VERICLIG: Extraction and Verification of Clinical Guidelines via Syntactic and Semantic Annotation

$\begin{array}{c} \mbox{Camilo Thorne}^1, \mbox{ Marco Montali}^1, \mbox{ Diego Calvanese}^1, \mbox{ Claudio Eccher}^2 \mbox{ and Elena}\\ \mbox{ Cardillo}^2 \end{array}$

1 KRDB Research Centre for Knowledge and Data 39100, Bolzano, Italy {cthorne,mmontali,calvanese}@inf.unibz.it

> ² Fondazione Bruno Kessler Trento, Italy {eccher,cardillo}@fbk.eu

http://www.inf.unibz.it/~cathorne/vericlig

ClinText 2013, Potsdam, 19/3/2013

Outline

- 1 Problem
- 2 Syntactic and Semantic Annotation
- 3 Concluding Remarks
- 4 References

Problem - CIG Extraction

We want to extract process representations from clinical guidelines

- 1 basic tool in hospitals and clinics [Got12]
- 2 describe state-of-the art therapies
- 3 implemented in workflow and decision support systems
- 4 processed manually
- 5 require loads of costly expert knowledge

Problem - CIG Extraction

We want to extract process representations from clinical guidelines

- 1 basic tool in hospitals and clinics [Got12]
- 2 describe state-of-the art therapies
- 3 implemented in workflow and decision support systems
- 4 processed manually
- 5 require loads of costly expert knowledge
- Quality assurance can be enhanced via verification [BCMT12]

Problem - CIG Extraction

We want to extract process representations from clinical guidelines

- 1 basic tool in hospitals and clinics [Got12]
- 2 describe state-of-the art therapies
- implemented in workflow and decision support systems
- 4 processed manually
- 5 require loads of costly expert knowledge

■ Quality assurance can be enhanced via verification [BCMT12]

■ We need computer interpretable guidelines (CIGs) representing therapies as

- activities (e.g., surgery)
- 2 resources (e.g., a drug)
- 3 actors (e.g., patients, doctors, nurses)
- 4 control flows (e.g., conditional, sequential, parallel)
- 5 several formalisms: BPMN, Asbru, Glare, Proforma (PROTOCURE EU Project)

Problem - CIG Extraction

We want to extract process representations from clinical guidelines

- 1 basic tool in hospitals and clinics [Got12]
- 2 describe state-of-the art therapies
- implemented in workflow and decision support systems
- 4 processed manually
- 5 require loads of costly expert knowledge

■ Quality assurance can be enhanced via verification [BCMT12]

■ We need computer interpretable guidelines (CIGs) representing therapies as

- activities (e.g., surgery)
- 2 resources (e.g., a drug)
- 3 actors (e.g., patients, doctors, nurses)
- 4 control flows (e.g., conditional, sequential, parallel)
- 5 several formalisms: BPMN, Asbru, Glare, Proforma (PROTOCURE EU Project)

QUE: Use (clinical) NLP annotation to extract CIGs?

Process Extraction - Diabetes 2 NCCN

1.5.1.2 Emphasise advice on healthy balanced eating that is applicable to the general population when providing advice to people with type 2 diabetes.

1.5.1.3 Continue with metformin if blood glucose control remains inadequate and another oral glucose-lowering medication is added.

 \Rightarrow Clinical guidelines describe therapies or treatment processes

Process Extraction - Diabetes 2 NCCN

1.5.1.2 Emphasise advice on healthy balanced eating that is applicable to the general population when providing advice to people with type 2 diabetes.

1.5.1.3 Continue with metformin if blood glucose control remains inadequate and another oral glucose-lowering medication is added.

- \Rightarrow Clinical guidelines describe therapies or treatment processes
- ▷ Data scarse to train state-of-the-art supervised annotators !

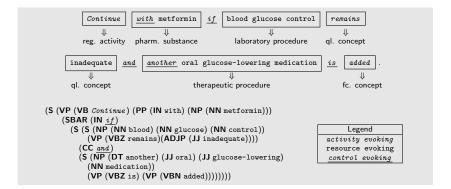
Process Extraction - Diabetes 2 NCCN

1.5.1.2 Emphasise advice on healthy balanced eating that is applicable to the general population when providing advice to people with type 2 diabetes.

1.5.1.3 Continue with metformin if blood glucose control remains inadequate and another oral glucose-lowering medication is added.

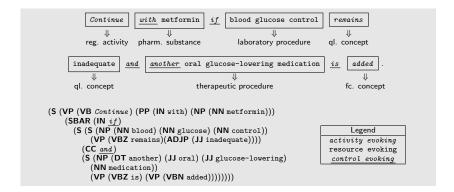
- \Rightarrow Clinical guidelines describe therapies or treatment processes
- ▷ Data scarse to train state-of-the-art supervised annotators !
- \Rightarrow Apply business process extraction techniques [FMP11]

Process Extraction - Diabetes 2 NCCN

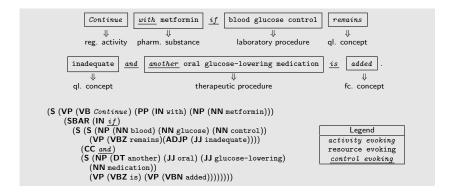

1.5.1.2 Emphasise advice on healthy balanced eating that is applicable to the general population when providing advice to people with type 2 diabetes.

1.5.1.3 Continue with metformin if blood glucose control remains inadequate and another oral glucose-lowering medication is added.

