

(3/66)

D. Calvanese

D. Calvanese Part 1: First-Order Queries KBDB – 2007/2008

Part 1: First-Order Queries KBDB - 2007/2008

(4/66)

Part 1: First-Order Queries

KBDB - 2007/2008

(7/66)

D. Calvanese

•00	Semantics of first-order logic	First-order logic queries
		Chap. 1: First-Order Logic
First-order logic		
• First order logic	(FOL) is the logic to speak a	hout objects which
are the domain of	of discourse or universe.	bout objects, which
 FOL is concerne 	d about <mark>properties</mark> of these of	ojects and relations
over objects (res	sp., unary and n -ary predicates	s).
FOL also has full	nctions including constants th	at denote objects.
		() unibz
	Part 1: First Order Queries	KRDD 2007 (2000 (6 (66)
J. Calvanese	Tart 1. Thist-Order Queries	KBDB - 2007/2008 (6/66)
Sumbou of first order lasis	Campanian of first order login	KBDB - 2007/2008 (6/60) First order losis quarter
Syntax of first-order logic	Semantics of first-order logic	First-order logic queries
Syntax of first-order logic	Semantics of first-order logic	First-order logic queries 0000 Chap. 1: First-Order Logic
Syntax of first-order logic oo FOL syntax — For	Semantics of first-order logic 0000 mulas	First-order logic queries 0000 Chap. 1: First-Order Logic
Syntax of first-order logic Soo FOL syntax - For Def : The set of <i>For</i>	Semantics of first-order logic 0000 mulas	First-order logic queries 0000 Chap. 1: First-Order Logic
Syntax of first-order logic Soo FOL syntax - For Def.: The set of <i>For</i>	Semantics of first-order logic 0000 mulas mulas is defined inductively a	First-order logic queries 0000 Chap. 1: First-Order Logic
Syntax of first-order logic Soo FOL syntax – For Def.: The set of <i>For</i> If $t_1, \ldots, t_k \in T$ $P^k(t_1, \ldots, t_k) \in T$	Semantics of first-order logic mulas is defined inductively a $erms$ and P^k is a k-ary predic Formulas (atomic formulas)	KBDB - 2007/2008 (6/66, First-order logic queries 0000 Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic Ooo FOL syntax - For Def.: The set of <i>For</i> • If $t_1, \ldots, t_k \in T$ $P^k(t_1, \ldots, t_k) \in T$	Semantics of first-order logic occo mulas mulas is defined inductively a ferms and P^k is a k-ary predic Formulas (atomic formulas).	KBDB - 2007/2008 (6/66, First-order logic queries 0000 Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic \mathbf{FOL} syntax - For $\mathbf{Def.:}$ The set of <i>For</i> $\mathbf{If} t_1, \dots, t_k \in T$ $P^k(t_1, \dots, t_k) \in$ $\mathbf{If} t_1, t_2 \in Terms$	Semantics of first-order logic occo mulas mulas is defined inductively a terms and P^k is a k-ary predic Formulas (atomic formulas) s, then $t_1 = t_2 \in Formulas$.	KBDB - 2007/2008 (6/66, First-order logic queries ocoo Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic Soo FOL syntax – For Def.: The set of <i>For</i> • If $t_1, \dots, t_k \in T$ $P^k(t_1, \dots, t_k) \in$ • If $t_1, t_2 \in Terms$ • If $\varphi \in Formulas$	Semantics of first-order logic occo mulas mulas is defined inductively a formulas (atomic formulas) s, then $t_1 = t_2 \in Formulas$. and $\psi \in Formulas$ then	KBDB - 2007/2008 (6/66, First-order logic queries 0000 Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic Solution of the set of For If $t_1, \dots, t_k \in T$ $P^k(t_1, \dots, t_k) \in$ If $t_1, t_2 \in Terms$ If $\varphi \in Formulas$ $\neg \varphi \in Formulas$ $\varphi \in Formulas$	Semantics of first-order logic occoo mulas mulas is defined inductively a ferms and P^k is a k-ary predic Formulas (atomic formulas); s, then $t_1 = t_2 \in Formulas$. and $\psi \in Formulas$ then ilas mulas	KBDB - 2007/2008 (6/66, First-order logic queries ocoo Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic Syntax of first-order logic OO Def.: The set of <i>For</i> If $t_1, \dots, t_k \in T$ $P^k(t_1, \dots, t_k) \in$ If $t_1, t_2 \in Term$ If $\varphi \in Formulas$ $\neg \varphi \in Formulas$ $\varphi \land \psi \in For$ $\varphi \lor \psi \in For$	Semantics of first-order logic mulas mulas is defined inductively a $erms$ and P^k is a k -ary predic Formulas (atomic formulas). s , then $t_1 = t_2 \in Formulas$. s and $\psi \in Formulas$ then ulas mulas mulas	KBDB - 2007/2008 (6/66) First-order logic queries 0000 Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic Syntax of first-order logic OO Def.: The set of For If $t_1, \dots, t_k \in T$ $P^k(t_1, \dots, t_k) \in$ If $t_1, t_2 \in Terms$ If $\varphi \in Formulas$ $\neg \varphi \in Formulas$ $\varphi \land \psi \in For$ $\varphi \lor \psi \in For$ $\varphi \to \psi \in For$	Semantics of first-order logic mulas mulas is defined inductively a $erms$ and P^k is a k -ary predic Formulas (atomic formulas). s , then $t_1 = t_2 \in Formulas$. s and $\psi \in Formulas$ then ulas mulas mulas mulas	First-order logic queries occo Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic $\mathbf{FOL} \ \mathbf{syntax} - \mathbf{For}$ $\mathbf{Def.:} \ \mathbf{The set of} \ \mathbf{For}$ $\mathbf{e} \ \mathbf{lf} \ t_1, \dots, t_k \in T$ $P^k(t_1, \dots, t_k) \in$ $\mathbf{e} \ \mathbf{lf} \ t_1, t_2 \in Terms$ $\mathbf{e} \ \mathbf{lf} \ \varphi \in Formulas$ $\mathbf{e} \ \varphi \wedge \psi \in For$ $\mathbf{e} \ \varphi \wedge \psi \in For$ $\mathbf{e} \ \varphi \rightarrow \psi \in For$ $\mathbf{e} \ \mathbf{e} \ \mathbf{for}$ $\mathbf{e} \ \mathbf{f} \ \varphi \in Formulas$	Semantics of first-order logic mulas mulas is defined inductively a $erms$ and P^k is a k -ary predic Formulas (atomic formulas); s , then $t_1 = t_2 \in Formulas$. $a and \psi \in Formulas$ then ulas mul	KBDB - 2007/2008 (6/66) First-order logic queries oooo Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic Syntax of first-order logic OO FOL syntax – For from end for	Semantics of first-order logic mulas mulas is defined inductively a $perms$ and P^k is a k -ary predic Formulas (atomic formulas). $permulas$, then $t_1 = t_2 \in Formulas$. permulas then ulas mulas $permulas$ and $x \in Vars$ then mulas	KBDB - 2007/2008 (6/66) First-order logic queries 0000 Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic Syntax of first-order logic Oe Def.: The set of For If $t_1, \dots, t_k \in T$ $P^k(t_1, \dots, t_k) \in$ If $t_1, t_2 \in Terms$ If $\varphi \in Formulas$ $\neg \varphi \in Formulas$ $\varphi \land \psi \in For$ $\varphi \lor \psi \in For$ $\varphi \rightarrow \psi \in For$ If $\varphi \in Formulas$ $\exists x. \varphi \in Forr$ $\forall x. \varphi \in Forr$	Semantics of first-order logic occoo mulas mulas is defined inductively a derms and P^k is a k-ary predic Formulas (atomic formulas). is, then $t_1 = t_2 \in Formulas$. is and $\psi \in Formulas$ then ulas mulas mulas mulas mulas mulas mulas	KBDB - 2007/2008 (6/66, First-order logic queries 0000 Chap. 1: First-Order Logic s follows: cate, then
Syntax of first-order logic Syntax of first-order logic Solution Def.: The set of <i>For</i> If $t_1, \ldots, t_k \in T$ $P^k(t_1, \ldots, t_k) \in$ If $t_1, t_2 \in Terms$ If $\varphi \in Formulas$ $\neg \varphi \in Formulas$ $\varphi \land \psi \in For$ $\varphi \lor \psi \in For$ $\varphi \rightarrow \psi \in For$ $\exists x.\varphi \in Forr$ $\forall x.\varphi \in Forr$ Nothing else is i	Semantics of first-order logic cocco mulas mulas is defined inductively a ferms and P^k is a k-ary predic Formulas (atomic formulas) s, then $t_1 = t_2 \in Formulas$. e and $\psi \in Formulas$ then ilas mulas mulas is and $x \in Vars$ then mulas in Formulas.	KBDB - 2007/2008 (6/66) First-order logic queries ocoo Chap. 1: First-Order Logic s follows: cate, then

