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3.1 Modularization

A program can be very long and complex. To manage such a complexity, it is necessary to realize programs in
a modular way.

• The program must be structured in autonomous parts, called modules.

• The various modules are related to each other through precise relations.

A module is characterized by:

• services exported to clients (these are other modules that make use of such services)

• an interface, i.e., the way in which such services are exported

• imported services, i.e., services for which the module is a client

• an internal structure, i.e., how the module is realized; the internal structure is not of interest for clients.

The use of modularization allows us to realize programs as follows:

1. we define which modules are necessary to solve the requested problem;

2. we define how these modules are related to each other;

3. we develop each module independently from the other modules.

By proceeding in this way we enhance various qualities of a program, which simplify dealing with the program.
Specifically:

• readability (or understandability) of the program

• extensibility (i.e., the possibility of extending the functionalities of the program, if necessary)

• reusability of parts of the program for different purposes
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2 UNIT 3

3.2 Abstraction

Modularization is tightly coupled with the notion of abstraction:

• we construct an abstract model of the problem, based on which we identify the solution
– we focus on the essential aspects of the problem
– we ignore those aspects that are not relevant for the objective to achieve

• we select a concrete model that corresponds to the abstract model, and through which we realize the
solution to the problem

Types of abstraction:

• Abstraction on operations: we concentrate on ”what” a certain operation has to do, and not on ”how”
it does what it has to do.

• Abstraction on objects:
– we group similar objects (i.e., objects with the same properties) in classes
– we establish the relevant properties of the objects, and specifically the operations that the objects

support (note that this in turn requires abstraction on operations).

3.3 Abstraction on operations: methods

The abstraction on operations is supported by all current programming languages (Java, C#, C++, C, Pascal,
Fortran, Lisp, etc.).

In Java, the abstraction on operations is realized through the notion of method. A method can be considered
as a black box that takes parameters as input and returns results or performs some actions.

performed action
method

input

parameters

result /

3.4 Methods seen as modules

A method, seen as a module, is characterized by:

• exported services: ”what” does the method realize
• interface: the method header (which specifies the types of the input parameters and of the result, if

present)
• imported services: other methods or classes used to realize the method
• internal structure: Java code describing ”how” the method implements the ”what” it realizes (note that

this is not of interest for the clients of the method, i.e., for whom calls the method)

3.5 Definition of static methods

In Java, the simplest forms of methods are the static methods.

Static methods are methods (defined in a class) that do not have an invocation object.

Definition of a static method

Syntax:

header block

• header is the header of the static method and has the following form:
public static resultType methodName (formalParameters )

where
– public indicates that the method being defined is accessible from outside the class (see later)
– static indicates that the method is static (i.e., it has no invocation object)
– resultType is the type of the result returned by the method, or void, if the method does not return

any result
– methodName is the name of the method
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Definitions of methods and classes 3

– formalParameters is a list of parameter declarations (type and name) separated by commas; each
parameter is a variable; the list of parameters may also be empty

• block is the body of the method containing the statements that will be executed when the method is
being called; it has the form:

{
statements

}

Semantics:

Defines a static method by specifying its header and body.

• The header indicates:

– the name of the method,

– the number and type of its formal parameters,

– the type of the returned value, if any, and

– the accessibility of the method from outside the class where it is defined.

• The body of the method specifies the statements that have to be executed when the method is called.

• The formal parameters are used to pass objects, or more generally information, which is used in the
body of the method. The formal parameters are used inside the body of the method in the same way as
initialized variables (the initialization is done at the moment the method is called, by assigning to each
formal parameter the value of the corresponding actual parameter – see later).

• The returned result, if any, is the value of the method-call. If the method does not return any result, then
it must not be used to compute a result but to perform side effect on the objects denoted by the formal
parameters.

Example:

The method main(), used before, is a static method. Such a method has always the form:

public static void main (String[] args) {
...

}

The header of the main() method shows that:

• it is a method accessible from outside the class where it is defined (public),

• it is a static method (static),

• it does not return any result (return type is void), and

• it has a parameter of type array of strings (see Unit 7). Up-to now, in our programs, we have never used
this parameter.

Note: The definition of a method does not cause its activation.

3.6 Examples of definitions of static methods

Example 1:

public static void printGreeting() {
System.out.println("Good morning!");

}

The method printGreeting() is a static public method that does not have formal parameters and does not
return any result (see header). Its body is constituted by a single statement that prints the string "Good
morning!"

Example 2:
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4 UNIT 3

public static void printPersonalGreeting(String firstName, String lastName) {
System.out.print("Good morning ");
System.out.print(firstName);
System.out.print(" ");
System.out.print(lastName);
System.out.println("!");

}

The method printPersonalGreeting() is a static public method that has two formal parameters firstName
and lastName of type String and does not return any result (see header). Its body is constituted by a sequence
of statements that print respectively the string "Good morning!", the value of the formal parameter firstName,
a blank, the value of the formal parameter lastName, and finally the string "!".

Note that the formal parameters are used inside the body of the method exactly as already initialized local
variables.

Example 3: Realize a static method printInformalGreeting() that takes as input a string representing a
name and prints the string "Ciao " followed by the name passed as a parameter and followed by the string
"!".

Solution:

public static void printInformalGreeting (String name) {
System.out.println("Ciao " + name + "!");

}

3.7 Result of a method: the return statement

If a method must return a result, then it must contain a return statement.

