

Automated Activity Recognition in Clinical Documents

C. Thorne, M. Montali, D. Calvanese Free University of Bozen-Bolzano, Bolzano, Italy {thorne.montali,calvanese}@inf.unibz.it

E. Cardillo, C. Eccher Fondazione Bruno Kessler, Povo, Italy {cleccher,cardillo}@fbk.edu

A. Problem

Clinical guidelines are documents describing the state-ofthe-art on clinical therapies [3]; building a careflow from a clinical guideline is time consuming and error prone.

Question (1): Can NLP be used to automatically extract careflow fragments?

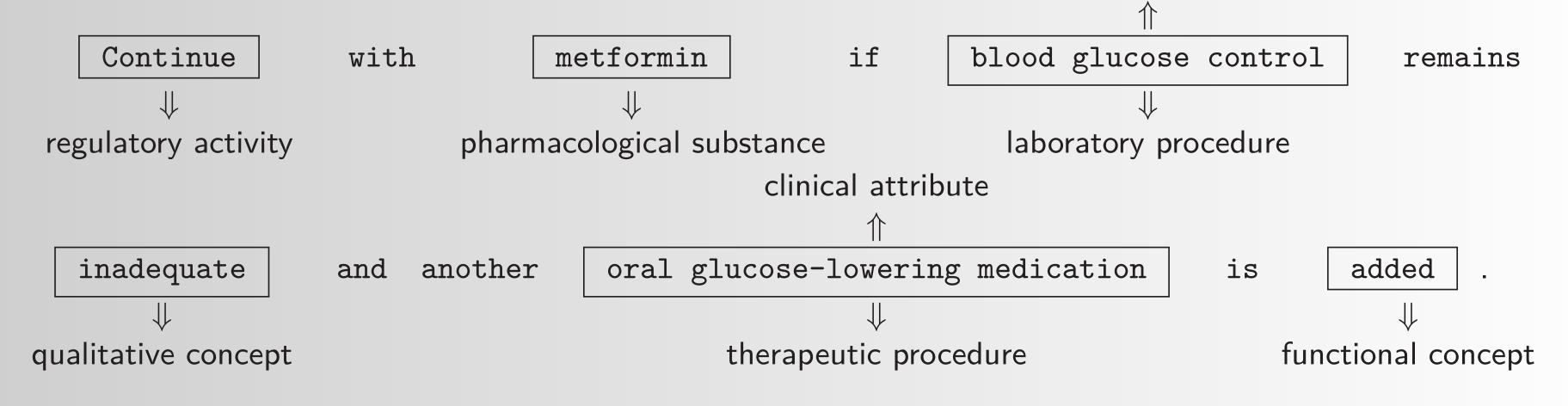
Question (2): Should the techniques leverage on guideline syntax or semantics?

B. Activity Recognition

(1) Let $\vec{\alpha} = (\alpha_1, \dots, \alpha_n)^T$ be *n* input content words or entities of a sentence.

C. Biomedical Thesauri & Careflow Fragments

(1) MetaMap UMLS (automated) annotations of a type 2 diabetes guideline recommendation [4]; boxes surround entities, annotations are MetaMap's: clinical attribute



(2) Let $\vec{c} = (c_1, \ldots, c_n)^T$ denote n entity types drawn from the set:

{activity, resource, actor, other}.

(3) In the clinical entity recognition task [1] we want to find the entities s.t.

 $\vec{c}^* = \arg\max_{\vec{a}} \mu(\rho(\vec{\alpha}, \vec{c}))$

 $\triangleright \mu(\cdot)$ denotes a classifier;