Part 1: First-Order Queries

KBDB - 2007/2008

(11/66)

D. Calvanese

000	Semantics of first-order logic	First-order logic queries
		Chap. 1: First-Order Logic
Interpretations		
Given an <mark>alphabet</mark> o each with an associa	f predicates P_1, P_2, \ldots and fun ited arity, a FOL interpretation	ctions f_1, f_2, \ldots , is:
1	$\mathcal{I} = (\Delta^{\mathcal{I}}, P_1^{\mathcal{I}}, P_2^{\mathcal{I}}, \dots, f_1^{\mathcal{I}}, f_2^{\mathcal{I}}, \dots$.)
where:		
• $\Delta^{\mathcal{I}}$ is the doma	in (a set of objects)	
• if P_i is a k -ary	predicate, then $P_i^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \cdots$	$ imes \Delta^{\mathcal{I}}$ (k times)
• if f_i is a k -ary f	function, then $f_i^\mathcal{I}:\Delta^\mathcal{I} imes\cdots imes i$	$\Delta^{\mathcal{I}} \longrightarrow \Delta^{\mathcal{I}}$ (k times)
 if f_i is a consta (i.e., f_i denotes 	nt (i.e., a 0-ary function), then exactly one object of the dom	$f_i^\mathcal{I}:()\longrightarrow \Delta^\mathcal{I}$ ain)
Colorest	Prot 1. First Outer Occurs	WDDD 2007/2000 (10/66)
		(10/00)
Syntax of first-order logic	Semantics of first-order logic	First-order logic queries
	0000	0000
T 11 ' ' '	0000	0000 Chap. 1: First-Order Logic
Truth in an inter	oretation wrt an assignm	Chap. 1: First-Order Logic
Truth in an interp We define when a FO assignment α , writte • $\mathcal{I}, \alpha \models P(t_1,$ • $\mathcal{I}, \alpha \models t_1 = t_2$ • $\mathcal{I}, \alpha \models \neg \varphi$ if • $\mathcal{I}, \alpha \models \varphi \land \psi$	Directation wrt an assignm OL formula φ is true in an integen $\mathcal{I}, \alpha \models \varphi$: $\dots, t_k)$ if $(\hat{\alpha}(t_1), \dots, \hat{\alpha}(t_k)) \in $ if $\hat{\alpha}(t_1) = \hat{\alpha}(t_2)$ $\mathcal{I}, \alpha \not\models \varphi$ if $\mathcal{I}, \alpha \models \varphi$ and $\mathcal{I}, \alpha \models \psi$	Chap. 1: First-Order Logic Tent rpretation $\mathcal I$ wrt an $P^{\mathcal I}$
Truth in an interp We define when a Fe assignment α , writte • $\mathcal{I}, \alpha \models P(t_1,$ • $\mathcal{I}, \alpha \models t_1 = t_2$ • $\mathcal{I}, \alpha \models \neg \varphi$ if • $\mathcal{I}, \alpha \models \varphi \land \psi$ • $\mathcal{I}, \alpha \models \varphi \lor \psi$	oretation wrt an assignm OL formula φ is true in an integen $\mathcal{I}, \alpha \models \varphi$: $., t_k)$ if $(\hat{\alpha}(t_1), \dots, \hat{\alpha}(t_k)) \in$ if $\hat{\alpha}(t_1) = \hat{\alpha}(t_2)$ $\mathcal{I}, \alpha \not\models \varphi$ if $\mathcal{I}, \alpha \models \varphi$ and $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ or $\mathcal{I}, \alpha \models \psi$	Chap. 1: First-Order Logic nent rpretation $\mathcal I$ wrt an $P^{\mathcal I}$
Truth in an interpotential of the second se	Directation wrt an assignm OL formula φ is true in an integen $\mathcal{I}, \alpha \models \varphi$: $\dots, t_k)$ if $(\hat{\alpha}(t_1), \dots, \hat{\alpha}(t_k)) \in \mathcal{I}$ if $\hat{\alpha}(t_1) = \hat{\alpha}(t_2)$ $\mathcal{I}, \alpha \not\models \varphi$ if $\mathcal{I}, \alpha \models \varphi$ and $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ or $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ implies $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ implies $\mathcal{I}, \alpha \models \psi$ if for some $a \in \Delta^{\mathcal{I}}$ we have \mathcal{I} .	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Truth in an interpotential of the second se	Directation wrt an assignm OL formula φ is true in an integen $\mathcal{I}, \alpha \models \varphi$: $., t_k)$ if $(\hat{\alpha}(t_1), \dots, \hat{\alpha}(t_k)) \in$ if $\hat{\alpha}(t_1) = \hat{\alpha}(t_2)$ $\mathcal{I}, \alpha \not\models \varphi$ if $\mathcal{I}, \alpha \models \varphi$ and $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ or $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ implies $\mathcal{I}, \alpha \models \psi$ if for some $a \in \Delta^{\mathcal{I}}$ we have \mathcal{I}, ϕ if for every $a \in \Delta^{\mathcal{I}}$ we have \mathcal{I}, ϕ	Chap. 1: First-Order Logic nent rpretation \mathcal{I} wrt an $P^{\mathcal{I}}$ $\alpha[x \mapsto a] \models \varphi$ $\alpha[x \mapsto a] \models \varphi$
Truth in an interp We define when a For assignment α , writter • $\mathcal{I}, \alpha \models P(t_1,$ • $\mathcal{I}, \alpha \models t_1 = t_2$ • $\mathcal{I}, \alpha \models \neg \varphi$ if • $\mathcal{I}, \alpha \models \varphi \land \psi$ • $\mathcal{I}, \alpha \models \varphi \land \psi$ • $\mathcal{I}, \alpha \models \varphi \lor \psi$ • $\mathcal{I}, \alpha \models \exists x.\varphi$ • $\mathcal{I}, \alpha \models \forall x.\varphi$ Here, $\alpha[x \mapsto a]$ stanfollows:	Dretation wrt an assignm OL formula φ is true in an integen $\mathcal{I}, \alpha \models \varphi$: \dots, t_k) if $(\hat{\alpha}(t_1), \dots, \hat{\alpha}(t_k)) \in \mathcal{I}$ if $\hat{\alpha}(t_1) = \hat{\alpha}(t_2)$ $\mathcal{I}, \alpha \not\models \varphi$ if $\mathcal{I}, \alpha \models \varphi$ and $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ or $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ implies $\mathcal{I}, \alpha \models \psi$ if for some $a \in \Delta^{\mathcal{I}}$ we have \mathcal{I} , if for every $a \in \Delta^{\mathcal{I}}$ we have \mathcal{I} , if for the new assignment obta	Chap. 1: First-Order Logic Chap. 1: First-Order Logic nent rpretation \mathcal{I} wrt an $P^{\mathcal{I}}$ $\alpha[x \mapsto a] \models \varphi$ $\alpha[x \mapsto a] \models \varphi$ ained from α as
Truth in an interp We define when a Fe assignment α , writte • $\mathcal{I}, \alpha \models P(t_1,$ • $\mathcal{I}, \alpha \models P(t_1,$ • $\mathcal{I}, \alpha \models \gamma e$ if • $\mathcal{I}, \alpha \models \neg \varphi$ if • $\mathcal{I}, \alpha \models \varphi \land \psi$ • $\mathcal{I}, \alpha \models \varphi \land \psi$ • $\mathcal{I}, \alpha \models \varphi \lor \psi$ • $\mathcal{I}, \alpha \models \exists x.\varphi$ • $\mathcal{I}, \alpha \models \forall x.\varphi$ Here, $\alpha[x \mapsto a]$ stan follows:	Determines φ is true in an interval φ is true in an interval φ : $(1, \alpha \models \varphi)$: $(1, \alpha \models \varphi)$: $(1, \alpha \models \varphi)$: $(1, \alpha \models \varphi)$ if $\hat{\alpha}(t_1) = \hat{\alpha}(t_2)$ $\mathcal{I}, \alpha \models \varphi$ if $\mathcal{I}, \alpha \models \varphi$ and $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ or $\mathcal{I}, \alpha \models \psi$ if $\mathcal{I}, \alpha \models \varphi$ implies $\mathcal{I}, \alpha \models \psi$ if for some $a \in \Delta^{\mathcal{I}}$ we have \mathcal{I} , if for every $a \in \Delta^{\mathcal{I}}$ we have \mathcal{I} , if for the new assignment obtain $\alpha[x \mapsto a](x) = a$	Chap. 1: First-Order Logic nent rpretation \mathcal{I} wrt an $P^{\mathcal{I}}$ $\alpha[x \mapsto a] \models \varphi$ $\alpha[x \mapsto a] \models \varphi$ ained from α as