When the return statement is executed inside a method, it causes the termination of the method and it returns
the result of the method to the client module (i.e., the part of the program where the method was called).

The syntax of the return statement is as follows:

return expression ;

where expression must be an expression whose value is compatible with the type of the result declared in the
method header.

Example:

public static String personalGreeting(String firstName, String lastName) {
return "Good morning " + firstName + " " + lastName + "!";

}

If the result type is void, the return statement can be omitted, or it can simply be used to interrupt the
execution of the method. Since in this case it is not necessary to return a result, the syntax in this case is as
follows:

return;

Note: The execution of the return statement always terminates the method, even if there are additional
statements that follow.

3.8 Example: use of static methods defined in the same class

The following program shows the use of static methods defined in the same class.

import javax.swing.JOptionPane;

public class PrintGreetings {

public static void printGreeting() {
System.out.println("Good morning!");

}
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public static void printPersonalGreeting(String firstName, String lastName) {
System.out.print("Good morning ");
System.out.print(firstName);
System.out.print(" ");
System.out.print(lastName);
System.out.println("!");

}

public static void printInformalGreeting (String name) {
System.out.println("Ciao " + name + "!");

}

public static String personalGreeting(String firstName, String lastName) {
return "Good morning " + firstName + " " + lastName + "!";

}

public static void main(String[] args) {
printGreeting();
String fn = JOptionPane.showInputDialog("First name");
String ln = JOptionPane.showInputDialog("Last name");
printPersonalGreeting(fn,ln);
printInformalGreeting(fn);
JOptionPane.showMessageDialog(null,personalGreeting(fn,ln));
System.exit(0);

}
}

Note: The static methods defined in the class PrintGreetings are called by the main() method of
PrintGreetings without preceding them by the name of the class. This is possible since the methods be-
longs to the same class as main().

3.9 Example: use of static methods defined in another class

Let us group now the same methods in a different class.

public class Greetings {

public static void printGreeting() {
System.out.println("Good morning!");

}

public static void printPersonalGreeting(String firstName, String lastName) {
System.out.print("Good morning ");
System.out.print(firstName);
System.out.print(" ");
System.out.print(lastName);
System.out.println("!");

}

public static void printInformalGreeting (String name) {
System.out.println("Ciao " + name + "!");

}

public static String personalGreeting(String firstName, String lastName) {
return "Good morning " + firstName + " " + lastName + "!";

}
}
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6 UNIT 3

Example of client:

import javax.swing.JOptionPane;

public class GreetingsClient {
public static void main(String[] args) {
Greetings.printGreeting();
String fn = JOptionPane.showInputDialog("First name");
String ln = JOptionPane.showInputDialog("Last name");
Greetings.printPersonalGreeting(fn,ln);
Greetings.printInformalGreeting(fn);
JOptionPane.showMessageDialog(null, Greetings.personalGreeting(fn,ln));
System.exit(0);

}
}

Note that in the method main() of GreetingsClient we need to add in front of the calls to the static methods
the name of the class where they are defined.

Note: The class Greetings can be considered a simple library that realizes different greeting functionalities.
We will see later the predefined class Math, which is a library of the most commonly used mathematical functions
on reals, constituted by static methods that realize the functions.

3.10 Parameter passing

As said, the definition of a method contains in the header a list of formal parameters. Such parameters are
used in the same way as variables inside the body of the method.

The call of a method contains the parameters that have to be used as arguments for the method. Such parameters
are called actual parameters, to distinguish them from the formal parameters appearing in the header of the
method definition.

When a method is called and thus activated, the actual parameters have to be bound to the formal parameters.
In general, there are various ways of establishing such a binding. In Java, there is just one way: the so called
call by value.

Let pa be an actual parameter in a method call, and pf the corresponding formal parameter in the header of
the method definition: to bind pa to pf by value means to do the following, when the method is activated:

1. The actual parameter pa is evaluated (notice that pa is in general an expression).
2. A memory location is associated to the formal parameter pf.
3. The value of pf (i.e., the corresponding memory location) is initialized with the value computed for pa.

In other words, the formal parameter pf behaves exactly as a local variable created the moment the method is
called, and initialized with the value of the corresponding actual parameter pa.

At the end of the execution of the body of the method, the memory location reserved for the formal parameter
is freed and the value stored in it is lost.

Note: The value of a variable that appears in the expression pa is not changed by the execution of the method.
Note, however, that if such a value is a reference to an object, then the method can in fact change the object
denoted by the reference (see later).

The following figure shows an example of parameter passing for the case where the parameter is a reference to
an object. The case of parameters that are of a primitive data type will be described in Unit 4.

pf
x

String

pf

pa

?
y z

String

yx z

pa

3.11 Execution of a method

Consider the following method definition:
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public static String duplicate(String pf) {
return pf + ", " + pf;

}

Consider then the following main() method:

public static void main(String[] args) {
String s;
s = duplicate("pippo" + "&" + "topolino");
System.out.println(s);

}

Let us analyze in detail what happens when the statement containing the call to the duplicate() method is
executed:

1. The actual parameters are evaluated.
In our case, the actual parameter is the expression "pippo" + "&" + "topolino" whose value is the
string "pippo&topolino".

2. The method to be executed is determined by considering the name of the method, and the number and
the types of the actual parameters. A method with a signature corresponding to the method call has to
be found: the name of the method must be the same as in the call, and the formal parameters (i.e., their
number and types) must correspond to the actual parameters.
In our case, the method we are looking for must have the signature duplicate(String).

