abcabcabc, . . .  } .  The expression a + b* describes the language {a, A, b, bb, bbb, . . .  } ,  

whereas (a+ b)* describes the language {A, a, b, aa, ab, ba, bb, aaa, aab, . . .  } .  The expression O + a)bc 

describes the language {bc, abc} ; recall that ! is the user's way of entering A. 

In this chapter we restrict ourselves to languages over lowercase letters, but JFLAP allows any 

character except * ,  +, (, ) ,  or ! as part of an RE's language. Specifically, beware that the space 

key is a perfectly legal character for a language. For example, a * where a space follows the a (so 

a is followed by any number of spaces) is distinct from a* (any number of a's) . Note that none of 

the regular expressions in this chapter or its exercises have spaces in them, so do not type them in. 

We are going to enter the RE (q+a)+ b*+ cd, a very simple RE that indicates that we want a 

string consisting of either q or a, or of any number of b's, or the string cd. Type this RE into the 

text field. 

4.2 Convert a Regular Expression to an NFA 

Since REs are equivalent in power to FAs, we may convert between the two. In this section we will 

illustrate the conversion of an RE to an NFA. For this example we use the RE defined in Figure 4.1, 

the expression (q+ a}+b*+cd, also stored in file ex4. la. In the window with the RE, select the menu 

item Convert : Convert to NFA to start the converter. 

Figure 4.2: The starting GTG in the conversion. 

For the purpose of the converter, we use a generalized transition graph (GTG) , an extension of 

the NFA that allows expression transitions, transitions that contain REs. In a GTG, a configuration 

may proceed on a transition on a regular expression R if its unread input starts with a string s E R; 

this configuration leads to another configuration with the input s read. We start with a GTG of 

two states, and a single expression transition with our regular expression from the initial to the 

final state. The idea of the converter is that we replace each transition with new states connected 

by transitions on the operands of that expression's top-level operator. (Intuitively, the top-level 
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operator is the operator in an expression that must be evaluated last . For example, in ab+ c, the 
top-level operator is + since the concatenation operator has higher priority and will be evaluated 
before the +.)  We then connect these operands with A-transitions to duplicate the functionality 
of the lost operator. In this way, at each step we maintain a GTG equivalent to the original RE. 
Eventually all operators are removed and we are left with single character and A-transitions at , 
which point the GTG can be considered a proper NFA. 

Tip You may use the Attribute Editor tool � at any point to move states around. In addition 
to moving states manually, with this tool the automatic graph layout algorithm may be 
applied, as described in Section 1 . 1 .5 .  

4.2.1 "De 0 · " E . Tr . .  - rIng an xpresslon ansltlOn 

Figure 4.3: The GTG after "de-expressionifying" the 

first transition, but before we add the supporting 

A-transitions. 

To start converting, select the De-expressionify Transition tool A .  With this tool active click , 
on the (q+a)+b*+cd transition. The GTG will be reformed as shown in Figure 4.3. Note that the 
transition has been broken up according to the top-level + union operator, and that the operands 
that were being "ored" have now received their own transitions . The De-expressionify Transition 
tool :.:.. determines the top-level operator for an expression, and then puts the operands of that 
operator into new expression transitions. 

Note the labels near the top of the converter view: De-oring (q+a)+b* +cd, and 6 more 
A-transitions needed. These labels give an idea of what you must do next . 

In this case, you must produce six A-transitions so that these new six states (q2 through q7) and 
their associated transitions act like the + union operator that we have lost. To add these transitions, 
select the Transition Creator tool � .  To approximate the union functionality, you must add six 
A-transitions, three from qo to q2 , q4 , and q6 , and three more to ql from q3 , q5 , and q7 . Intuitively, 
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CmWl'!rt RE to NfA 

De- oring (q+a)+b" +cd 
1 more �-Hans i uons needed. 

Figure 4.4: The converter window in the midst of "de-oring" 

the first transition. All the A-transitions for this de-oring 

have been added, except the transition from q7 to ql . 

in going from qo to ql , a simulation may take the path through the (q +a) expression transition or 

the b* expression transition or the cd expression transition. In short , these A-transitions help to 

approximate the functionality of the lost + operator on these operands. Use the Transition Creator 

tool >'" to create these. All transitions are A-transitions, so JFLAP does not bother asking for 

labels. As you add transitions, the label at the top of the window decrements the number of 

transitions needed. Figure 4.4 shows an intermediate point in adding these transitions, with only 

the transition from q7 to ql not created. When you finish adding these transitions to the GTG, 

JFLAP allows you to "de-expressionify" another transition. 

