Unit 6

Loop statements

Summary

Repetition of statements
The while statement
Input loop

Loop schemes

The for statement

The do statement
Nested loops

Flow control statements

6.1 Statements in Java

Till now we have seen different types of statements (without counting declarations):

e simple statements:
— method invocation
— simple statements, i.e., assignment or use of an increment/decrement operator followed by ";"
— flow control statements (break and return)
e composite (or structured) statements
— block of statements
— conditional statements (if-else, if, switch)

6.2 Repetition of statements

Often, to solve a problem, it is necessary to repeat several times certain statement, possibly changing the value
of some variable at each repetition.

Programming languages provide two ways to obtain the repetition of statements:

e the use of loop statements (or iterative statements), which are a form of composite statement;
e the use of recursive methods

We will see now the use of loops, and we will see later the use of recursion.

6.3 Definite and indefinite loops

Conceptually, we distinguish two types of loops, which differ in the way in which the number of iterations (i.e.,
repetitions of the body of the loop) is determined:

e In definite loops, the number of iterations is known before we start the execution of the body of the
loop.

Ezample: repeat for 10 times printing out a *.

e In indefinite loops, the number of iterations is not known before we start to execute the body of the
loop, but depends on when a certain condition becomes true (and this depends on what happens in the
body of the loop)

FEzxzample: while the user does not decide it is time to stop, print out a * and ask the user whether he
wants to stop.

In Java, like in other programming languages, both types of loop can be realized through a while statement.

2 UNIT 6

6.4 The while loop

The while statement allows for the la repetition of a statement.
while statement
Syntax:

while (condition)
statement

e condition is an expression of type boolean

e statement is a single statement (also called the body of the loop)

Note: since, by making use of a block, it is possible to group several statements into a single composite statement,
it is in fact possible to have more than one statement in the body of the loop.

Semantics:

e First, the condition is evaluated.

o If it is true, the statement is executed and the value of the condition is evaluated again, continuing in
this way until the condition becomes false.

e At this point the statement immediately following the while loop is executed.

Hence, the body of the loop is executed as long as the condition stays true. As soon as it becomes false we
exit the loop and continue with the following statement.

Ezxample: Print out 100 stars.
int i = 0;
while (i < 100) {
System.out.print ("*");
it++;

}

6.5 Use of a while loop for input

A while loop can be used to read from input a sequence of data, and to stop reading from input as soon as a
certain condition becomes true. This is typically an indefinite loop.

Ezxample: Read from input a set of strings and print them out on video until the user decides to stop.

String s = JOptionPane.showInputDialog("Input a string");
while (s != null) {

System.out.println(s);

s = JOptionPane.showInputDialog("Input a string");
¥

Recall that JOptionPane.showInputDialog("...") returns null when the user presses the cancel button.
Ezample: Print the squares of integers read from input, until the user decides to stop.
int i;
String s;
s = JOptionPane.showInputDialog("Input an integer");
while (s != null) {
i = Integer.parselnt(s);
System.out.println(ixi);
s = JOptionPane.showInputDialog("Input an integer");

}
General structure of an input loop

read the first element ;
while (element is walid) {

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 3

process the element ;
read the following element;

3

6.6 Example of while loop: product through repeated sums

int multiplicand, multiplicator, product;

multiplicand = ...;
multiplicator = ...;

product = 0O;

while (multiplicator > 0) {
product = product + multiplicand;
multiplicator—-;

}
System.out.println("product = " + product);

6.7 Example of while loop: division trough repeated subtraction

int dividend, divisor, result, rest;

dividend = ...;
divisor = ...;

result = 0;

rest = dividend;

while (rest >= divisor) {
rest = rest - divisor;

result++;
}
System.out.println("result = " + result);
System.out.println("rest = " + rest);

6.8 Example of while loop: power through repeated multiplication

int base, exponent, power;

base = ...;
exponent = ...;

power = 1;

while (exponent > 0) {
power = power * base;
exponent--;

3

System.out.println("power = " + power);

6.9 Example of while loop: counting the occurrences of a character in a string

public static int countChar (String s, char c) {

int numchars = 0;
int pos = 0;
while (pos < s.length()) {

if (s.charAt(pos) == c)

numchars++;

pos++t;

}

return numchars;

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

UNIT 6

}

Note that in all four previous examples the loops are in fact definite loops, since the number of iterations depends
only on the values of variables that have been fixed before starting the execution of the loop.

6.10 Characteristic elements in the design of a loop

initialization
while (condition) {

}

operation
next step

initialization: sets the variables used in the loop before starting the execution of the loop (before the loop
statement)

E.g., product = 0;

condition: expression evaluated at the beginning of each iteration, whose truth value determines whether
the body of the loop is executed or whether the loop finishes

E.g., (multiplicator > 0)

operation of the loop: computation of the partial result at each loop iteration (in the body of the loop)
FE.g., product = product + multiplicand;

next step: increment/decrement operation for the variable that controls the repetitions of the loop (in the
body of the loop)

FE.g., multiplicator--;

Once we have designed the loop, we have to check its proper termination. In particular, we have to check that
the execution of the loop statements can modify the value of the condition in such a way that it becomes false.

Ezxample: The statement multiplicator--; can cause the condition (multiplicator > 0) to become false,
provided multiplicator is a positive integer number.