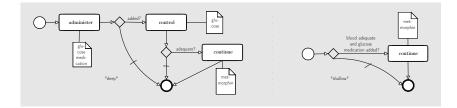
- \Rightarrow Clinical guidelines describe therapies or treatment processes
- ▷ Data scarse to train state-of-the-art supervised annotators !
- \Rightarrow Apply business process extraction techniques [FMP11]
- \Rightarrow Distinguish
 - control-flow words (= discourse relations)
 - 2 activity, resources and actor words (= content words)



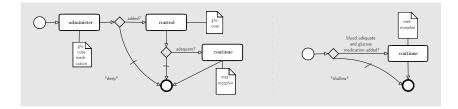
NLP Annotation - Combining Resources


NLP Annotation - Combining Resources

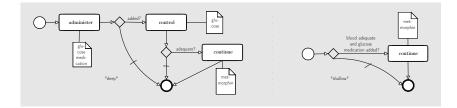
 \Rightarrow MetaMap & UMLS [AL10] finds activities, resources and actors


NLP Annotation - Combining Resources

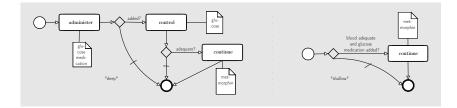
- $\Rightarrow\,$ MetaMap & UMLS [AL10] finds activities, resources and actors
- \Rightarrow Stanford parser [dMMM06] finds discourse relations


CIG & Process Granularity

 \Rightarrow Two possible CIGs in BPMN notation due to English ambiguity


CIG & Process Granularity

- \Rightarrow Two possible CIGs in BPMN notation due to English ambiguity
- Limitations of rule-based CIG extraction


CIG & Process Granularity

- \Rightarrow Two possible CIGs in BPMN notation due to English ambiguity
- Limitations of rule-based CIG extraction
 - 1 no clear clinical meaning for control-flow evoking words !
 - 2 no clear evaluation methodology !

CIG & Process Granularity

- \Rightarrow Two possible CIGs in BPMN notation due to English ambiguity
- Limitations of rule-based CIG extraction
 - no clear clinical meaning for control-flow evoking words !
 - 2 no clear evaluation methodology !
- \Rightarrow Surface-level clinical language peculiarities deceptive

Linguistic Patterns - PEWs and NEGs

- \Rightarrow We checked control-flow evoking words (PEWs)
 - conjunctions and prepositions INs (subordinating prepositions, e.g., "if") CCs (coordinating conjunctions, e.g., "and", "or") CCs (subordinating conjunctions, e.g., "then")
 - adverbs: RBs (base adverbs, e.g., "after") RBRs (comparative adverbs, e.g., "later") RBTs (superlative adverbs, e.g., "latest") RNs (nominalized adverbs, e.g.,) RPs (adverbial particles, e.g.,)
- \Rightarrow We also checked negative rules (NEGs)
 - "" "not", of category * (i.e., negation); "nobody", "none" and "nothing", of category PN, the negative determiner "no" of category AT
 - 2 negated modal verbs of category MD* (e.g., "cannot", "will not").

Linguistic Patterns - PEWs and NEGs

- \Rightarrow We checked control-flow evoking words (PEWs)
 - conjunctions and prepositions INs (subordinating prepositions, e.g., "if") CCs (coordinating conjunctions, e.g., "and", "or") CCs (subordinating conjunctions, e.g., "then")
 - adverbs: RBs (base adverbs, e.g., "after") RBRs (comparative adverbs, e.g., "later") RBTs (superlative adverbs, e.g., "latest") RNs (nominalized adverbs, e.g.,) RPs (adverbial particles, e.g.,)
- \Rightarrow We also checked negative rules (NEGs)
 - "" "not", of category * (i.e., negation); "nobody", "none" and "nothing", of category PN, the negative determiner "no" of category AT
 - 2 negated modal verbs of category MD* (e.g., "cannot", "will not").

QUE: Distribution uniform across domains or correlated to clinical domain?

PEWs and NEGs - Uniform & Uncorrelated

Distrib.	χ^2 -ind.	$p \ (< 0.001 \ sig.)$	df.	t-one way	μ_0	$p \ (< 0.01 \ {\rm sig.})$	df.
PEWs	9.39	0.009	2	1.02	0.20	0.36	4
PEWs NEGs	1.96	0.375	2	1.02 1.02	0.03	0.36	4

(Corpus)	(# Words)	(Domain)
Brown	1,391708	Open
Business	3,824	Business
Diabetes 2 guid.	7,109	Clinical
Eating dis. guid.	5,078	Clinical
Schizophr. guid.	5,367	Clinical

Current Work Plan

- Refine control-flow extraction methodologies
- Develop a methodology to evaluate process-mining rules vis-à-vis supervised techniques
- Use existing annotated corpora (e.g., SemRep) to understand how to disambiguate MetaMap/UMLS
 - 1 activity annotations
 - 2 resource annotations
 - 3 actor annotations
- Design ways to merge/integrate/link annotated datasets to experiment with supervised annotators

Thank you :-)

References

Alan R. Aronson and François-Michel Lang. And overview of MetaMap: Historical perspective and recent advances. J. of the American Medical Informatics Association, 17(3):229–236, 2010.

A. Bottrighi, F. Chesani, M. Montali, and P. Terenziani. Conformance checking of executed clinical guidelines in presence of basic medical knowledge.

In Proc. of the 2011 Business Process Management Work., 2012.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Generating typed dependency parses from phrase structure parses. In *Proc. of the 5th Int. Conf. on Language Resources and Evaluation (LREC 20006)*, 2006.

Fabian Friederich, Jan Mendling, and Frank Puhlmann. Process model generation from natural language text. In Proc. of the 23rd Int. Conf. on Advanced Information Systems Engineering (CAISE 2011), 2011.

Gregory Goth. Analyzing medical data.

Comm. of the ACM, 55(6):13-15, 2012.