3. The execution of the calling program unit is suspended.
In our case, it is the method main().

4. Memory is allocated for the formal parameters (considered as variables) and for the variables defined in
the method (see later).
In our case, memory is allocated for the formal parameter pf.

5. Each formal parameter is initialized to the value of the corresponding actual parameter.
In our case, the formal parameter pf is initialized to the reference to the object representing the string
"pippo&topolino".

6. The statements in the body of the called method are executed, starting from the first one.
7. The execution of the called method terminates (either because the return statement is executed, or because

there are no more statements to execute).
In our case, the statement return pf + ", " + pf; is executed.

8. The memory for the formal parameters and the local variables is freed, and all information contained
therein is lost.
In our case, the memory location corresponding to the formal parameter pf is freed.

9. If the method returns a result, then the result becomes the value of the expression returned by the method
invocation in the calling program unit.
In our case, the result is "pippo&topolino, pippo&topolino".

10. The execution of the calling unit continues from the point where it was suspended by the method call.
In our case, the value "pippo&topolino, pippo&topolino" is assigned to the variable s.

3.12 Example: modification of an object done by a method

The following program shows what happens when passing parameters that are references to objects.

public class Parameters{
public static void changeValueS (String s) {
s = s.concat("*");

}

public static void changeValueSB (StringBuffer sb) {
sb.append("*");

}
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8 UNIT 3

public static void main(String[] args) {
String a = "Hello";
StringBuffer b = new StringBuffer("Ciao");

System.out.println("String a = " + a);
changeValueS(a);
System.out.println("String a = " + a);

System.out.println("StringBuffer b = " + b.toString());
changeValueSB(b);
System.out.println("StringBuffer b = " + b.toString());

}
}

The result of the execution of the program is the following:

String a = Hello
String a = Hello
StringBuffer b = Ciao
StringBuffer b = Ciao*

The actual parameters a and b are bound by value to the corresponding formal parameters s and sb, hence
their value (i.e., the reference to the object) is not modified by the execution of the method. However, this does
not mean that the state of the object they refer to cannot change (as shown by the example).

The reason why the state of the object referenced by b changes, while for a this is not the case, is not a direct
consequence of parameter passing (note that the parameter is passed in the same way for a and b). The change
depends on the use of the append() method, which modifies the state of the object on which it is invoked (i.e.,
sb, which refers to the same object as b, whereas the concat() method does not modify the state of the object
s, and hence a).

4
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3.13 Local variables

The body of a method can contain variable declarations. Such variables are called local variables. In fact, all
variables that we have used till now were local variables, since they were declared in the body of a method,
namely the main() method. Hence, they are used as we have seen in Unit 2.

Here, we concentrate on two fundamental aspects related to variables:

• scope (which is a static notion, i.e., it depends on the program text)
• lifetime (which is a dynamic notion, i.e., it depends on the execution of the program)

Note: In Java, it is also possible to define global variables for a class. A global variable is defined inside the class,
but outside any method, and is qualified as static. In this course we will not make use of global variables.

3.14 Scope of local variables

The scope of a variable is the region of a program in which the variable is visible, i.e., in which it is accessible
by its name and can be used.

In Java, the scope of a local variable is the body of the method in which it is declared. In other words, the
variable is visible in the body of the method where its declaration appears, but it is not visible on the outside
the method.

Clearly, as we have already said in Unit 2, a variable cannot be used in the body of a method before it has been
declared.

Notes:

• In fact, a more general scope rule holds: the scope of a local variable extends from the point of its
declaration to the end of the block that encloses it. A block is a statement of the form {...} (see later).
Hence, a local variable is visible in the block in which it is declared (including sub-blocks, if present), but
is not visible outside that block.

• In Java, the scope of a variable is a completely static notion. Indeed, it can be determined by analyzing
the structure of the program, without considering its execution. Most current programming languages
support such a notion of static scope.

• If follows that the notion of scope is relevant at compile time.

3.15 Example: scope of local variables

Consider the following program.

public class Visibility {

public static String duplicate(String s) {
String t = s + ", " + s;
return t;

}

public static void print1() {
System.out.println(a); //ERROR: a is not defined

}

public static void print2() {
System.out.println(t); //ERROR: t is not defined

}

public static void main(String[] args) {
String a = "Ciao";
a = duplicate(a);
print1();
print2();
System.out.println(a);
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10 UNIT 3

}
}

During program compilation the compiler will signal two errors:

1. In the print1() method, the variable a is not visible (since it is defined in the main() method).
2. In the print2() method, the variable t is not visible (since it is defined in the duplicate() method).

3.16 Lifetime of local variables

The lifetime of a variable is the time during which the variable stays in memory and is therefore accessible
during program execution.

The variables that are local to a method are created the moment the method is activated (exactly as formal
parameters) and are destroyed when the activation of the method terminates.

More precisely, when the method is activated, a block of memory cells, called activation record, is allocated,
which contains all local variables and formal parameters of the current method call. The activation record is
used during the method execution, and is then removed at the end of the execution. When the activation record
is removed, the memory locations for the local variables and for the formal parameters are destroyed and the
values they contain are lost.