6.11 Common errors in writing while loops

To forget to initialize a variable that is used in the condition of the loop. Remember that the first time
the condition is checked is before starting the execution of the body of the loop.
Example:
int 1i;
String s;
while (s != null) {
i = Integer.parselnt(s);
System.out.println(ix*i);
s = JOptionPane.showInputDialog("Input an integer");

}
To forget to update the variables appearing in the condition of the loop. The loop will never terminate.
Ezxample: The statement to read the next element to be processed is missing.
int i;
String s;
s = JOptionPane.showInputDialog("Input an integer");
while (s != null) {
i = Integer.parselnt(s);
System.out.println(i*i);
}
Be off by 1 in the number of iterations. Typically this is due to a mismatch between the condition of the
loop and the initialization of the variables used in the condition.
Example: Print out 10 stars.
int i = 0;
while (i <= 10) { // should be (i < 10)
System.out.print ("*");

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 5

i++;

}

To avoid such types of errors, it is often convenient to test the loop with simple (i.e., small) values for the
variables. In the example above, if we check the loop by printing 1 star, instead of 10 (by substituting 10
with 1 in the condition of the loop), we immediately notice that the loop would print 2 stars, instead of 1.

6.12 Loop schemes

There are certain very common basic operations that require the use of loops:

e counter: count the number of values in a set;

e accumulator: accumulate values in a set according to a certain criterion;

e characteristic values in a set: determine a characteristic value among the values in a set (for example, the
maximum, when the values in the set are ordered).

Each type of operation is based on a common scheme of the loop statement.

6.13 Loop scheme for a counter: number of strings in input

Count the number of times that a user inputs a string.

String s; // current string in input
int counter;

counter = 0;
s = JOptionPane.showInputDialog("Input a string");
while (s != null) {

counter++;

s = JOptionPane.showInputDialog("Input a string");
}

System.out.println("Number of strings in input = " + counter);

6.14 Loop scheme for a counter: number of positive integers

Count the number of positive integers in input.

String s; // current string in input
int counter;

counter = 0;
s = JOptionPane.showInputDialog("Input an integer");
while (s !'= null) {

if (Integer.parselnt(s) > 0)

counter++;
s = JOptionPane.showInputDialog("Input an integer");
X
System.out.println("Number of positive integers in input = " + counter);

In this case, the increment of the counter depends on a condition.

6.15 Loop scheme for an accumulator: sum of integers

Sum the integers in input.

String s; // current string in input

int n; // current integer

int sum; // variable used as accumulator
sum = 0;

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

6 UNIT 6

s = JOptionPane.showInputDialog("Input an integer");
while (s !'= null) {

n = Integer.parselnt(s);

sum = sum + n;

s = JOptionPane.showInputDialog("Input an integer");
}

System.out.println("sum = " + sum);

6.16 Loop scheme for an accumulator: product of integers

Multiply the integers in input.

String s; // current input string

int n; // current integer

int product; // variable used as accumulator

product = 1; // 1 is the neutral element for multiplication

s = JOptionPane.showInputDialog("Input an integer");
while (s != null) {

n = Integer.parselnt(s);

product = product * n;

s = JOptionPane.showInputDialog("Input an integer");

3

System.out.println("product = " + product);

6.17 Loop scheme for an accumulator: concatenation of strings

Concatenate the strings in input that start with a >:’.

String s; // current input string
String stot; // variable used as accumulator
stot = ""; // "" is the neutral element for concatenation

s = JOptionPane.showInputDialog("Input a string");
while (s !'= null) {
if (s.charAt(0) == ’:°)
stot = stot + s;
s = JOptionPane.showInputDialog("Input a string");
¥

System.out.println("total string = " + stot);

6.18 Loop scheme for characteristic values in a set: maximum with a known
interval
Let us consider the problem of finding the mazimum of a set of integers in input. Assume that:

e we know the interval over which the integers range, in the sense that in the program we can denote the
extremes of the interval (e.g., we know that all integers are greater than or equal to 0).

String s; // current string in input
int n; // current integer

int max; // current maximum

max = -1;

s = JOptionPane.showInputDialog("Input an integer");
while (s != null) {
n = Integer.parselnt(s);

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 7

if (n > max) max = n;
s = JOptionPane.showInputDialog("Input an integer");

}
if (max == -1)

System.out.println("empty set of values");
else

System.out.println("maximum = " + max);

Note: If the user does not input any integer, then the computed maximum value is -1. Since -1 is not in the
interval of allowed values (we have assumed that all integers are greater than or equal to 0), it can never be
returned in the case where the user inputs at least one value. Therefore, in this case, we can use the comparison
of the result with -1 as a means to detect whether the user has input at least a value or not.

6.19 Loop scheme for characteristic values in a set: maximum of a non-empty set

Let us consider the problem of finding the maximum of a set of reals in input. Assume that:

e the set of reals contains at least one value, but

e we do not know the interval over which the reals range, in the sense that in the program we cannot denote
the extremes of the interval.

String s; // current string in input
double r; // current real
double max; // current maximum

s = JOptionPane.showInputDialog("Input a real");
max = Double.parseDouble(s);
s = JOptionPane.showInputDialog("Input a real");
while (s != null) {

r = Double.parseDouble(s);

if (r > max)

max = r;

s = JOptionPane.showInputDialog("Input a real");

}

System.out.println("massimo = " + max);

Note: Since we know that the set of integers cannot be empty, we can read the first real and use it to initialize
the maximum value with it before we start the loop.

6.20 Loop scheme for characteristic values in a set: maximum in the general case
Let us consider again the problem of finding the mazimum of a set of reals in input. This time we make no
assumption, i.e.,:

e the set of reals could be empty, and

e we do not know the interval over which the reals range.

In this case, a possible solution is the following.