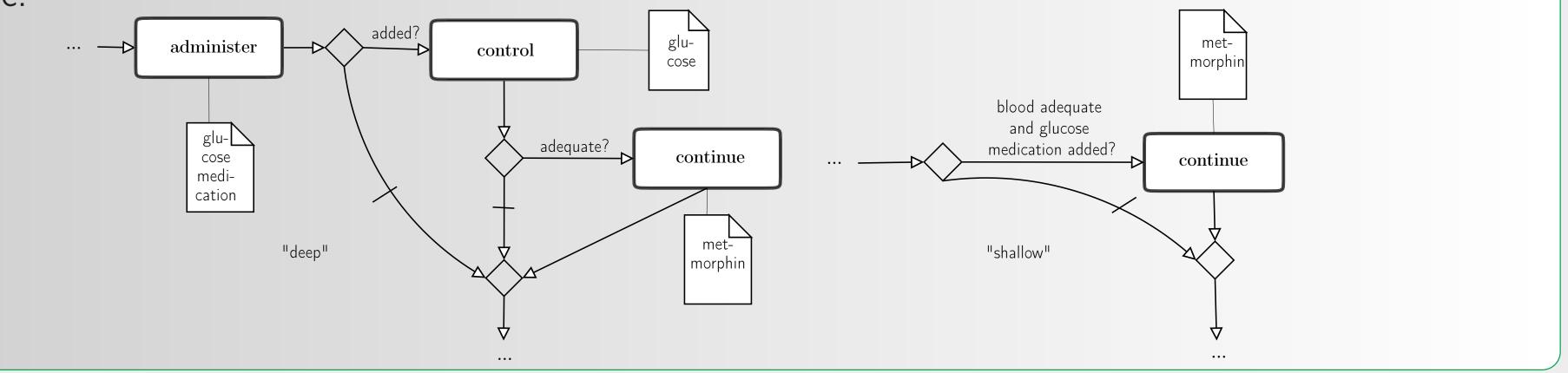
 $\triangleright \rho(\cdot, \cdot)$ is a feature extraction function, that maps \vec{c} and $\vec{\alpha}$ into a high-dimensional space of features.

D. Features & Entities

(1) Types harvested from entities by mapping MetaMap and UMLS [2, 7] concepts to entity types:

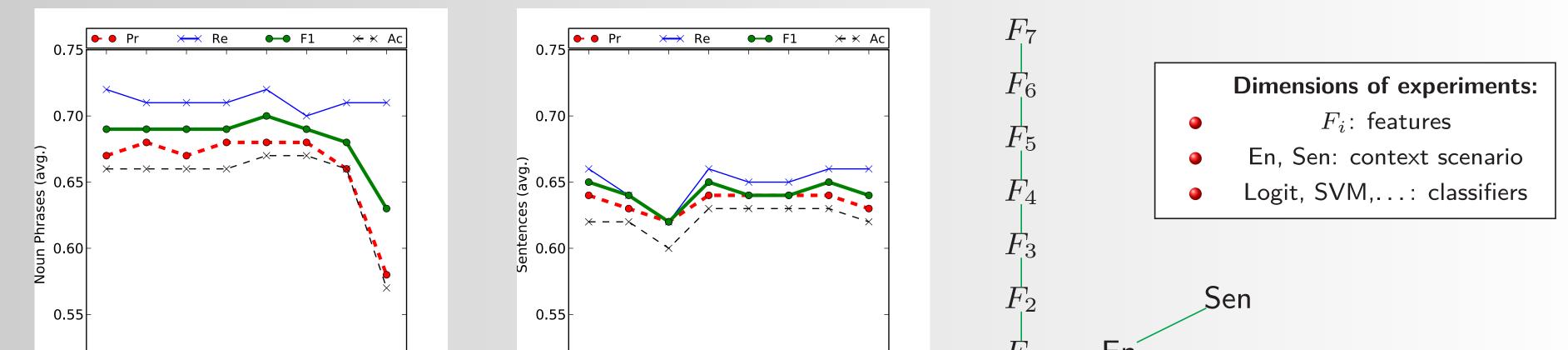
activity	actor	resource	other
laboratory	professional	manufactured	qualitative
procedure	society	object	concept
	•		

(2) Candidate careflow fragments (represented in BPMN): to the left, the intended "deep" careflow, to the right a "shallow" one:

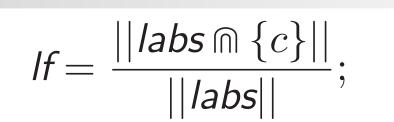


E. Experiments & Results

Goal: To extract the intended "deep" fragment we need to recognize, e.g., "blood glucose control" as an activity (therapeutic procedure) instead of a resource (clinical attribute), and understand if this choice depends on syntax or semantics:



- (2) Semantic features for each entity extracted also with MetaMap and the UMLS Metathesaurus:
- compute the raw frequency *freq* of entity type c;
- compute the (repeated) entity types *labs* of the entity's noun phrase (**NP**);
- ▷ compute the rel. frequency *If* of entity type *c*:



compute the overlap hd of labs and the types labsh of its NP's head noun, and the overlap *Is* of *labs* and entity subtypes *sub(c)* (in the UMLS taxonomy):

$$hd = \frac{||\textit{labs} \cap \textit{labsh}||}{||\textit{labs}|| + ||\textit{labsh}||}, \ \textit{ls} = \frac{||\textit{labs} \cap \textit{sub}(c)||}{||\textit{labs}|| + ||\textit{sub}(c)||}$$