When the method is activated again, a new activation record is allocated, with new memory locations that have
nothing to do with the ones of the previous activations. Hence, at each method activation the memory locations
for local variables and formal parameters are created anew, and these memory locations are in general different
from the ones of previous activations. It follows, that the values of local variables and of formal parameters are
not kept from one method call to the next.

Note: The notion of lifetime of a variable is relevant at execution time.

3.17 Overloading of methods

As said, Java distinguishes methods based on their whole signature, and not only on their name. Hence, we
can define in the same class more than one method with the same name, as long as these methods differ in the
number or type of their formal parameters (note: the name of the formal parameters is not relevant for the
distinction). This feature is called overloading of methods.

Example:

public class Greetings2 {

public static void printGreeting() {
System.out.println("Hello!");

}

public static void printGreeting(String name) {
System.out.println("Hello " + name + "!");

}
}

• The call of the method printGreeting() without actual parameters will activate the first
printGreeting() method (the one without formal parameters), which will print the string "Hello!".

• The call of the method printGreeting() with one actual parameter of type String will activate the
second printGreeting() method, which will print the string "Hello ", followed by the string passed as
a parameter, followed by "!".

3.18 Abstraction on objects

Abstraction on objects is realized as follows:

• We group similar objects (i.e., objects with the same properties) into classes.
• We establish the properties that are relevant for the objects, and in particular, the operations that they

support (note that this requires to perform an abstraction on operations).
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The ability to support in a very advanced way the abstraction on objects is the fundamental feature of all
object-oriented programming languages (such as Java, C++, C#, etc.). In these languages, such a form of
abstraction is supported by the ability to define classes directly at the programming language level.

In Java, the definition of a class is characterized by:

• the name of the class, which identifies the class itself, and hence identifies the type of its instances;
• the instance variables (also called data fields), which allow us to store data inside the objects;
• the (instance) methods (also called operation fields), which can be invoked on the objects of the class to

perform operations on them.

Note: The instance variables and the methods represent the properties of the objects of a Java class.

Moreover, through suitable access modifiers, we can specify:

• which fields should be visible to the outside the class, i.e., to the clients of the class – such fields are called
public;

• which fields should be hidden to the clients since they are not relevant for them – such fields are called
private.

3.19 Classes seen as modules

A class, seen as a module, is characterized by the following features (we assume that no instance variable is
public):

• exported services: the public methods, i.e., the methods visible outside the class;
• interface: the headers of the public methods;
• imported services: other methods or classes used to realize the representation of the objects and of the

methods of the class;
• internal structure: representation of the objects and realization of the methods of the class.

Note: The abstraction on objects makes use of the abstraction on operations.

3.20 Definition of a class

Definition of a class

Syntax:

public class Name {
field-1

...
field-n

}

• Name is the name of the class
• field-1 . . . field-n are the fields of the class, which represent its properties. Each field-i can be

either a data field or an operation field :
– a data field (or instance variable) is a variable declaration (see later)
– an operation field (or method) is a method definition (see later)

Each field is qualified with an access modifier, which determines its visibility outside the class (see later).

Semantics:

Defines a class.

• The data fields (or instance variables) are used to represent the internal structure of the objects of the
class.

• The operation fields (or methods) are used to realize the functionalities of the class.

The details will be shown later.
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12 UNIT 3

3.21 Example of a class definition

We want to realize a Java class to represent persons. The properties of interest for a person object are the
name, defined once and for all, and the residence, which may change.

Let us define a Java class Person to represent persons.

public class Person {
//instance variables (data fields)
private String name;
private String residence;

//methods (operation fields)
public String getName() {
return name;

}
public String getResidence() {
return residence;

}
public void setResidence(String newResidence) {
residence = newResidence;

}
}

The definition of the class Person consists of the following elements:

• the name of the class, i.e., Person;

• two private data fields (or instance variables) of type String, namely name and residence;

• three public fields, each of which is a method definition, namely getName(), getResidence() and
setResidence().

The keywords public and private specify which fields are public and which are private (see later).

• Name and residence of persons are represented each by an instance variable of type String in the class
Person. Since these variables are private, they cannot be accessed from outside the class.

• Two of the methods defined in the class, getName() and getResidence(), return respectively the name
and the residence of a person.

• The method setResidence(), instead, allows us to change the residence of the person represented by the
invocation object for the method.

When a method, such as setResidence(), modifies the object on which it is called we say that it has a side-
effect (see, e.g., the methods of the class StringBuffer). In general, the decision whether a method of a class
should have a side-effect or not is a design choice that has important consequences on the way in which the
class must be used by its clients.

Note: The definition of a class has to be saved in a file with the same name as the class and extension .java.
For example, the definition of the class Person must be saved in a file called Person.java.

Note: In the definition of a class, the order of the fields (instance variables and methods) is irrelevant.

3.22 Instance variables

Instance variables are variables defined in a class, but outside the body of methods. The declaration of an
instance variable is similar to the declaration of a local variable of a method, but:

1. the variable is defined inside the class, but outside all methods;

2. the variable is preceded by an access modifier (usually private);

3. the variable is always initialized when the object is created, either implicitly (to a default value), or
explicitly by the constructor (see later).
Note: This is different from local variables, which are not necessarily initialized when the associated
memory location is created.
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The instance variables are associated to the single objects and not to the entire class. This means that each
object has its own instance variables. Two different objects have different instance variables.

