

Freie Universität Bozen Libera Università di Bolzano

FREE UNIVERSITY OF BOZEN - BOLZANO

Fakultät für Informatik | Facoltà di Scienze e Tecnologie informatiche | Faculty of Computer Science

COURSE PRESENTATION FORM

COURSE NAME COURSE CODE LECTURER TEACHING ASSISTANT TEACHING LANGUAGE CREDIT POINTS LECTURE HOURS EXERCISE HOURS PREREQUISITES	Theory of Computing 70101 Diego Calvanese Kurt Ranalter English 8 48 24 There are no prerequisites in terms of courses to attend. Students should be familiar with notions of mathematics and set theory, and with basic proof
	techniques, as taught in the mathematics courses of a bachelor in computer science.
OBJECTIVES	The objective of the Theory of Computing course is to introduce and study abstract, mathematical models of computation (such as Turing machines, formal grammars, recursive functions), and to use the abstract computation models to study the ability to solve computational problems, by identifying both the intrinsic limitations of computing devices, and the practical limitations due to limited availability of resources (time and space). A second objective is to show how to reason and prove properties about computations in a precise, formal, abstract way.
SYLLABUS	Formal languages, formal grammars, Turing Machines, recursive functions, undecidability, computational complexity, NP-completeness, time and space complexity classes
TEACHING FORMAT ASSESSMENT	Frontal lectures; exercises in class Midterm or final examination on the first half of the syllabus (50%) + final examination on the second half of the syllabus (50%). The two parts of the examination can be taken independently of each other within the three exam sessions of an academic year. Each part of the examination may be either written or oral.
READING LIST	 Textbook: Introduction to Automata Theory, Languages, and Computation (3rd edition). J.E. Hopcroft, R. Motwani, J.D. Ullman. Addison Wesley, 2007. Further reading material: Elements of the Theory of Computation (2nd edition). H.R Lewis, C.H. Papadimitriou. Prentice Hall. 1998. Introduction to the Theory of Computation. M. Sipser. PWS Publishing Company. 1997. Computational Complexity. C.H. Papadimitriou. Addison Wesley. 1995.
SOFTWARE USED LEARNING OUTCOME	After the course, students will know the fundamental models of computation, and the intrinsic and practical limitations of computing devices. They will also be familiar with formal techniques of computer science, and will be able to formally prove properties about computations.