String s; // current string in input

double r; // current real

double max = 0; // current maximum

boolean found; // indicates whether at least one value was input

found = false;
s = JOptionPane.showInputDialog("Input a real");
while (s != null) {

r = Double.parseDouble(s);

if (!found || (r > max)) {

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

8 UNIT 6
max = r;
found = true;
}
s = JOptionPane.showInputDialog("Input a real");
}
if (found)
System.out.println("maximum = " + max);
else

Note:

System.out.println("empty set of values");

If the set of reals contains at least one value, then the body of the while loop is executed at least once.
At the first iteration, since the value of found is equal to false, the condition of the if statement is true
and the variable max is initialized to the value of the first real that has been input. In the subsequent
iterations of the loop, since found is then equal to true (and hence !found is equal to false), the condition
of the if statement will be true only if the current value of r is greater than max.

If the set of input reals is empty, then the body of the loop will not be executed at all, and found keeps
its value false.

The initialization max = 0; would not be necessary for a correct execution of the program. Indeed, the
expression (f > max) is evaluated only in the case where found is equal to true, and this happens only
if the statement max = f;, which initializes max, has been executed. However, the Java compiler, which
performs some checks on the initialization of variables, is not able to detect such a condition, and hence
requires that max be initialized before evaluating the condition of the if statement.

There are other means for determining the maximum in the general case discussed here. For example, we could
exploit the fact that the wrapper class Double provides the constant MAX_VALUE holding the maximum value
a double can have, and initialize the maximum to -MAX_VALUE. We would anyway need a boolean variable to
distinguish the case where the user has input no number at all from the case where the user has input just

-MAX_VALUE.
String s; // current string in input
double r; // current real
double max; // current maximum
boolean found; // indicates whether at least one value was input

found = false;
max = -Double.MAX_VALUE;

S

= JOptionPane.showInputDialog("Input a real");

while (s !'= null) {

}

r = Double.parseDouble(s);

found = true;

if (r > max) max = r;

s = JOptionPane.showInputDialog("Input a real");

if (found)

System.out.println("maximum = " + max);

else

6.21

System.out.println("empty set of values");

Other loop statements

In Java, there are three forms of loop statements:

while loop

for loop

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 9

e do loop

The while loop would be sufficient to express all loops that can be expressed with for or do. In certain
situations, however, it is more convenient to develop an algorithm that makes use of the other types of loop.

6.22 Loop controlled by a counter

A common use of loops is the one in which the loop makes use of a variable (called control variable) that at
each iteration is changed by a constant value, and whose value determines the end of the loop.

Example: Print the squares of the integers between 1 and 10.
int i = 1;
while (i <= 10) {
System.out.println(i * i);
i++;
}

The following are the common features of loops controlled by a counter:

e a control variable for the loop is used (also called counter or indiz of the loop)
Fyg.,i
e initialization of the control variable
FE.g.,int i = 1;
e increment (or decrement) of the control variable at each iteration
FE.g., i++;
e test if we have reached the final value of the control variable
E.g., (i <= 10)

The for statement loop allows to specify all these operations in a simple way:
Ezxample: Print the squares of the integers between 1 and 10 using a for loop.

for (int i = 1; 1 <= 10; i++)
System.out.println(i * i);

6.23 The for loop

for statement
Syntaz:

for (4nittalization; condition; update)
statement

e initialization is an expression with side-effect that initializes a control variable (typically an assign-
ment), which can also be a declaration with initialization

e condition is an expression of type boolean

e update is an expression with side-effect that typically consists in updating (i.e., incrementing or decre-
menting) the control variable

e statement is a single statement (also called body of the for loop)

Semantics: is equivalent to

{
initialization;
while (condition) {
statement
update ;
}
}

(There is an exception in the case of the continue statement, which needs to be translated in a more complicated
way.)
Example: Print out 100 stars.

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

10

UNIT 6

for (int i = 0; 1 < 100; i++)

System.out.print ("*");

6.24 Observations on the for loop

e If a control variable is declared in the 4nitialization part, then its scope is limited to the for statement.

This becomes clear if we look at the equivalent while loop, in which the entire code corresponding to the
for loop is enclosed inside a block.

FEzxzample:
for (dnt i = 0; i < 10; i++) {
System.out.println(i * i);

}

// System.out.println("value of i = " + i);
// ERROR! i is not visible

Each of the three parts of the for loop (i.e., initialization, condition, and update) could also be
missing. In this case, the ";" have to be inserted anyway. If condition is missing, it is assumed to be
equal to true.

The syntax of the for loop allows all three parts to be arbitrary expressions, as long as initialization;
and update ; are statements (in particular, they must have a side-effect).

However, when using the for loop the following is recommended:

— Use the three parts of the for loop according to their intended meaning described above, and with
reference to a control variable for the loop;

— Do not modify the control variable in the body of the loop.
In general, initialization and/or update can be a sequence of expressions with side-effect, separated

by ",". This would allow us to initialize and/or update more than one control variable at a time. However,
it is recommended not to do so.

Ezample: Calculate and print the first 10 powers of 2.

int i, pow0Of2;

for (i = 0, pow0f2 = 1; i < 10; i++, pow0f2 *= 2)
System.out.println("2 to the " + i + " = " + pow0f2);

6.25 Examples of for loops

The for loop is used mainly to realize definite loops.

for (int i = 1; i <= 10; i++)
values assigned to i: 1, 2, 3, ..., 10

for (int i = 10; i >= 1; i--)
values assigned to i: 10,9, 8, ..., 2, 1
for (int i = -4; i <= 4; i = i+2)
values assigned to i: -4, -2, 0, 2, 4

for (int i = 0; i >= -10; i = i-3)
values assigned to i: 0, -3, -6, -9

Ezample: Print the numeric code of the characters from 15 to 85.

for (int i = 15; i <= 85; i++) {

}

char ¢ = (char)i;
System.out.println("i = " + i + " -> c =" + c);

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 11

6.26 Example of for loop: encoding a string

Write a public static method that takes as parameters a string and an integer d, and returns the encoding of
the string with the integer. The encoding is obtained by substituting each character ¢ in the string with the
character that has the code equal to the code of ¢ incremented by d.