"Paperopoli"residence

name "Pippo"

"Topolinia"

Person

residence

name

Person

"Paperino"

3.23 Use of a defined class

A class defined by the programmer is used exactly in the same way as a predefined class (e.g., String).

public class ClientClassPerson {
public static void main(String[] args) {
Person p1;
p1 = new Person();
p1.setResidence("Roma");
System.out.println(p1.getResidence());

}
}

The class ClientClassPerson is a client of the class Person, since it makes use of such a class. The client
defines the method main() (the method of the program that is called first) in which:

1. we define a variable, local to main(), of type Person (or, more precisely, of type reference to an object
that is an instance of Person);

2. we create a new object of the class Person, and we assign to p1 a reference to it;
3. we call the method setResidence() of the class Person on the object denoted by p1, and pass to the

method the actual parameter "Roma"; note the use of the selection operator “.” to select the (public)
fields of the class (in this case, the method setResidence());

4. finally, we call the method getResidence() on p1 to print the residence of the object denoted by p1.

Note: The class ClientClassPerson must be saved in a file called ClientClassPerson.java. The file must
be placed in the same directory as the file containing the class Person, in order to avoid problems during the
compilation or the execution of the class ClientClassPerson. We could overcome this limitation by making
use of so called packages, but we will not deal with packages in this course.

3.24 Controlling the access to the fields of a class

The access modifiers public and private have the following meaning:

• public indicates that the method / instance variable is visible outside the class, i.e., by the clients of the
class.

• private indicates that the method / instance variable is not visible outside the class, and hence can only
be used inside the class itself and not by its clients.

Example:

public class ClientClassPerson2 {
public static void main(String[] args) {
Person p1;
p1 = new Person();
p1.setResidence("Roma");

//OK! the field setResidence is public
System.out.println(p1.getResidence());

//OK! the field getResidence is public
System.out.println(p1.residence);

//ERROR! the field residence is private
}
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}

This example shows a client that tries to access the public and private fields of the class Person. While the
access to the public fields, setResidence() and getResidence(), is allowed, the access to the private field,
residence, causes an error at compile time.

3.25 Scope of instance variables

Instance variables are always visible in all methods of the class. They always refer to the invocation object.

Example: In the statement return name; the instance variable name is an instance variable of the invocation
object for the method.

The public instance variables are visible outside the class, and they can be accessed through a reference to the
object to which they belong, by means of the field selection operator “.”.

Example: If we had defined the class to represent persons as follows:

public class Person2 {

//instance variables (data fields)
private String name;
public String residence; //residence is declared public

//methods (operation fields)
public String getName() {
return name;

}
public String getResidence() {
return residence;

}
public void setResidence(String newResidence) {
residence = newResidence;

}
}

then we could directly access the instance variable residence, as shown by the following client:

public class ClientClassPerson2 {
public static void main(String[] args) {
Person2 p1;
p1 = new Person2();
p1.setResidence("Roma");

//OK! the field setResidence is public
System.out.println(p1.getResidence());

//OK! the field getResidence is public
System.out.println(p1.residence);

//OK! the field residence is public
}

}

Note: Typically, the instance variables must be declared private, to hide from the clients the representation
of the objects of the class. This leaves the freedom to change such a representation without the need to modify
the clients.

3.26 Lifetime of instance variables

The lifetime of an instance variable coincides precisely with the lifetime of the object of which it is part. The
instance variables are created the moment the object containing them is created, and they can be used as long
as the object can be accessed. The creation of the object denoted by a variable is done by the run-time support
(the Java Virtual Machine), by allocating, together with the object, the memory that is necessary to store the
values of its instance variables.
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Through the mechanism of garbage collection, the run-time support automatically destroys an object (and frees
the memory it takes up) when there are no more references to the object, and hence the object cannot be
accessed any more.

3.27 Rules for accessing the fields of a class

Typically, the access to the fields of a class is done as follows:

• The methods that correspond to functionalities of the class that are of interest for the clients are declared
as public.

• The instance variables and the auxiliary methods, i.e., those methods that help to realize the methods
representing the functionalities of interest, are declared as private.

In this way, the methods that correspond to functionalities of interest for the clients are visible outside of the
class, while the instance variables and the auxiliary methods that are needed to support those functionalities,
but that are not of interest for the clients, are visible only inside the class.

The set of public fields of a class is called the public interface of the class.

Note: In Java, there are two additional access modalities, namely protected and “visible in the package” (the
latter is obtained by omitting the access modifier). These will not be discussed in this course, but will be dealt
with in subsequent programming courses.

3.28 Definition of methods

The definition of a method is similar to the definition of a static method that we have already seen, but in
the header of the method the static keyword does not appear. This indicates that the method requires an
invocation object.

Hence, the definition of a method is constituted by:

header block

• header is the header of the method and has the following form:

public resultType methodName (formalParameters )

where (as for the static methods)

– public indicates that the method being defined is accessible from outside the class
– resultType is the type of the result returned by the method, or void, if the method does not return

any result
– methodName is the name of the method
– formalParameters is a list of parameter declarations (type and name) separated by commas; each

parameter is a variable; the list of parameters may also be empty

• block is the body of the method containing the statements that will be executed when the method is
being called; as for static methods, it has the form:

{
statements

}

3.29 The implicit formal parameter this

All the instance (i.e., non-static) methods have an implicit formal parameter denoted by this. Such a parameter
denotes the invocation object. In other words, when the method is called, this is bound to (the reference to)
the invocation object, which thus acts as an actual parameter.