Part 1: First-Order Queries

KBDB - 2007/2008

(12/66)

Note:We will also use the notation $\varphi^{\mathcal{I}}$, which keeps the free variables
implicit, and $\varphi(\mathcal{I})$ making apparent that φ becomes a functions from
interpretations to set of tuples.D. CalvanesePart 1: First-Order QueriesKBDB - 2007/2008 (15/66)

Syntax of first-order logic	Semantics of first-order logic	First-order logic queries
		Chap. 1: First-Order Logic
Outline		
Syntax of first-orde	r logic	
2 Semantics of first-o	rder logic	
3 First-order logic qu	eries	
		unibz.it
D. Calvanese	Part 1: First-Order Queries	KBDB - 2007/2008 (14/66)
Syntax of first-order logic	Semantics of first-order logic	First-order logic queries
		Chap. 1: First-Order Logic

Def.: A FOL boolean query is a FOL query without free variables.

Hence, the answer to a boolean query $\varphi()$ is defined as follows:

$$\varphi()^{\mathcal{I}} = \{() \mid \mathcal{I}, \langle \rangle \models \varphi()\}$$

Such an answer is

 $\bullet \ (), \quad \text{ if } \mathcal{I} \models \varphi$

FOL boolean gueries

• \emptyset , if $\mathcal{I} \not\models \varphi$.

As an obvious convention we read () as "true" and \emptyset as "false".

D. Calvanese

Part 1: First-Order Queries KBDB - 2007/2008

(16/66)

000	Semantics of first-order logic	First-order logic queries
		Chap. 1: First-Order Logic
FOL formulas: log	gical tasks	
Definitions		
		$d \to \sigma$
• Validity: φ is va	lid iff for all \mathcal{I} and α we have	that $\mathcal{I}, \alpha \models \varphi$.
• Satisfiability: φ	is satisfiable iff there exists ar	\mathcal{I} and α such that
$\mathcal{I}, \alpha \models \varphi$, and u	nsatisfiable otherwise.	
 Logical implicati 	on: $arphi$ logically implies ψ , write	tten $\varphi \models \psi$ iff for all
$\mathcal I$ and α , if $\mathcal I, \alpha$	$\models \varphi$ then $\mathcal{I}, \alpha \models \psi$.	
• Logical equivale	nce: @ is logically equivalent t	$\tau_{0} \psi_{1}$ iff for all \mathcal{T} and
α we have that	$\mathcal{T} \alpha \vdash \alpha \text{ iff } \mathcal{T} \alpha \vdash \psi \text{ (i.e.)}$	$\varphi \vdash \psi$ and $\psi \vdash \varphi$
	$2, \alpha \vdash \varphi \equiv 2, \alpha \vdash \varphi \pmod{\varphi}$	$\varphi \vdash \varphi$ und $\varphi \vdash \varphi$).
		unibz.
		-

$\Delta^{\mathcal{I}} \times \dots \times \Delta^{\mathcal{I}} \text{ for all } \mathcal{I}, \text{ i.e.}, \text{ of } \mathcal{I}.$ of $\mathcal{I}.$ an $\varphi^{\mathcal{I}} \neq \emptyset$ for some $\mathcal{I}, \text{ i.e.}, \mathcal{I}$ mplies ψ , then $\varphi^{\mathcal{I}} \subseteq \psi^{\mathcal{I}}$ for to φ is contained in that of query containment. y equivalent to ψ , then $\varphi^{\mathcal{I}}$ nswer to the two queries is is called query equivalence in both directions. d to the case where we hav oble interpretations. Queries KBDB - 2007/2008	, the the r all f ψ in $f = \psi^{\mathcal{I}}$ the and /e $\psi^{\mathfrak{I}}$
$\Delta^{\mathcal{I}} \times \cdots \times \Delta^{\mathcal{I}}$ for all \mathcal{I} , i.e. of \mathcal{I} . on $\varphi^{\mathcal{I}} \neq \emptyset$ for some \mathcal{I} , i.e., mplies ψ , then $\varphi^{\mathcal{I}} \subseteq \psi^{\mathcal{I}}$ for to φ is contained in that of query containment. y equivalent to ψ , then $\varphi^{\mathcal{I}}$ nswer to the two queries is is called query equivalence in both directions. d to the case where we hav oble interpretations. Queries KBDB - 2007/2008	the the r all f ψ in $f = \psi^{\mathcal{I}}$ the and /e (18/6 ery evaluatio
Queries KBDB – 2007/2008	8 (18/6 ery evaluatio
Queries KBDB – 2007/2008 Complexity of que	8 (18/6 ery evaluatio ery Evaluatio
Complexity of que	ery evaluatio ery Evaluatio
000000	ery Evaluatio
Chap. 2: First-Order Que	