4.2.2 "De-concatenating" an Expression Transition 

Once you finish "de-oring" the first transition, you have three expression transitions. We will 

reduce cd next; the top-level operator for this expression is the concatenation operator. Select 

the De-expressionify Transition tool �i� once more, and click on the cd transition. In Figure 4.5 

you see the result. Note that JFLAP informs us that we are De-concatenating cd and that we 

have 3 more A-transitions needed; similar to de-oring, de-concatenating requires the addition 

of A-transitions to approximate the lost concatenation operator. 
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Figure 4.5: The beginning of de-con-

catenating the expression transition cd. 

States and transitions extraneous to the de

concatenating are cropped out. 
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We require three A-transitions: one from q6 to qs , another from qg to qlQ , and a last one from 
ql1 to q7 · Configurations on @ will have to satisfy the c expression (between qs and qg) ,  and 
then satisfy the d expression (between qlQ and ql1 )  before proceeding to q7 . This arrangement is 
functionally equivalent to c concatenated with d. 

A remedy of errors 

Select the Transition Creator tool >"' .  Instead of adding the right transitions, let 's add an incorrect 

transition! Create a transition from q6 to qlQ . With this transition, the configuration can proceed 

from @ to the d portion, bypassing c. This is incorrect. A dialog box will report A transition 

there is invalid, and the transition will not be added. 

Although checking for wrong transitions is universal to the converter no matter what operator 
you are splitting on, the de-concatenating process has some additional restrictions. Add a transition 
from ql1 to q7 · This is perfectly valid! However, JFLAP reports in a dialog, That may be 
correct, but the transitions must be connected in order. In this case, this means you must 
first connect @ to qs , and then qg to qlQ , and only then may you connect ql1 to q7 . Add these 
transitions now. 

Figure 4.6: The finished de-concatenating of 

the expression transition cd. 
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The relevant portion of the automaton will resemble Figure 4.6 .  Since you have finished the de

concatenation of cd, you may now reduce another expression transition. Select the De-expressionify 

Transition tool -:J:. again. Recall that the converter recursively breaks down expression transitions 

until they are either one character or A-transitions. If you click on the c transition, the message 

That's as good as it gets appears to inform you that you needn't reduce that transition . 

4.2.3 "De-staring" a Transition 

We will reduce the b* transition next. With the De-expressionify Transition tool �t4 active, click the 

b* transition. Kleene stars may have only one operand, in this case b. As we see in Figure 4.7,  the b 

has been separated into a new portion of the automaton. JFLAP tells us that we are De-staring 

h* and that there are 4 more A-transitions needed. 

Similar to concatenations and ors, we must add A-transitions to duplicate the functionality of 

the Kleene star. The four transitions that JFLAP wants are from q4 to q12 and q13 to q5 (to allow 

configurations to read a b from their input) , and another from q4 to q5 (to allow zero b's to be 

read) , and the last from q5 to q4 (to allow for repeat reading of b) . Select the Transition Creator 

tool >" and add these transitions so the relevant portion of the GTG resembles Figure 4.8 .  , 

Figure 4.7: The beginning of de-staring 

the expression transition b*. States and 

transitions extraneous to the de-staring are 

cropped out. 

Figure 4 .8 :  The finished de-staring of the 

expression transition b*. 
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The only remaining existing transition incompatible with an NFA is the (q+a) transition, which has 

sur�ounding parentheses. The parentheses are the top-level operator since they indicate that their 

contents must be evaluated first, and only when that evaluation finishes do the parentheses finish 

evaluating. However, when the parentheses surround the entire expression, they are completely 

unnecessary. Activate the De-expressionify Transition tool J:" ,  and click on the (q+a) transition. 

The surrounding parentheses will disappear, leaving you with q+a.  No A-transitions are needed. 

q 

a 

Figure 4.9 :  The finished de-oring of the expression tran

sition q+a. 

Figure 4.10: The NFA that recognizes the language 

(q+a)+b*+cd. 

To finish, use the De-expressionify Transition tool -:J:. tool once more to break q + a  by the + 

operator. Connect A-transitions similar to the procedure described in Section 4 .2 .1, so that the 
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relevant section of the GTG resembles Figure 4.9, and overall the automaton resembles Figure 4.10 .  