The parameter this is used to access the instance variables and the methods of the invocation object. Note
that, in general, we can omit this, as we have done till now. Indeed, Java inserts it automatically whenever
we use an instance variable or an instance method of the class.

Example: The definition of the class Person given below has exactly the same meaning as the class Person that
we have already seen.
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public class Person {
//instance variables (data fields)
private String name;
private String residence;

//methods (operation fields)
public String getName() {
return this.name;

}
public String getResidence() {
return this.residence;

}
public void setResidence(String newResidence) {
this.residence = newResidence;

}
}

Note: We cannot assign a value to the formal parameter this. Note that, if we could, it would mean that we
would actually change the invocation object of the method.

3.30 Use of this

Typically, this is used when there is a local variable (or a formal parameter) declared inside the method with
the same name as an instance variable, and we want to distinguish between the instance variable and the local
variable. Indeed, if we declare a local variable using the same identifier as for an instance variable, then the
name of the local variable hides the name of the instance variable, and we need to explicitly use this to denote
the instance variable (the implicit use of this is blocked).

Example:

public class Person {
private String name;
private String residence;

public String getName() {
return name;

}
public String getResidence() {
String residence;

// the local variable masks the instance variable with the same name
residence = this.residence;

// this is used to distinguish the instance var from the local var
return residence;

// here we are referring to the local variable
}
public void setResidence(String residence) {
this.residence = residence;

// this is again used to distinguish the instance var from the local var
}

}

3.31 Constructors

With what we have seen till now we have no means to initialize with a suitable value the field name of a Person
object. We do not know how to let an object correspond, e.g., to John Smith. The instance variable name
should have the value "John Smith", but this variables is private, and hence the following statement would
be wrong:

Person p = new Person();
p.name = "John Smith"; // ERROR! name is declared private
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To make it possible to explicitly initialize private instance variables of objects, we have to use constructors.
A constructor is simply a (non static) method of a class that has the same name as the class and does not
have an explicit return value (not even void).

For example, let us realize a constructor for the class Person that takes as arguments the name and the residence
of the person to create.

public class Person {
...
// constructor name-residence
public Person(String n, String r) {
name = n;
residence = r;

}
...

}

3.32 Invocation of a constructor

A constructor is automatically called by the run-time support (the Java Virtual Machine) when an object is
created using the new operator. For example, with the following code fragment

Person p = new Person("John Smith", "London");
// constructor name-residence is called

System.out.println(p.getResidence());
// prints "London"

the run-time support calls the constructor Person(String,String), which creates (i.e., allocates the memory
for) an object of the class Person and initializes explicitly the fields name and residence to the values passed
as parameters. The reference to the newly created object is then assigned to the variable p.

Consider the following code fragment:

Person p; // (1)
p = new Person("John Smith", "London"); // (2)

In (1), we define a variable p of type reference to an object of type Person, while in (2) we create a new object
Person, and we assign the reference to it to the variable p.

Note: The new operator uses a constructor to create an object, and returns a reference to it. Such a reference
can:

• be passed as actual parameter to a method that has a formal parameter of type reference to Person.
• be returned as result of a method whose return value is of type reference to Person.

Note: It is important that all constructors are declared as public fields of the class. If they were declared
private, then any attempt to create an object of the class would generate an error.

3.33 Overloading of constructors

Since Java admits overloading of methods, and a constructor is a special case of a method, it is possible to
define several constructors for a class.

For example, we can define a constructor that sets to null the residence of persons that are being created.

// constructor name
public Person(String n) {
name = n;
residence = null;

}

We show some examples of how to use the constructors:

Person p1 = new Person("John Smith");
// calling constructor name
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Person p2 = new Person("Tom Jones", "London");
// calling constructor name-residence

System.out.println(p1.getName());
// prints "John Smith"

System.out.println(p2.getName());
// prints "Tom Jones"

When we create an object by means of a new operation, the compiler determines which constructor to use based
on the number and the types of parameters specified in the new operation. The run-time support can then call
the chosen constructor to create the object.

3.34 Standard constructor

When we create an object of a class that does not contain any constructor definition (such as the first version
of the Person class), the so-called standard constructor is called.

• The standard constructor is a constructor without arguments generated automatically by the compiler for
all those classes that do not contain any constructor definition.

• It leaves the instance variables initialized to their default value, which is the value assigned automatically
by the run-time support when the memory location associated to the variable is being reserved.

• The standard constructor is automatically inhibited by the compiler when the definition of any constructor
(with or without arguments) is explicitly present in the class. In particular, the programmer can also
explicitly define a constructor without arguments that replaces the standard constructor.

For example, for the class Person, we could define the following constructor without arguments:

public Person() { // constructor without arguments
name = "John Smith";
residence = null;

}

Note: It does not always make sense to define for a class a constructor without arguments. For example, the
definition of a constructor without arguments for the class Person can certainly be questioned.

3.35 Design methodology for a class: realization of a class

We present a methodology for designing a class in various steps, which will allow us to realize Java classes in a
structured way, by dividing the problem in various sub-problems, and addressing each of them separately. In
this way we will be able to deal with the complexity of realizing a class in a simple and effective way.

1. Starting from the specification of a class, we identify the properties and the services of the class to realize.
2. We choose a representation for the objects of the class, by identifying the instance variables that are

necessary.
3. We choose the headers of the public methods of the class (the interface of the class). Note that in this step

we are deciding in which way the clients of the class have to use the objects of the class we are realizing.
4. We realize the body of the public methods, possibly by introducing auxiliary methods in order to simplify

and structure the code.