- $(||.|| and \square: bag cardinality and intersection, resp.).$
- (3) Syntactic features for each entity extracted with the Stanford parser [6]:
- compute position *pos* in sentence, subordination *sub* and nesting level *nest*.

$$0.50 \frac{1}{n^{0^{n^{e^{\frac{1}{5}}}}} - 5^{0^{5}}} \frac{1}{n^{e^{5}}} \frac{1}{p^{0^{5}}} \frac{1}{p^{6}} \frac{1}{p^{6}} \frac{1}{n^{6}} \frac{1}{p^{6}} \frac{1}{p^{6$$

corpus	size (words)	domain	rel. freq.
Brown	1,391,708	news	0.16
Friederich	3,824	processes	0.17
SemRep	13,948	clinical	0.18
diabetes 2	7,109	clinical	0.16
eating disorder	5,078	clinical	0.17
schizophrenia	5,367	clinical	0.18

- All—Neural—SVM—Tree—Logit—Bayes
 - \triangleright remove feature F_i from predictors $\{F_1, \ldots, F_7\}$;
 - consider sentence context (Sen scenario) or not (En scenario);
 - > evaluate the classifiers via a 10-fold cross-validation over the Goldstandard UMLS-annotated SemRep clinical corpus [5], and measure average classifier precision (Pr), recall (Re), F1-measure and accuracy (Ac) per each (F, S) feature-scenario pair.

(1) Performance drops if semantic features (*Is*, *freq*, *hd*) are disregarded and we ignore sentence context. (2) When we consider sentence context, syntax is more determinant (*sub*), but performance drops overall. (3) Corpus analysis shows no significant difference in syntax between clinical and non clinical text.

Complete results: http://www.inf.unibz.it/~cathorne/vericlig/ijcnlp2013-exp.pdf

F. Conclusions & Further Work

- (1) Conducted a preliminary experiment on automatic clinical activity recognition using MetaMap.
- Experimented on the SemRep gold standard UMLS-annotated corpus. (2)
- (3) Experiments suggest that the semantic environment of an entity is more useful for this task.
- (4) Corpus analysis seems to confirm this observation.
- (5) In the future, we plan to consider more powerful classification models for NLP.
- (6) We also plan to consider larger UMLS-annotated corpora.

feature F	description	value f		
nest	nesting level in tree	$n \in \mathbb{N}$		
pos	position w.r.t. verb	subject, object		
sub	occurs in clause?	yes, no		
freq	freq. of label in corpus	$n \in \mathbb{N}$		
lf	rel. freq. of type	$r \in [0, 1]$		
hd	head/entity overlap	$r \in [0, 1]$		
ls	type/entity overlap	$r \in [0, 1]$		
type	entity type	activity, actor,		
		resource, other		
(7 predictors, and 1 predicted feature: type)				

6th Int. Joint Conference on Natural Language Processing Nagoya, Japan, October 14-18, 2013

G. References

- [1] Asma Ben Abacha and Pierre Zweigenbaum. Medical entity recognition: A comparison of semantic and statistical methods. In Proceedings of the BioNLP 2011 Workshop, 2011.
- [2] Alan R. Aronson and François-Michel Lang. And overview of MetaMap: Historical perspective and recent advances. Journal of the American Medical Informatics Association, 17(3):229–236, 2010.
- [3] A. Bottrighi, F. Chesani, M. Montali, and P. Terenziani. Conformance checking of executed clinical guidelines in presence of basic medical knowledge. In Proceedings of the 2011 Business Process Management Workshop, 2012.
- [4] National Institute for Health and Clinical Excellence (UK). Type 2 Diabetes. 2008. Available from http://www.nice.org.uk/nicemedia/pdf/ CG87NICEGuideline.pdf.
- [5] Halil Kilicoglu, Graciela Rosenblat, Marcelo Fiszman, and Thomas C. Rindfleisch. Constructing a semantic predication gold standard from the biomedical literature. BMC Bioinformatics, 12(486), 2011.
- [6] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st Meeting of the Association for Computational Linguistics ACL 2003, 2003.

[7] US National Library of Medicine (NLM - NIH). UMLS Reference Manual. 2009. Available from: http://www.ncbi.nlm.nih.gov/books/NBK9676/.

Acknowledgments

This work was supported by the VERICLIG project, funded by a Free University of Bozen-Bolzano Foundation grant, see: http://www.inf.unibz.it/~cathorne/vericlig.