D. Calvanese

unibz.it

(20/66)

KBDB - 2007/2008

Query evaluation problem

Chap. 2: First-Order Query Evaluation

Definitions

Query evaluation problem

• Query answering problem: given a finite interpretation \mathcal{I} and a FOL query $\varphi(x_1, \ldots, x_k)$, compute

$$\varphi^{\mathcal{I}} = \{(a_1, \ldots, a_k) \mid \mathcal{I}, \langle a_1, \ldots, a_k \rangle \models \varphi(x_1, \ldots, x_k)\}$$

• Recognition problem (for query answering): given a finite interpretation \mathcal{I} , a FOL query $\varphi(x_1, \ldots, x_k)$, and a tuple (a_1, \ldots, a_k) , with $a_i \in \Delta^{\mathcal{I}}$, check whether $(a_1, \ldots, a_k) \in \varphi^{\mathcal{I}}$, i.e., whether

 $\mathcal{I}, \langle a_1, \ldots, a_k \rangle \models \varphi(x_1, \ldots, x_k)$

 Note:
 The recognition problem for query answering is the decision problem corresponding to the query answering problem.
 Image: Calvanese
 Part 1: First-Order Queries
 KBDB - 2007/2008
 (23/66)

Query evaluation problem Complexity of query evaluation Chap. 2: First-Order Query Evaluation Query evaluation algorithm (cont'd) boolean Truth($\mathcal{I}, \alpha, \varphi$) { if (φ is $t_{-1} = t_{-2}$) return TermEval($\mathcal{I}, \alpha, t_{-1}$) = TermEval($\mathcal{I}, \alpha, t_{-2}$); if (φ is $P(t_1, \ldots, t_k)$) return $P^{\mathcal{I}}$ (TermEval($\mathcal{I}, \alpha, t_{-1}$),...,TermEval($\mathcal{I}, \alpha, t_{-k}$)); if (φ is $\neg \psi$) return \neg Truth($\mathcal{I}, \alpha, \psi$); if $(\varphi \text{ is } \psi \circ \psi')$ return Truth($\mathcal{I}, \alpha, \psi$) \circ Truth($\mathcal{I}, \alpha, \psi'$); if (φ is $\exists x.\psi$) { boolean b = false; for all ($a \in \Delta^{\mathcal{I}}$) b = b \vee Truth($\mathcal{I}, \alpha[x \mapsto a], \psi$); return b; } if (φ is $\forall x.\psi$) { boolean b = true; for all ($a \in \Delta^{\mathcal{I}}$) b = b \wedge Truth($\mathcal{I}, \alpha[x \mapsto a], \psi$); return b; } () unibz.i } D. Calvanese Part 1: First-Order Queries KBDB - 2007/2008 (25/66)

Query evaluation – Re		
Query evaluation – N	oculto	Chap. 2: First-Order Query
	courto	
Theorem (Termination of	$\mathtt{Truth}(\mathcal{I}, lpha, arphi)$)	
The algorithm Truth term	ninates.	
Proof. Immediate.		
Theorem (Correctness)		
The algorithm Truth is so ${\tt Truth}(\mathcal{I}, \alpha, \varphi) = {\tt true}.$	ound and complete, i.e.,	$\mathcal{I}, \alpha \models \varphi \text{ if and o}$
Proof Easy since the algo	orithm is very close to t	he semantic defini
of $\mathcal{I}, \alpha \models \varphi$.		the semantic denni
. Calvanese	Part 1: First-Order Queries	KBDB - 2007/2008
. Calvanese Query evaluation problem	Part 1: First-Order Queries	KBDB - 2007/2008 Complexity of query ●●○○○○
. Calvanese Query evaluation problem 00000	Part 1: First-Order Queries	KBDB – 2007/2008 Complexity of query ●●○○○○ Chap. 2: First-Order Query
. Calvanese Query evaluation problem 20000 Query evaluation — Ti	Part 1: First-Order Queries	KBDB - 2007/2008 Complexity of query ●0000 Chap. 2: First-Order Query
Query evaluation problem 20000 Query evaluation — Ti	Part 1: First-Order Queries	KBDB – 2007/2008 Complexity of query ●●0000 Chap. 2: First-Order Query
Calvanese Query evaluation problem 200000 Query evaluation – Ti Theorem (Time complexit	Part 1: First-Order Queries ime complexity I $\alpha_{1}(\tau_{1}, \alpha_{2}, \alpha_{3})$	KBDB – 2007/2008 Complexity of query ●●00000 Chap. 2: First-Order Query
Calvanese uery evaluation problem oooo Query evaluation – Ti Theorem (Time complexity The time complexity of Ta	Part 1: First-Order Queries Time complexity I by of Truth $(\mathcal{I}, \alpha, \varphi)$) with $(\mathcal{I}, \alpha, \varphi)$ is (\mathcal{I})	KBDB - 2007/2008 Complexity of query ●●○○○○ Chap. 2: First-Order Query