3.36 Design methodology for a class: clients of the class

Once a class is realized, we should also realize an example client of the class to verify in practice how the class
has to be used. Note that, in order to do so, we do not have to know the bodies of the public methods of the
class. Indeed, from the point of view of the clients, what matters is what the public methods of the class do,
not how they do it.

This means that we could also anticipate the realization of the clients of the class before we have realized the
bodies of the public methods (and hence also before we introduce auxiliary methods).

In practice, after step 3 we can realize the so-called skeleton of the class, i.e., the class itself, in which we
have just the headers of the public methods, instead of their definitions, and without any private method.

The skeleton of the class is sufficient to realize the clients of the class.
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3.37 Example for the design of a class

Specification: Realize a Java class for representing cars. The properties of interest for a car are the plate number,
the model, the color, and the person who owns the car. The first two properties cannot be modified, while the
third and fourth can. A car has initially no owner. The owner is assigned to a car only later (e.g., when the car
is sold).

By analyzing the above specification, we see that we have to realize a class Car, whose functionalities are:

• creating an object of the class with the properties plate, model, and color initialized to suitable values,
and no owner;

• returning the value of each of the properties plate, model, color, and owner;
• changing the color or the owner.

At this point we are ready to write:

public class Car {
// private representation of the objects: instance variables
// public methods realizing the requested functionalities

}

3.38 Example for the design of a class: representation for the objects

We have to decide how to represent the properties of cars. In this case, it is immediate to choose the represen-
tation. We represent the objects of the class Car by means of the following instance variables:

• the plate, by means of an instance variable plate of type String

• the model, by means of an instance variable model of type String

• the color, by means of an instance variable color of type String

• the owner, by means of an instance variable owner of type Person

Note: In our initial examples, the choice of the representation will always be immediate. However, as we go on
with the course, we will see that this step can become significantly more complex.

At this point we are ready to write:

public class Car {
// representation of the objects
private String plate;
private String model;
private String color;
private Person owner;

// public methods realizing the requested functionalities
}

3.39 Example for the design of a class: public interface

We are now ready to choose the interface of the class Car, through which the clients can use its objects. In
particular, for each functionality we have to define a public method realizing it and determine its header.

The requested functionalities are:

Creation of an object of the class with the properties plate, model, and color, suitably initialized, and no owner.

We know that, to construct an object of a class, we have to use a constructor. Hence, this functionality
requires the definition of a constructor; specifically, this constructor must initialize the instance variables that
represent plate, model, and color using suitable parameters (note that the first two properties cannot change
value anymore). The instance variable owner, instead, must be initialized to the non-significant value null.
The header of the constructor is:

public Car(String p, String m, String c)

Return of the value of each of the properties plate, model, color, and owner.
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For each of the four properties, we define a public method that return the value (to be precise, the reference to
the object that represents the value). The headers of these methods are:

public String getPlate()
public String getModel()
public String getColor()
public Person getOwner()

Modification of the value of the properties color and owner.

To modify the color and the owner we introduce two methods whose header is:

public void setColor(String newColor)
public void setOwner(Person newOwner)

At this point we can write the skeleton of the class Car:

public class Car {
// representation of the objects
private String plate;
private String model;
private String color;
private Person owner;

// constructor
public Car(String p, String m, String c) {
...

}
// other pubblic methods
public String getPlate() {
...

}
public String getModel() {
...

}
public String getColor() {
...

}
public Person getOwner() {
...

}
public void setColor(String newColor) {
...

}
public void setOwner(Person newOwner) {
...

}
}

Note: Since we have introduced a constructor, we cannot use anymore the standard constructor. On the other
hand, we are not interested in defining a constructor without arguments, since we need to fix the plate and the
model of an object Car once and for all the moment it is created.

3.40 Example for the design of a class: realization of the methods

We concentrate now on the various methods and realize their bodies.

We start from the constructor:

public Car(String p, String m, String c) {
plate = p;
model = m;
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color = c;
owner = null;

}

Note: If we omit the statement owner = null; the owner will anyway automatically be initialized to null,
which is the default value for references to objects. It is anyway a good programming practice to explicitly
initialize all instance variables, thus avoiding to make use of the automatic initializations.

We realize the other methods in a similar way.

public class Car {
// representation of the objects
private String plate;
private String model;
private String color;
private Person owner;

// constructor
public Car(String p, String m, String c) {
plate = p;
model = m;
color = c;
owner = null;

}
// other public methods
public String getPlate() {
return plate;

}
public String getModel() {
return model;

}
public String getColor() {
return color;

}
public Person getOwner() {
return owner;

}
public void setColor(String newColor) {
color = newColor;

}
public void setOwner(Person newOwner) {
owner = newOwner;

}
}

3.41 Example for the design of a class: a client

Let us realize a client, CarServices, of the class Car. The class CarServices contains two static methods:

• spray(), which takes as parameters (a reference to) an object Car and (a reference to) an object String,
representing the (new) color of the car, and modifies the object Car by changing its color;

• registerAlfa147(), which takes as parameters two objects String that represent respectively the plate
and the color and returns (a reference to) a new object Car whose model is "Alfa147" and whose plate
and color are specified by the parameters.