Ezample: "ciao" with d= 3 becomes "fldr"

public static String encode(String s, int d) {

String resStr;
char c;
int ci;

resStr = "";
for (int i = 0; i < s.length(); i++) {
¢ = s.charAt(i);
ci = (int)c;
ci += d;
c = (char)ci;
resStr = resStr + c;
¥
return resStr;

}

6.27 Example of for loop: “cracking” an encoded string

Suppose a public static method decode() is available, which decodes a string encoded with the encode()
method we have seen before. Write a public static method that takes as parameters an already encoded string
str and the minimum and maximum codes (respectively min and maz) that could have been used for encoding
str, and prints all strings obtained from str by decoding it with all values between min and mazx.

public static void crack(String str, int min, int max) {
for (int i = min; i <= max; i++)
System.out.println(decode(str, i));

6.28 The do loop
In a while loop, the condition of end of loop is checked at the beginning of each iteration. A do loop is similar
to a while loop, with the only difference that the condition of end of loop is checked at the end of each iteration.
do statement
Syntaz:
do

statement
while (condition);
e condition is an expression of type boolean

e statement is a single statement (also called the body of the loop)
Semantics: is equivalent to

statement ;
while (condition)
statement

Hence:

e First, the statement is executed.

e Then, the condition is evaluated, and if it is true, the statement is executed again, continuing in this
way until the condition becomes false.

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

12 UNIT 6

e At this point the statement immediately following the do loop is executed.
Ezxample: Print out 100 stars.
int 1 = 0;
do {
System.out.print ("*");
i++;
} while (i < 100);

6.29 Observations on the do loop

Since the condition of end of loop is evaluated only after the body of the loop has been executed, it follows that:

e The body of the loop is executed at least once. Hence, the do loop should be used in those cases where we
need to repeatedly execute some statements, and would like that these statements are executed at least
once.

e In general, it is not necessary to initialize the variable that appear in the loop condition before the loop.
It is sufficient that these variables are initialized in the body of the loop itself (notice that this is different
from while loops).

Example: Sum integers read from input until a 0 is read.

int i;

int sum = O;

do {

i = Integer.parselnt(JOptionPane.showInputDialog(
"Input an integer (0O to terminate)"));
sum = sum + i;
} while (i != 0);
System.out.println("sum = " + sum);

Note that the syntax of the do statement requires that there is a ’t’ after while (condition). To increase
readability of the program, and in particular to avoid confusing the while (condition); part of a do loop
with a while statement with empty body, it is in any case better to include the body of the do loop in a block,
and indent the code as follows (as shown also in the example above):

do {
statement
} while (condition);

6.30 Example of a do loop: input validation

Often it is necessary to validate data input by the user, and repeat the request for the data in the case where
the input of the user is not valid. This can be done by using a do loop.

Example: Write a public static method that continues reading from input an integer until the integer is positive,
and then returns the positive integer that has been input.

public static int readPositivelInteger() {
int 1i;
do {
i = Integer.parselnt(JOptionPane.showInputDialog(
"Input a positive integer"));
} while (i <= 0);
return i;

}

Note that the previous method is not able to handle correctly all situations of incorrect input, for example,
the situation where the user inputs an alphabetical character (or any sequence of characters that cannot be
parsed by parseInt()). We will see later on how Java allows us to handle such situations through the use of
exceptions.

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 13

6.31 Equivalence between while loop and do loop
As is clear from the semantics, each do loop can be replaced with an equivalent while loop. However, to do so,
we need to duplicate the body of the do loop.
Ezxample:
int i;
do {
i = Integer.parselnt(JOptionPane.showInputDialog(

"Input a positive integer"));
} while (i <= 0);
equivale a
int 1i;
i = Integer.parselInt(JOptionPane.showInputDialog(
"Input a positive integer"));
while (i <= 0) {
i = Integer.parseInt(JOptionPane.showInputDialog(

"Input a positive integer"));

}

6.32 Complete set of control statements

Two programs are said to be equivalent if, when they receive the same input,

e cither both do not terminate, or

e both terminate and produce the same output.

A set of control statements is said to be complete if, for each possible program that can be written in the
programming language, there is an equivalent one that contains only the control statements in the set.

Theorem by Bohm and Jacopini

The following statements form a complete set: sequencing, i f statement, and while statement.

6.33 Example: computing the greatest common divisor (GCD)

Specification:

We want to realize a static public method that takes as parameters two positive integers « and y and computes
and returns their greatest common divisor ged(z, y).

The greatest common divisor of two integers & and y is the greatest integer that divides both x and y without
rest.

Ezample: gcd(12,8) = 4
ged(12,6) = 6
ged(12,7) = 1

6.34 GCD: by directly exploiting the definition

e We are looking for the maximum divisor of both x and y.

e Observation: 1 < ged(x,y) < min(z,y)
Hence, it is sufficient to try out the numbers between 1 and min(zx, y).

e It is better to start from min(z,y) and go down toward 1. As soon as we find a common divisor of z and
y, we can immediately return it.

First refinement of the algorithm:

public static int greatestCommonDivisor(int x, int y) {
int gcd;

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

14 UNIT 6

wnitialize gcd to the minimum of T and y
while ((gcd > 1) && (we have not found a common divisor))
if (gcd divides both x and y)
we have found a common divisor
else
ged——;

return gcd;
}
Observations:

e The loop always terminates because at each iteration
— either we find a divisor,
— or we decrement gcd by 1 (at most we arrive at 1).
e To check whether we have found the gcd we make use of a boolean variable (used in the loop condition).

e To verify whether x (or y) divides gcd we use the "%" operator.