The GTG is now a proper NFA, so the conversion to an NFA is finished! You may press the Export 

button to put the automaton in a new window. 

4.2.5 Automatic Conversion 

Dismiss the Convert RE to NFA tab now. Once you have returned to the RE editor, select the 

menu item Convert : Convert to NFA. We shall convert the same RE again, but we'll do it 

automatically this time! 

Once you see the converter view with the GTG as pictured in Figure 4.2, press Do Step. A step 

in this conversion is the reduction of a single expression transition. There is only one expression 

transition, the (q+a)+b*+cd transition, so that is reduced and the requisite A-transitions are added 

without intervention from the user. 

The second option is Do All; this is functionally equivalent to pressing Do Step until the 

conversion finishes. This is useful if you want the equivalent NFA immediately. Press Do All; the 

finished NFA will appear in the window, ready to be exported. 

4.2.6 Algorithm to Convert an RE to an NFA 

1 .  Start with an RE R. 

2 .  Create a GTG G with a single initial state qo , single final state q1 , and a single transition 

from qo to q1 on the expression R. 

3. Although there exists some transition t E G from states qi to qj on the expression S longer 

than one character, let ¢ be the top-level operator of the expression S, and let [aI , a2, . . .  , a,p ] 
be the ordered list of operands of the operator ¢ (since parenthetical and Kleene star operators 

take exactly one operand 1jJ = 1 in those cases) .  

(a) If ¢ is a parenthetical operator, replace t with an expression transition on a 1  from qi to 

qj . 

(b) If ¢ is a Kleene star operator (* ) , create two new states qx and qy for G, remove t ,  and 

create an expression transition on a1 from qx to qy , and create four A-transitions from 

qi to qx , qy to qj ,  qi to qj , and qj to qi · 

(c) If ¢ is a union operator (+) , remove t, and for each k from 1 through 1jJ (i) create two 

new states qXk and qYk ' (ii) create an expression transition on ak from qXk to qYk ' and 

(iii) create two A-transitions, from qi to qXk and from qYk to qj .  

(d) If ¢ is a concatenation operator, remove t ,  and for each k from 1 through 1jJ (i) create two 

new states qXk and qYk ' (ii) create an expression transition on ak from qXk to qYk ' and 
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(iii) if k > 1 create a A-transition from qYk-l to qXk . Finally, create two A-transitions, 

one from qi to qXl and another from qy'iJ to qj . 

4. The GTG is now a proper NFA. The conversion is finished. 

I' 

4.3 Convert an FA to a Regular Expression 

The conversion of an FA to an RE follows logic that is in some respects reminiscent of the RE to 

NFA conversion described in Section 4.2 .  We start with an FA that we consider a GTG for the 

purposes of conversion. We then remove states successively, generating equivalent GTGs until only 

a single initial and single final state remain. JFLAP then uses a formula to express the simplified 

GTG as a regular expression. 

e 
d 

Figure 4. 1 1 :  The FA we convert to an RE. 

In this walk-through we convert the automata pictured in Figure 4. 1 1  to a regular expression. 

This automata is stored in the file ex4. 3a. Open this automata. Choose the menu item Convert 

: Convert FA to RE to begin converting. Your window will resemble Figure 4 .12 .  

4.3.1 Reforming the FA to a GTG 

The algorithm to convert an FA to an RE requires first that the FA be reformed into a GTG with 

a single final state, an initial state that is not a final state, and exactly one transition from qi to qj 

for every pair of states qi and qj (i may equal j ) .  

Reform FA to have a single noninitial final state 

There are two things wrong with our FA's final states: there are two final states, and one of them 

is also the initial state. We must reform the automaton so that it has exactly one final state and 

ensure that that final state is not the initial state. To do this JFLAP first requires that a new state 

be created: select the State Creator tool and click somewhere on the canvas to create a new 

state. (Similar to the conversion from an RE to an NFA, this converter also displays directions 

above the editor. At this stage it tells you Create a new state to make a single final state. ) 
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JHAP : 
file Input Test Convert Help 

Convert FA to RE. . 

fI.·1ake Srngie Noni niha! Final  State 
Create a t�ew sta(e to m ake a s i n g l e  final s tale. 

-, . i�irD� 't Export 

Figure 4 .12 :  The starting window when con

verting an FA to an RE. 

e 
d 

Figure 4. 13: The FA after a new final state is created. 