We write the class CarServices, in a file called CarServices.java, as follows:

public class CarServices {
public static void spray(Car car, String color) {
car.setColor(color);
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}
public static Car registerAlfa147(String pla, String col) {
return new Car(pla, "Alfa147", col);

}
}

Finally, we realize a class Main, containing a method main(), that uses the class Car and the class CarServices.
This class will be written in a separate file Main.java:

public class Main {

// auxiliary method
private static void printCarData(Car a) {
System.out.println("Car: " + a.getPlate() + ", "

+ a.getModel()+ ", "
+ a.getColor());

}

// auxiliary method
private static void printOwnerData(Car a) {
System.out.println("Owner: " + a.getOwner().getName() + ", "

+ a.getOwner().getResidence());
}

public static void main(String[] args) {
Car a = new Car("313","Fiat 500","Red and Blu");
printCarData(a);
Person p = new Person("Paperino", "Paperopoli");
a.setOwner(p);
printOwnerData(a);
CarServices.spray(a, "Maranello Red");
printCarData(a);
Car b = CarServices.registerAlfa147("131", "Alfa Red");
printCarData(b);
Person c = new Person("Clarabella", "Topolinia");
b.setOwner(c);
printOwnerData(b);

}
}

3.42 The toString() method

The toString() method is a method defined for all objects, independently of the class to which they belong,
and even if we do not define it explicitly. The reason for this is that the toString() method is defined for the
class Object, and hence is inherited by all Java classes (we will discuss inheritance in more detail in Unit 8).

The toString() method has the following header:

public String toString()

This method is used to transform an object into a String. Typically, it is used to construct a string containing
the information on an object that can be printed, and we can redefine it for a certain class. If we do not redefine
it, the toString() method of the class Object is used (which prints a system code for the object).

Example:

public class TestToString {
public static void main(String[] args) {
Person p = new Person("Pippo", "Topolinia");
System.out.println(p.toString());

}
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}

This program is executed without errors and prints a string on the screen, for example "Person@601bb1", which
corresponds to a code defined by the method toString() of Object.

We can redefine the method toString() in the class Person in such a way that it returns the name of the
person.

public class Person {
...
public String toString() {
return name;

}
...

}

Now, the same program TestToString prints "Pippo".

3.43 Use of toString() in print() and println()

The predefined class PrintStream contains variants of the methods print() and println(), which we have
used till now, that have a formal parameter of type reference to Object instead of String. These two methods
invoke on the parameter of type Object the method toString(), and then print the resulting string using the
printing method that we have already seen for String. In practice, this allows us to avoid the explicit use of
toString() in the argument of print() and println().

Example:

public class TestToString2 {
public static void main(String[] args) {
Person p = new Person("Pippo", "Topolinia");
System.out.println(p);
// this is equivalent to System.out.println(p.toString());

}
}

Exercises

Exercise 3.1. Define a class Book to handle the information associated to books. The information of interest
for a book are: the title, the authors, and the price. The methods of interest are:

• a constructor to create a book object, with title and authors as parameters;
• printBook(), which prints the title and the authors of a book on two lines;
• printBookPrice(), which prints the title, the authors, and the price of the book;
• windowBook(), which shows the title and the authors of a book on two lines in an output window;
• getTitle(), which returns the title of a book;
• getAuthors(), which returns the authors of a book;
• getPrice(), which returns the price of a book;
• setPrice(), which sets the price of a book to the integer value passed as parameter (note: use the

primitive type int for integers – see Unit 4).

Exercise 3.2. Write a Java class implementing an example client for the class Book of Exercise 3.1. The
example class should perform the following operations:

1. read from the keyboard the title and authors of a first book, and create a corresponding object;
2. read from the keyboard the title and authors of a second book, and create a corresponding object;
3. show the information about the first book;
4. show the information about the second book;
5. read the price of the first book and update the object accordingly;
6. show the information about the first book, including the price.
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Exercise 3.3. We want to realize a system for composing messages to send via a cell phone. Each message
corresponds to a code. For example, to the code "ily" corresponds the complete message "I love you,
darling.". Define the class MessageText to handle messages. The class must have:

• a method to create an object MessageText, given the code and the complete message;
• a method to return the code of a message;
• a method to return the text of the message.

Exercise 3.4. A message must contain the number to call, the number of the sender, and the message text.
Define a class Message, with:

• a method that creates an instance starting from an object of the class MessageText and two strings that
represent the number to call and the number of the sender;

• a method that creates an instance starting from an object of the class MessageText and a string that
represents the number of the sender;

• a method that creates an instance starting from an object of the class MessageText;
• a method that takes as parameter a phone number, and uses it to update the number to call of the

message;
• a method that prints the message.

Exercise 3.5. Write an example program that uses the two classes MessageText and Message. The program
should:

1. inizialize a variable of type String that corresponds to the phone number of the sender;
2. read the text and the code of a message, and store them in an object of type MessageText;
3. read the phone number of the receiver;
4. create an object of type Message;
5. show the information about the object of type Message.

Define (and use) an auxiliary static method for reading a phone number from the keyboard. Solve the exercise
so as to use all methods that have been defined in the classes MessageText and Message (possibly by creating
and printing various messages).

Exercise 3.6. Modify the classes Book (Exercise 3.1) and MessageText (Exercise 3.3) by defining static
methods to read the input from the keyboard. Test these methods by suitably modifying the example programs.
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