6.35 GCD: problems of the algorithm implementing directly the definition

How many times do we execute the loop in the previous algorithm?

e best case: 1 time, when x divides y or vice-versa
E.g., ged(500, 1000)

e worst case: min(z,y) times, when ged(z,y) =1
Ex . ged(500, 1001)

Hence, the previous algorithm behaves bad when x and y are big and ged(x, y) is small.

6.36 GCD: using the method by Euclid
The method by Euclid allows us to reach smaller numbers faster, by exploiting the following properties:

z (orvy), ifr=y
ged(z,y) = ¢ ged(z —y,y), ifz>y
ged(z,y —), fz<y

This property can be proved easily, by showing that the common divisors of x e y are also divisors of x — y
(when z > y) or of y — z (when z < y).

E.g., gcd(12,8) = ged(12 — 8,8) = ged(4,8 —4) =4

To obtain an algorithm, we repeatedly apply the procedure until we arrive at the situation where x = y. For
example:

x | y | bigger — smaller
210 | 63 | 147
147 | 63 | 84

84 | 63 | 21

21 | 63 | 42

21 | 42 | 21

21 | 21 | = ged(21,21) = ged(21,42) = - - - = ged(210,63)

The algorithm can be implemented in Java as follows:

public static int greatestCommonDivisor(int x, int y) {
while (x '= y) {

if (x > y)
X=X-7y;

else // this means that y > x
y=y - %

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 15

}

return Xx;

3

6.37 GCD: admissible values for the arguments

What happens in the previous algorithm in the following cases:
o fx=y=07
The result is 0.
e If x =0 and y > 0 (or vice-versa)?
The result should be y, but the algorithm enters an infinite loop.
e If x <0 and y is arbitrary (or vice-versa)?
The algorithm enters an infinite loop.

Hence, if we want to take into account that the method could be called with arbitrary integer values for the
parameters, it is necessary to insert a suitable test.

public static int greatestCommonDivisor(int x, int y) {
if ((x>0) & (y > 0) {
while (x != y)

if (x > y)
X=X -y;
else // this means that y > x
y=y - %
return Xx;
} else

System.out.println("wrong parameters");

}
6.38 GCD: using the method by Euclid with rests

What happens in the previous algorithm if 2 is much bigger than y (or vice-versa)?

Ezample: ged(1000, 2) ged(1001, 500)
1000 | 2 1001 | 500
998 | 2 501 | 500
996 | 2 1| 500
2|2 1)1

To compress this long sequence of subtractions, it is sufficient to observe that we are actually calculating the
rest of the integer division.

Method by Euclid: let x =y -k + 7 (with 0 <r <y)

Ty, if r =0 (i.e., z is a multiple of y)
ged(z,y) = { ged(r,y), ifr#0

The algorithm can be implemented in Java as follows:

public static int greatestCommonDivisor(int x, int y) {
while ((x !'= 0) & (y != 0)) {

if (x> y)
x=x%Yy;
else
V= h %
}
return (x != 0)? x : y;

}

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

16 UNIT 6

6.39 Example: length of the longest subsequence
Realize a public static method that takes as parameter a string s (that is constituted only by the characters
>0’ and ’1’), and returns the length of the longest subsequence of s constituted only by consecutive ’0’s.

Example: If the string passed as parameter is "001000111100", then the longest subsequence of only ’0’s is
the underlined one, which has length 3.

public static int subsequence(String s) {

char bit; // current element in the sequence
int cont = 0; // current length of the sequence of zeros
int maxlen = 0; // temporary value of the maximum length

for (int i = 0; i < s.length(); i++) {
bit = s.charAt(i);

if (bit == ’0’) { // we have read a new ’0’

cont++; // update the length of the current sequence

if (cont > maxlen) // if necessary,

// ... update the temporary maximum
maxlen = cont;

} else // we have read a 1

cont = 0; // reset the length of the current sequence

}

return maxlen;

3

6.40 Nested loops

The body of a loop can contain itself a loop, called a nested loop. It is possible to nest an arbitrary number of
loops.

Ezample: Print out the multiplication table.

public class MultiplicationTable {
static final int NMAX = 10;

public static void main (String[] args) {
int row, column;

for (row = 1; row <= NMAX; row++) {
for (column = 1; column <= NMAX; column++)
System.out.print(row * column + " ");
System.out.println();
}
}
}

Note that we have used an integer constant NMAX, denoting the number of rows (and of columns) of the table.
(The static keyword indicates that NMAX is not an instance variable, but a global variable for the class).

Output produced by the program:

2 3 4 5 6 7 8 9 10

4 6 8 10 12 14 16 18 20

6 9 12 15 18 21 24 27 30

8 12 16 20 24 28 32 36 40
10 15 20 25 30 35 40 45 50
12 18 24 30 36 42 48 54 60
14 21 28 35 42 49 56 63 70

~N O O WN -

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 17

8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

6.41 Example of nested loop: print out a pyramid of stars

In the previous example, where we printed out the multiplication table, the number of iterations of the internal
loop was fixed. In general, the number of iterations of an internal loop may depend on the iteration of the
external loop.

Example: Print out a pyramid of stars.