Once this new state is created, the FA will resemble Figure 4.13 .  Note that this new state is the 

final state, and those states that were previously final states are now regular states and have been 

highlighted. JFLAP directs you to put A-transitions from old final states to new. Select 

the Transition Creator tool .Y' and create transitions from each of the highlighted states to the 

new final states. JFLAP assumes that every transition is a A-transition and does not query for the 
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Figure 4. 14: The FA after the A-transitions 

have been made from the old final states to 

the new final state. 
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transition label. As you create each A-transition, the source state will be de-highlighted. When 

you finish, your FA will resemble Figure 4.14 .  

Collapse multiple transitions 

One of the requirements of this algorithm is that for every pair of states qi and qj there must be 

exactly one transition from qi to qj . Half of this requirement is that there cannot be more than 

one transition from qi to qj . Consider the two loop transitions for ql on d and e .  We can satisfy 

the requirement by replacing these two transitions with the single expression transition d+e, which 

indicates that we may proceed on either d or e .  

Select the Transition Collapser tool ��+� , and click on either the d or e .  When you click on 

a transition that goes from qi to qj , this tool reforms all transitions from qi to qj into a single 

transition where the labels of the removed transitions are separated by + operators. The new 

transition will be either d + e  or e + d, either of these is equivalent, of course, but for the sake of 

this discussion's simplicity we assume the result was d+e .  With this step, our GTG is no longer a 

proper FA. The GTG is shown in Figure 4 .15 .  

In general, i f  more than one pair of  states have more than one transition, use the Transition 

Collapser tool """l on their transitions as well . 

Add empty transitions 

Recall once more that every pair of states qi and qj must have exactly one transition from qi to 

qj . This means that if no transition exists, an empty transition (on the empty set symbol 0) must 
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d + e 

Figure 4 . 15 :  The GTG after the d and e 

loop transitions on ql are combined into 

d+e. 

be created! Select the Transition Creator tool .Y' again, and create a transition from qo to q2 . A 

transition on 0 will appear. 

d + e  

Figure 4 .16: The FA after the addition of 

empty transitions. 

The essential distinction between GTGs and FAs is that FA transitions describe a single string, 

while GTG transitions describes sets of strings. In this particular case, we are creating transitions 

on the empty set of strings, hence transitions on 0. Similar to the earlier creation of A-transitions, 

JFLAP assumes you are creating empty transitions. As you proceed, JFLAP will inform you how 

many more empty transitions are required. Seven are required in all: from qo to q2, ql to q3 , q2 to 

qo , q3 to qo , q3 to ql , q3 to q2, and a loop transition on q3 (q3 to q3) .  When you finish, your GTG 

will resemble Figure 4 . 16 .  
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Now we have a GTG with a single final state, an initial state that is not a final state, and for every 

pair of states qi and qj there is exactly one transition from qi to qj . The next step is to iteratively 

r�move every state in the GTG except the final state and the initial state. As each state is removed, 

we adjust the transitions remaining to ensure the GTG after the state removal is equivalent to the 

G TG before the state removal. 

0 0 a 
0 1 b 
0 3 A 
1 0 b 
1 1 (e+d)+ca"'c 
1 3 ca'" 
3 0 121 
3 1 121 
:3 3 121 

Finalize 

Figure 4 .17: The window that shows the 

replacement transitions when removing a 

state. 

, 

The states can be collapsed in any order. However, to understand the following discussion, you 

will need to collapse states in the given order. Select the State Collapser tool . Once selected, 

click first on state q2· A window like the one shown in Figure 4 .17  appears that informs you of the 

new labels for transitions before the collapse occurs. Let 7"ij be the expression of the transition from 

qi to qj . The rule is, if we are removing qk , for all states qi and qj so that i i= k and j i= k, 7"ij is 

replaced with 7"ij + 7"ik7"kk7"kj .  In other words, we compensate for the removal of qk by encapsulating 

in the walk from qi to qj the effect of going from qi to qk (hence 7"ik) , then looping on qk as much 

as we please (hence 7"kk) '  and then proceeding from qk to qj (hence 7"kj) .  Lastly, note that 0 obeys 

the following relations: if 7" is any regular expression, 7" + 0 = 7", 7"0 = 0, and 0* = A. 

Select the row that describes the new transition from ql to ql (the loop transition on ql ) , 

d+e+ca*c. The transitions from which this new transition is composed are highlighted in the GTG. 