Part 1: First-Order Queries

D. Calvanese

() unibz.it

(28/66)

Query evaluation problem

Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation – Time complexity II

- $P^{\mathcal{I}}$ (of arity k) can be represented as k-dimensional boolean array, hence accessing the required element can be done in time linear in $|\mathcal{I}|.$
- Truth(...) for the boolean cases simply visits the formula, so generates either one or two recursive calls.
- Truth(...) for the quantified cases $\exists x.\varphi$ and $\forall x.\psi$ involves looping for all elements in $\Delta^{\mathcal{I}}$ and testing the resulting assignments.
- The total number of such testings is $O(|\mathcal{I}|^{\sharp Vars})$.

Hence the claim holds.

D. Calvanese

D. Calvanese

Complexity of query evaluation 000000

KBDB - 2007/2008

Chap. 2: First-Order Query Evaluation

Query evaluation – Space complexity II

• Truth(...) for the boolean cases simply visits the formula, so generates either one or two recursive calls, each requiring constant size:

Part 1: First-Order Queries

- Truth(...) for the quantified cases $\exists x.\varphi$ and $\forall x.\psi$ involves looping for all elements in $\Delta^{\mathcal{I}}$ and testing the resulting assignments:
- The total number of activation records that need to be at the same time on the stack is $O(\sharp Vars) \leq O(|\varphi|)$.

Hence the claim holds.

(29/66)

Note: the worst case form for the formula is

$$\forall x_1 . \exists x_2 . \dots \forall x_{n-1} . \exists x_n . P(x_1, x_2, \dots, x_{n-1}, x_n).$$

Part 1: First-Order Queries

KBDB - 2007/2008 (31/66)

Chap. 2: First-Order Query Evaluation

(30/66

()) unibz.it

(32/66)

Complexity of query evaluation

Definition (Combined complexity)

The combined complexity is the complexity of $\{ \langle \mathcal{I}, \alpha, \varphi \rangle \mid \mathcal{I}, \alpha \models \varphi \}$, i.e., interpretation, tuple, and query are all considered part of the input.

Definition (Data complexity)

Definition (Query complexity)

```
The query complexity is the complexity of \{\langle \alpha, \varphi \rangle \mid \mathcal{I}, \alpha \models \varphi\}, i.e., the
interpretation \mathcal{I} is fixed (and hence not considered part of the input).
```

Part 1: First-Order Queries

D Calvanese

KBDB - 2007/2008

unibz.i

(35/66)

D. Calvanese

KBDB - 2007/2008

Part 1: First-Order Queries

D. Calvanese

unibz.i

(36/66)

KBDB - 2007/2008

Part 1: First-Order Queries

• the variables in \vec{x}_1 the distinguished variables;

D. Calvanese

• the variables in \vec{y}_1 the non-distinguished variables.

Part 1: First-Order Queries

KBDB - 2007/2008

(39/66)

```
000000000
                                                                 Chap. 3: Conjunctive Queries
Conjunctive queries and SQL – Example
  Relational alphabet:
     Person(name, age), Lives(person, city), Manages(boss, employee)
  Query: return name and age of all persons that live in the same city as
  their boss.
  Expressed in SQL:
  SELECT P.name, P.age
  FROM Person P, Manages M, Lives L1, Lives L2
  WHERE P.name = L1.person AND P.name = M.employee AND
         M.boss = L2.person AND L1.city = L2.city
  Expressed as a CQ:
  \exists b, e, p_1, c_1, p_2, c_2. Person(n, a) \land Manages(b, e) \land Lives(p_1, c_1) \land Lives(p_2, c_2) \land
                    n = p1 \land n = e \land b = p2 \land c1 = c2
  Or simpler: \exists b, c. Person(n, a) \land Manages<math>(b, n) \land Lives(n, c) \land Lives(b, c)
D. Calvanese
                                 Part 1: First-Order Queries
                                                               KBDB - 2007/2008
                                                                               (38/66)
```

Containment of conjunctive queries

Evaluation of conjunctive queries

Evaluation of conjunctive queries

Chap. 3: Conjunctive Queries

Unions of conjunctive queries

Conjunctive queries – Example

- Consider an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$, where $E^{\mathcal{I}}$ is a binary relation note that such interpretation is a (directed) graph.
- The following CQ q returns all nodes that participate to a triangle in the graph:

 $\exists y, z. E(x, y) \land E(y, z) \land E(z, x)$

• The query q in datalog notation becomes:

 $q(\mathbf{x}) \leftarrow E(\mathbf{x}, y), E(y, z), E(z, \mathbf{x})$

• The query q in SQL is (we use Edge(f,s) for E(x,y):

SELECT E1.f FROM Edge E1, Edge E2, Edge E3 WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f D. Calvanese Part 1: First-Order Queries KBDB - 2007/2008 (40/66)