Pyramid of height 4 row blanks *
* 1 3 1
*okk 2 2 3
KoKk ok ok 3 1 5
KoKk ok ok ok 4 0 7

To print the generic row r: print (height — r) blanks and (2 - » — 1) stars.

int height;
height = Integer.parselnt(JOptionPane.showInputDialog("Input the height"));

1; row <= height; row++) {
// 1 iteration for each row of the pyramid
for (int i = 1; i <= height - row; i++)
System.out.print(" "); // prints the initial blanks

for (int row

for (int i = 1; i <= row * 2 - 1; i++)
System.out.print ("*"); // prints the sequence of stars

System.out.println(); // prints a newline: the row is finished

}

6.42 Example: power by means of a nested loop

public static int power(int base, int exponent) {
int result = 1;
int multiplicand, multiplicator, product;

while (exponent > 0) {
exponent--;

// result = result * base
multiplicand = result;
multiplicator = base;
product = 0;
while (multiplicator > 0) {
multiplicator--;
product = product + multiplicand;
¥
result = product;
}
return result;

}

6.43 Example: power by means of two methods

public static int multiplication(int multiplicand,
int multiplicator) {

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

18 UNIT 6

int product = 0;
while (multiplicator > 0) {
multiplicator--;
product = product + multiplicand;
3
return product;

3

public static int power(int base, int exponent) {
int result = 1;
while (exponent > 0) {
exponent--—;
result = multiplication(result, base) ;

3

return result;

}

Note that in this case the internal loop is hidden inside the invocation of the multiplication() method.

6.44 Flow control statements

Flow control statements determine the next statement to execute. In this sense, the statements if-else, if,
switch, while, for, and do are flow control statements. However, these statements do not allow us to determine
in an arbitrary way which is the next statement to be executed. Instead they structure the program, and the
execution flow is determined by the structure of the program.

Java, as other programming languages, allows us to use (though with some limitations) also jump statements.
Such statements are flow control statements that cause the interruption of the execution flow and the jumping
to a statement different from the successive one in the sequence of program statements.

Jump statements:

e break (jump to the statement immediately following the current loop or switch statement)

e continue (jump to the condition of the loop)
Note:

e The use of jump statements should in general be avoided. They should be used only in specific situations.
We will only mention them briefly.

e Also the return statement can be used to modify the execution flow, by causing a termination of the
current method activation controlled by the programmer (see Unit 3).

6.45 Use of the break statement to exit a loop

We have already seen in Unit 5 that the break statement allows us to exit a switch statement. In general,
break allows us to exit prematurely from a switch, while, for, or do statement.

Example: Loop to calculate the square root of 10 reals read from input. We want to interrupt the loop as soon
as the user inputs a negative value.

double a;
for (int 1 = 0; i < 10; i++) {
a = Double.parseDouble(
JOptionPane.showInputDialog("Input a nonnegative real));
if (a >= 0)
System.out.println(Math.sqrt(a));
else {
System.out.println("Error");
break;
}
}

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 19

Note: In the case of nested loops or of switch statements nested within a loop, the execution of a break causes
the exit from a single level of nesting only.

6.46 Elimination of break

The execution of a break statement modifies the execution flow. Hence, when it is used in loops:

e we lose the structuring of the program;

e we may gain in efficiency with respect to implementing the same behavior without making use of break.
In general, it is always possible to eliminate a break statement. For example, the statement

while (condition) {
statements-1
if (break-condition) break;
statements-2

}
is equivalent to

boolean finished = false;
while (condition && 'finished) {
statements-1
if (break-condition)
finished = true;
else {
statements-2
¥
}

The choice on whether to eliminate or not a break must be made by evaluating:

e on the one hand, the gain in efficiency for the program with break with respect to the program without
it;

e on the other hand, the loss in readability due to the presence of break.

6.47 Example of elimination of a break

double a;
for (int 1 = 0; i < 10; i++) {
a = Double.parseDouble(
JOptionPane.showInputDialog("Input a nonnegative real"));
if (a >= 0)
System.out.println(Math.sqrt(a));
else {
System.out.println("Error");
break;
}
¥

is equivalent to

double a;
boolean error = false;

for (int i = 0; (4 < 10) && 'error; i++) {
a = Double.parseDouble(
JOptionPane.showInputDialog("Input a nonnegative real"));

if (a >= 0)
System.out.println(Math.sqrt(a));
else {

System.out.println("Error");

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

20 UNIT 6

error = true;
}
}

6.48 The continue statement (optional)

The continue statement can be used only within loops, and its effect is to directly jump to the mext loop
iteration, skipping for the current iteration those statements that follow in the loop body.

Ezample: Print out the odd numbers between 0 and 100.

for (int i = 0; i <= 100; i++) {
if (1% 2==0)
continue;
System.out.println(i);
}

Note that, when a continue statement is used in a for loop, the update-statement of the for loop is not
skipped and is executed anyway.

Note: A possible use of continue is within a loop for reading from input, in which we want to execute some
operations on the read data item only if a certain condition is satisfied. However, we have to make sure that at
each iteration of the loop, the next data item is read in any case; otherwise the loop would not terminate.

Ezxample: Wrong use of the continue statement.

read the first data item;
while (condition) {
if (condition-on-the-current-data)
continue; // ERROR! the reading of the next data item is skipped
process the data;
read the mext data item;

}

6.49 Statements to exit from blocks and labels for statements (optional)

Normally, a break or a continue statement causes the exit from a single level of nesting of switch or loop
statements in which it appears. However, such statements allow also for exiting from more than one level of
nesting of a switch or loop.

To do so, the statements that define a block can have a label:

label : loop-statement ;
A label must be a constant integer expression (analogous to those used in the) cases of a switch statement).
The statement

break label ;

interrupts the loop that has the label specified in the break statement. If there is no loop with the specified
label that surrounds the break label statement, then a compile-time error is signaled.

Note: The use of labels and of break and continue statements that refer to labels is considered a bad pro-
gramming habit, and has to be used only in very particular cases. In this course we will not make use of
it.