There are two paths that must be combined into one expression transition, the walk from ql to ql , 

d+e, and the alternative walk from ql to ql that goes through q2 , ca*c. More formally, 7"1,1 = d+e, 

7"1 ,2 = 7"2,1 = c, and 7"2,2 = a, so the new transition is 7"1 1 + 7"1 27"2* 27"2 1 = d + e + ca* c as JFLAP , ' "  

2 
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indicates. 
The rules for operations on the empty set are more unfamiliar. Select the row that describes 

the new transition from qo to ql . There are two paths that must be combined into one expression 

transition, the walk from qo to qo , b, and the alternative walk from qo to q1 that goes through 

q2 , 0a*c. More formally, rO ,l = b, rO,2 = 0, r2,2 = a, and r2 ,l = c, so the new transition is 

rO,l + ro,2r2,2r2,1 = b+0a*c. The concatentation of any expression with the empty set is the empty 

set , so 0a*c = 0, so b+0a*c = b+0. The union of the empty set with any expression is that expression, 

so b+0 = b, which is the new expression from qo to ql · 

Figure 4. 18 :  The finished GTG after the 

removal of q2 and q1 · 
Inspect all the other replacements to see if you can figure out the formula, and then reduce it to 

the label shown in Figure 4. 1 7. Then click Finalize. The transitions listed will be replaced, and q2 

will be removed. Repeat this process with q1 . Note there are only four replacements, and some of 

the labels are quite long. (You might have to resize the window to see the complete labels. )  When 

ql is removed, your GTG will resemble Figure 4. 18.  

4.3.3 Regular Expression Formula 

At this point your GTG should have two states-one final and one initial-and resemble Figure 4. 18 .  

Let rxy be the expression of the transition from qx to qy . For a GTG in this form, where qi is  the 

initial state and qj is the final state, the equivalent RE r is given by equation 4. l .  

(4. 1 ) 

The conversion is now finished, and JFLAP displays the RE of equation 4.2,  derived from 

equation 4. 1 .  

(a+b  (d+e+ ca*c) *b)* (A+b (d+e+ca*c)* ca*) (4.2) 

At this point, you may press Export to put the finished RE in a new window. 

4.4. DEFINITION OF AN RE IN JFLAP 

Note If for your input FA any of these steps are unnecessary, JFLA P will skip over them. In 

the extreme case, if you have an FA with two states (one initial, the other final) , and 

with four transitions (a loop on the initial, a loop on the final, another from the initial 

to final , and a last one from the final to the initial) , JFLA P will skip everything and 

display the finished RE! 

4.3.4 Algorithm to Convert an FA to an RE 

1 .  Start with an FA, though we consider it a GTG G for the purpose of the algorithm. 
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2. Let F be the set of G's final states, and qo be its initial state. If IF I  > 1 or F = {qo} ,  create 

a new state qf , produce A-transitions for every qi E F from qi to qf , and make qf the only 

final state. 

3. Let S be the set of G's states. For every (qi , qj) E S x S, let L = {£,! , £'2 , . . .  , £'n} be the set 

of expressions of transitions from qi to qj . Let e = 0 if IL l  = 0 and e = £'1 + £'2 + . . .  + £'n 

otherwise , and replace all transitions from qi to qj with a single transition from qi to qj on 

the expression e .  

4 .  Let T be the set of  G's nonfinal, noninitial states. Let rxy be the expression of the transition 

from qx to qy . For every qk E T, for every (qi , qj ) E (T - {qk})  x (T - {qk})  replace rij with 

rij + rikrkkrkj , and finally remove qk from G. (Note: If r is any regular expression, r + 0 = r, 
r0 = 0, and 0* = A. )  

5 .  G now has two states: the initial state qo and single final state qf . The equivalent regular 

expression is r = (r�orofrffrfo) * r�orofr;f ' 

4.4 Definition of an RE in JFLAP 

Let "E be some alphabet. The set of all possible regular expressions is given by R. 

R = {0, A} U "E U {ab la ,  b E R} U {a+b la,  b E R} U {a*la E R} U {(a) la E R} 

4.5 Summary 

In Section 4 . 1  we learned how to edit regular expressions (REs) . JFLAP respects the following 

operators in order of decreasing precedence: the Kleene star (the * character) , concatenation 

(implicit by making two expressions adjacent) ,  and lastly, union (the + character) . Parentheses 