Evaluation of conjunctive queries	Containment of conjunctive queries	Unions of conjunctive queries 00000000 Chan 2: Conjunctive Queries
Nondeterministic C	Q evaluation algorithm]
boolean Truth(\mathcal{I}, α , if (φ is $t_{-1} = t_{-}^{\mathcal{I}}$ return TermEva if (φ is $P(t_{-1}, \ldots)$ return $P^{\mathcal{I}}$ (Term if (φ is $\psi \land \psi'$) return Truth(\mathcal{I}) $\Delta^{\mathcal{I}}$ TermEval($\mathcal{I}, \alpha, t_{-}^{\mathcal{I}}$ if (t is a vari- if (t is a vari-	$ \{ \varphi \} $ $ \{ 2 \} $ $ 1(\mathcal{I}, \alpha, t_{-1}) = \operatorname{TermEval}(\mathcal{I}, \ldots, t_{-k})) $ $ \operatorname{nEval}(\mathcal{I}, \alpha, t_{-1}), \ldots, \operatorname{TermE} $ $ T, \alpha, \psi \} \land \operatorname{Truth}(\mathcal{I}, \alpha, \psi') ; $ $ \} $ $ \{ able \ x) \ \operatorname{return} \ \alpha(x) ; $ $ tort \ a) \ \operatorname{return} \ \alpha^{\mathcal{I}} ; $	$, lpha, t_2);$
if (t is a cons }	tant c) return c^{2} ;	
D. Calvanese	Part 1: First-Order Queries	KBDB - 2007/2008 (42/66)
3-colorability A graph is k -colorable colors in such a way th different colors. Def.: 3-colorability is t Given a graph $G = (V$	if it is possible to assign to enat every two nodes connecte he following decision problem	Chap. 3: Conjunctive Queries ach node one of k d by an edge have
	(E), is it 5-colorable!	
Theorem 3-colorability is NP-co We exploit 3-colorabili evaluation.	mplete. ty to show NP-hardness of co	onjunctive query

For boolean CQs, $\mathcal{I} \models q$ iff there exists a homomorphism from \mathcal{I}_q to \mathcal{I} .

" \Rightarrow " Let $\mathcal{I} \models q$, let α be an assignment to the existential variables that makes q true in \mathcal{I} , and let $\hat{\alpha}$ be its extension to constants. Then $\hat{\alpha}$ is a homomorphism from \mathcal{I}_q to \mathcal{I} .

" \Leftarrow " Let *h* be a homomorphism from \mathcal{I}_q to \mathcal{I} . Then restricting *h* to the variables only we obtain an assignment to the existential variables that makes *q* true in \mathcal{I} .

unibz.i

00000000	Containment of conjunctive queries	Unions of conjunctive	queries
		Chap. 3: Conjunctive	Queries
Canonical interpret	tation and (boolean) C	Q evaluation	
The previous result ca	n be rephrased as follows:		
(The recognition prob reduced to finding a h	lem associated to) query eval omomorphism.	uation can be	J
Finding a homomorph structures) is also kno (CSP), a problem well	ism between two interpretation wn as solving a Constraint Sa I-studied in AI – see also [KV	ons (aka relational atisfaction Problem 98].	
		(unibz.it
L aluanaça		2010 2007/2000	(E2/66)
. Calvanese	Part 1: First-Order Queries	KBDB – 2007/2008	(53/66)
Valuation of conjunctive queries	Containment of conjunctive queries	KBDB - 2007/2008 Unions of conjunctive	(53/66) queries
valuation of conjunctive queries	Containment of conjunctive queries	KBDB – 2007/2008 Unions of conjunctive 0000000 Chap. 3: Conjunctive	(53/66) queries Queries
valuation of conjunctive queries voococococo Query containmen For CQs, query contai evaluation.	Containment of conjunctive queries cocococo-oco t for CQs inment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ can be	Unions of conjunctive ocoooco Chap. 3: Conjunctive reduced to query	(53/66) queries Queries
Calvanese Evaluation of conjunctive queries Sococococo Query containmen For CQs, query contai evaluation. Image: Preeze the free valuation of the pressible, set the set the free valuation of the pressible, set the set t	Containment of conjunctive queries cocococo t for CQs inment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ can be ariables, i.e., consider them as since $q_1(\vec{x}) \subseteq q_2(\vec{x})$ iff	KBDB - 2007/2008 Unions of conjunctive 0000000 Chap. 3: Conjunctive reduced to query s constants.	(53/66) queries Queries
Calvanese Evaluation of conjunctive queries popodocodo For CQs, query contain evaluation. Freeze the free vant This is possible, so $\mathcal{I}, \alpha \models q_1(\vec{x})$ $\mathcal{I}_{\alpha, \vec{c}} \models q_1(\vec{c})$ constants, and $c^{\mathcal{I}_{\alpha, \vec{c}}} = \alpha(x).$	Containment of conjunctive queries cocococo-coco t for CQs inment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ can be ariables, i.e., consider them as since $q_1(\vec{x}) \subseteq q_2(\vec{x})$ iff implies $\mathcal{I}, \alpha \models q_2(\vec{x})$, for all \mathcal{I} a implies $\mathcal{I}_{\alpha,\vec{c}} \models q_2(\vec{c})$, for all $\mathcal{I}_{\alpha,\vec{c}}$ d $\mathcal{I}_{\alpha,\vec{c}}$ extends \mathcal{I} to the new cor	KBDB - 2007/2008 Unions of conjunctive Chap. 3: Conjunctive reduced to query s constants. and α ; or equivalents; y, where \vec{c} are new stants with	(53/66) queries Queries
Calvanese Evaluation of conjunctive queries Socococococo Query containmen For CQs, query contained evaluation. Image: Socococococococococococococococococococ	Containment of conjunctive queries cococococococococococococococococococo	Chap. 3: Conjunctive chap. 3: Conjunctive reduced to query a constants. and α ; or equivalent c, where \vec{c} are new istants with f the CQ $q_1(\vec{c})$ on t	(53/66) queries Queries ntly
Calvanese Evaluation of conjunctive queries Socooooooooooooooooooooooooooooooooooo	Containment of conjunctive queries Containment of conjunctive queries t for CQs inment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ can be ariables, i.e., consider them as since $q_1(\vec{x}) \subseteq q_2(\vec{x})$ iff implies $\mathcal{I}, \alpha \models q_2(\vec{x})$, for all \mathcal{I} as implies $\mathcal{I}_{\alpha,\vec{c}} \models q_2(\vec{c})$, for all $\mathcal{I}_{\alpha,\vec{c}}$ d $\mathcal{I}_{\alpha,\vec{c}}$ extends \mathcal{I} to the new cor nonical interpretation $\mathcal{I}_{q_1(\vec{c})}$ o on $\mathcal{I}_{q_1(\vec{c})}$ the CQ $q_2(\vec{c})$ on the er $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.	KBDB - 2007/2008 Unions of conjunctive OCODOCOC Chap. 3: Conjunctive reduced to query s constants. and α ; or equivalents, where \vec{c} are new ustants with f the CQ $q_1(\vec{c})$ on t right hand side,	(53/66) queries Queries htly the