6.50 Exercise: a class to encode texts

Specification:

Realize a Java class to represent encrypted texts. The encryption of the text is obtained by replacing each
character with the character whose code is equal to the code of the character to encode augmented by an
integer number representing the encryption key. The functionalities of encrypted texts are:

e creation of a new object that represents a text encrypted with a given encryption key;

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 21

e creation of a new object that represents a text that is not encrypted (yet);

e return of the encrypted text;

e return of the decrypted text, provided the correct encryption key is provided;
e verification of the correctness of an encryption key;

e modification of the encryption key; this is possible only if the correct key is provided.
Solution scheme:
To realize the Java class we make use of the methodology introduced in Unit 3.

The properties and the services of interest can be immediately identified from the specification. Hence, we can
start writing:

public class EncryptedText {
// private representation of the objects of the class
// public methods that realize the requested functionalities
// possibly auxiliary methods

X

In the following, we will choose the representation for the objects of the class, the public interface of the class,
and the realization of the methods.

6.51 The class EncryptedText: representation of the objects

We have to decide how to represent the properties of encrypted texts. Note that an encrypted text needs two
properties: the text itself and the encryption key. Let us represent the objects of the class EncryptedText by
means of the following instance variables:

e the text, by means of an instance variable text, of type String;

e the key, by means of an instance variable key, of type int.

At this point we can write:

public class EncryptedText {
// representation of the objects of the class
private int key;
private String text;

// public methods that realize the requested functionalities
// possibly auxiliary methods
}

6.52 The class EncryptedText: public interface

We can now choose the interface of the class, through which the clients can make use of the objects of the class
EncryptedText.

Specifically, for each functionality we have to define a public method that realizes it and determine its header.
This leads us to the following skeleton for the class EncryptedText:

public class EncryptedText {
// representation of the objects of the class
private int key;
private String text;

// constructor
public EncryptedText(String nonEncryptedText) {

}
public EncryptedText(String nonEncryptedText, int key) {

}

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

22 UNIT 6

// other public methods
public String getEncryptedText() {

}
public String getDecryptedText(int key) {

}
public boolean isKey(int candidateKey) {

}
public void setKey(int key, int newKey) {

}

// possibly auxiliary methods
}

6.53 The class EncryptedText: realization of the methods

We concentrate now on the single methods and realize their bodies. To do so, we make use of two auxiliary
methods, encode() and decode(), analogous to the methods for encoding and decoding text according to a
given key that we have already seen.

public class EncryptedText {
// representation of the objects of the class
private int key;
private String text;

// constructor
public EncryptedText(String nonEncryptedText) {
key = 0;
text = nonEncryptedText;
}
public EncryptedText(String nonEncryptedText, int key) {
this.key = key;
text = encode(nonEncryptedText,key) ;
}

// altri metodi pubblici
public String getEncryptedText() {
return text;
}
public String getDecryptedText(int key) {
if (key == this.key)
return decode(text, key);
else return null;

}

public boolean isKey(int candidateKey) {
return candidateKey == key;

}

public void setKey(int key, int newKey) {
if (key == this.key) {
this.key = newKey;
text = encode(decode(text,key) ,newKey);
}
}

// auxiliary methods

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 23

private static String encode(String text, int key) {
String resText;
char c;
int ci;
resText = "";
for (int i = 0; i < text.length(); i++) {
c = text.charAt(i);
ci = (int)c;
ci ci + key;
¢ = (char)ci;
resText = resText + String.valueOf(c);
}
return resText;
}
private static String decode(String text, int key) {
String resText;
char c;
int ci;
resText = "";
for (int i = 0; i < text.length(); i++) {
c = text.charAt(i);
ci = (int)c;
ci = ci - key;
¢ = (char)ci;
resText = resText + String.valueOf(c);

}

return resText;

6.54 The class EncryptedText: example of a client

We realize the class ClientEncryptedText, which contains a method main that uses the class EncryptedText

public class ClientEncryptedText {
public static void main(String[] args) {
EncryptedText t = new EncryptedText("Nel mezzo del cammin di ...", 10);
System.out.println(t.getEncryptedText());
System.out.println(t.getDecryptedText (10));
t.setKey(10,20);
System.out.println(t.getDecryptedText (10));
System.out.println(t.getDecryptedText (20));
}
}

The output of the program is the following:

Xov*wo??7y*novmkwwsx*ns*888
Nel mezzo del cammin di ...
null

Nel mezzo del cammin di ...

6.55 The class StringTokenizer

The class StringTokenizer allows us to divide a string into tokens. A token is the maximal sequence of
consecutive characters of a string that are not delimiters. The default delimiters are " \t\n\r\f", i.e., the
space character, the tab character, the newline character, the return character, and the form-feed character

Example: The tokens of the string:

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

24 UNIT 6

"I am a
student
of Introduction to Programming"

are: "I", "am", "a", "student", "of", "Introduction", "to", "Programming".

An object of type StringTokenizer is constructed starting from a string to be tokenized, and internally
maintains a current position within the string. The class exports some methods that allow us to advance this
position, and to return the token as a substring of the string used to create the StringTokenizer object.

The StringTokenizer class has the following constructors (among others):

e StringTokenizer (String str)
Constructs a string tokenizer for the specified string, using the default delimiter set " \t\n\r\f".

e StringTokenizer (String str, String delim)
Constructs a string tokenizer for the specified string, using a specified set of delimiters.

The StringTokenizer class has the following methods (among others):

e boolean hasMoreTokens ()
Tests if there are more tokens available from this tokenizer’s string.

e String nextToken()
Returns the next token from this string tokenizer.