Evaluation of conjunctive queries	Containment of conjunctive queries	Unions of conjunctive queries
Evaluation of UCQ	S	Chap. 3: Conjunctive Queries
From the definition of	FOL query we have that:	
$\mathcal{I},$	$\alpha \ \models \ \bigvee_{i=1,\ldots,n} \exists \vec{y_i}. \textit{conj}_i(\vec{x}, \vec{y_i})$)
if and only if		
$\mathcal{I}, \alpha \models \exists \vec{y_i}.$	$conj_i(ec{x},ec{y_i}) \qquad ext{for some } i \in$	$\{1,\ldots,n\}.$
Hence to evaluate a U size of q) of conjunctiv	CQ q , we simply evaluate a r ve queries in isolation.	number (linear in the
Hence, evaluating UCC	$\mathfrak{Q}\mathfrak{s}$ has the same complexity a	as evaluating CQs.
D. Calvanese	Part 1: First-Order Queries	KBDB – 2007/2008 (62/66)
Evaluation of conjunctive queries	Containment of conjunctive queries	Unions of conjunctive queries 000000 Chap. 3: Conjunctive Queries
Query containment		
Theorem For UCQs, $\{q_1, \ldots, q_k\}$ that $q_i \subseteq q'_j$.	$G \subseteq \{q_1', \dots, q_n'\}$ iff for each	n q_i there is a q_j^\prime such
<i>Proof.</i> "⇐" Obvious.		
" \Rightarrow " If the containment (\vec{x}) \vec{x}	ent holds, then we have (\vec{r})	
$\{q_1(c), \dots, q_k(c)\} \subseteq \{q_1(c), \dots, q_k(c)\}$	$q_1(c), \dots, q_n(c)$, where c are \Rightarrow We have $\mathcal{T} \Rightarrow \vdash q_1(c)$ as	e new constants:
$\mathcal{I}_{q_i(\vec{c})} \models \{q_1(\vec{c}), \dots$	$(q_k(\vec{c}))$. $(q_k(\vec{c})) = q_i(c), a$	
• By the containme	nt, we have that $\mathcal{I}_{q_i(\vec{c})} \models \{q'_i\}$	$q_1'(ec{c}), \dots, q_n'(ec{c})\}.$ I.e.,
• Hence, by [CM77]	on containment of CQs, we	have that $q_i \subseteq q'_i$.
		() unibz.it

Evaluation of conjunctive queries Query containmen	Containment of conjunctive queries 000000000000000000000000000000000000	Unions of conjuncti 0000000 Chap. 3: Conjunctiv	ive queries ve Queries	Evaluation of a oooooooooooooooooooooooooooooooooo	nces	Containment of conjunctive queries	Unions of conjunc 000000 Chap. 3: Conjunc
From the previous resu $\{q_1, \ldots, q_k\} \subseteq \{q'_1, \ldots\}$ We immediately get: Theorem Containment of UCQs	ult, we have that we can chect $, q'_n \}$ by at most $k \cdot n$ CQ co is is NP-complete.	:k ntainment checks	5.	[CM77] [KV98] [Var82]	A. K. Chandra an Optimal implemer In <i>Proc. of the 9t</i> 77–90, 1977. P. G. Kolaitis and Conjunctive-query In <i>Proc. of the 17</i> <i>Database Systems</i> M. Y. Vardi. The complexity of In <i>Proc. of the 14</i> (STOC'82), pages	d P. M. Merlin. ntation of conjunctive queries in 1 th ACM Symp. on Theory of Con I M. Y. Vardi. ty containment and constraint sati th ACM SIGACT SIGMOD SIGA s (PODS'98), pages 205–213, 19 f relational query languages. Ith ACM SIGACT Symp. on Theory s 137–146, 1982.	relational data bases. aputing (STOC'77), sfaction. RT Symp. on Princip 98.
			wnibz.it				
			105 100	D. Calvanas		Deut 1. First Onder Oursier	KDDD 0007/0000