Example: Use of an object of type StringTokenizer. The following fragment of code

StringTokenizer st = new StringTokenizer("I am a \n student");
while (st.hasMoreTokens()) {

System.out.println(st.nextToken());
}

prints the following output:

I

am

a
student
Notes:

o The class StringTokenizer is part of the package java.util. Hence, each time we want to use this class,
we have to import it explicitly through the statement import java.util.StringTokenizer;.

e In fact, the class StringTokenizer is outdated and is kept only for compatibility reasons. Instead the
split () method of the String class or of the Pattern class in the java.util.regex package should be
used. However, these methods make use of arrays, which we will see only later.

Exercises

Exercise 6.1. Write a program that reads 10 (arbitrary) integers and prints the smallest one.

Exercise 6.2. Write a public static method that takes as parameter a positive integer n, and prints the first
n even numbers.

Exercise 6.3. Write a public static method that takes as parameter a positive integer n, and computes and
returns the factorial of n. The method should also print a suitable message when n is negative.

Exercise 6.4. Write a program that reads from input an integer n and a sequence of integers of length n,
and prints the sum of the positive and the sum of the negative integers in the sequence.

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

Loop statements 25

Exercise 6.5. The value of 7 can be calculated with the series

T=4-4/34+4/5—4)T+4/9—4/11+---

Write a public static method that takes as parameter an integer n, and computes and returns the value of m
approximated to the first n terms of the series.

Exercise 6.6. Write a public static method that takes as parameters a string and an integer d, and returns
the string suitably decoded according to d. The decoded string is obtained by replacing each character ¢ in the
string with the character that has code equal to the code of ¢ decremented by d.

Exercise 6.7. Write a public static method that takes as parameters a string and a character ¢, and returns
the position of the first character of the longest sequence of consecutive ¢’s in the string. If ¢ does not occur at
all in the string, the method should return -1.

Exercise 6.8. Modify the program for printing the multiplication table in such a way that the printed numbers
are aligned in columns.

Exercise 6.9. Write a public static method that takes as parameter an integer h between 1 and 9, and prints
a pyramid of numbers of height h.
Ezxample: For h = 4 the method should print the pyramid

1
121
12321
1234321

Exercise 6.10. Write a program that reads from input an integer n and prints the factorial of all numbers
between 1 and n. Provide a solution that makes use of the method defined in Exercise 6.3, and one that doesn’t.
Which of the two is more efficient?

Exercise 6.11. A positive integer is said to be prime if it is divisible only by 1 and by itself. Write a public
static method that takes as parameter a positive integer, and returns a boolean that indicates whether the
integer is prime or not.

Exercise 6.12. Write a program that reads from input an integer n, and prints all prime numbers between 2
and n. Make use of the method defined in Exercise 6.11.

Exercise 6.13. Write a program that reads from input an integer n, and prints the first n prime numbers
(by convention, 1 is not considered to be prime). Make use of the method defined in Exercise 6.11.

Exercise 6.14. Write a program that reads from input an integer n, and prints all its prime factors. For
example, if the integer is 220, the program should print: 2, 2, 5, 11. Make use of the method defined in
Exercise 6.11.

Exercise 6.15. Realize a Java class to represent messages. Each message is characterized by:
e a sender,
® a receiver,

e the text of the message.

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

26 UNIT 6

All three types of information should be represented as strings. Besides the functionalities of getting and setting
the sender, the receiver, and the text, messages should support the operation of swapping the sender and the
receiver, and three forms of compression:
1. elimination of the white spaces at the beginning and at the end of the text, and replacement of each
sequence of more than one whitespace (used to separate words) with a single white space;
2. elimination of all vowels;
3. both (1) and (2).

(©Diego Calvanese Lecture Notes for Introduction to Programming A.A. 2006/07

	Loop statements
	Statements in Java
	Repetition of statements
	Definite and indefinite loops
	The while loop
	Use of a while loop for input
	Example of while loop: product through repeated sums
	Example of while loop: division trough repeated subtraction
	Example of while loop: power through repeated multiplication
	Example of while loop: counting the occurrences of a character in a string
	Characteristic elements in the design of a loop
	Common errors in writing while loops
	Loop schemes
	Loop scheme for a counter: number of strings in input
	Loop scheme for a counter: number of positive integers
	Loop scheme for an accumulator: sum of integers
	Loop scheme for an accumulator: product of integers
	Loop scheme for an accumulator: concatenation of strings
	Loop scheme for characteristic values in a set: maximum with a known interval
	Loop scheme for characteristic values in a set: maximum of a non-empty set
	Loop scheme for characteristic values in a set: maximum in the general case
	Other loop statements
	Loop controlled by a counter
	The for loop
	Observations on the for loop
	Examples of for loops
	Example of for loop: encoding a string
	Example of for loop: ``cracking'' an encoded string
	The do loop
	Observations on the do loop
	Example of a do loop: input validation
	Equivalence between while loop and do loop
	Complete set of control statements
	Example: computing the greatest common divisor (GCD)
	GCD: by directly exploiting the definition
	GCD: problems of the algorithm implementing directly the definition
	GCD: using the method by Euclid
	GCD: admissible values for the arguments
	GCD: using the method by Euclid with rests
	Example: length of the longest subsequence
	Nested loops
	Example of nested loop: print out a pyramid of stars
	Example: power by means of a nested loop
	Example: power by means of two methods
	Flow control statements
	Use of the break statement to exit a loop
	Elimination of break
	Example of elimination of a break
	The continue statement (optional)
	Statements to exit from blocks and labels for statements (optional)
	Exercise: a class to encode texts
	The class EncryptedText: representation of the objects
	The class EncryptedText: public interface
	The class EncryptedText: realization of the methods
	The class EncryptedText: example of a client
	The class StringTokenizer

