
Verification of 
Temporal

Properties for
Communicating

Datalog Programs

Diego Calvanese
Free University of Bozen-Bolzano, Italy
Umeå University, Sweden

21st International Workshop on Nonmonotonic Reasoning (NMR)
2 Sep. 2023 — Rhodes (Greece)

2

Our starting point
The information assets of an organization consist of:

• data, and

• processes, that determine how data changes and evolves over time.

The underlying dynamic systems come in different forms:

• business processes

• industrial processes

• distributed systems

• multiagent systems

3

Complex systems lifecycle

picture by Wil van der Aalst

4

Formal verification

Automated analysis

of a formal model of the system

against a property of interest,

considering all possible system behaviors

picture by Wil van der Aalst

5

A claim …
Logic-based languages and 

knowledge representation and reasoning

can provide powerful techniques and tools to

model and understand complex systems, and

verify in an automated way their behaviour
along their entire lifecycle

6

… and an appeal
Towards this goal, we should:

• Foster cross-fertilization with related fields such as database

theory, formal methods, business process management,
information systems

• Understand the decidability / undecidability frontier, classifying
the sources of complexity, so as to attack them when
developing concrete tools

• Use requirements coming from practice to guide and validate
foundational results

7

Practice

8

BPMN

Declare

UML
YAWL

AUML

FCL

GSM

ORM

CMMN

ACMBloom JADE

Dedalus

ER

OWL

EPC

JSON

BPEL

SQL

SBVR

+ methodologies

WebdamLog

DMN

DAML-S

Practice

How do we reconcile 
this situation?

9

Strong 
theory

How do we reconcile 
this situation?

9

Strong 
theory

How do we reconcile 
this situation?

9

Theorem 5

Theorem 1
Theorem 2

Theorem 3

Theorem 4

Theorem
 6

Theorem
 7

Theorem
 8

Th
eo

re
m

 9

Th
eo

re
m

 1
0

Th
eo

re
m

 1
1

Theorem 13

Th
eo

re
m

 1
2

Theorem
 14

10

A formally grounded design methodology
1. Develop formal models of the systems we deal with

2. Show that they can capture requirements coming from practice

3. Understand sources of undecidability and complexity

4. Find robust conditions for decidability/tractability

5. Understand how they apply in practice

6. Implement proof-of-concept prototypes for verification

10

A formally grounded design methodology
1. Develop formal models of the systems we deal with

2. Show that they can capture requirements coming from practice

3. Understand sources of undecidability and complexity

4. Find robust conditions for decidability/tractability

5. Understand how they apply in practice

6. Implement proof-of-concept prototypes for verification

To understand how 
complex systems operate,

we need to take into account
both data and processes, 

and how they 
interact with each other

Data vs. processes

11

12

A dichotomy
• We need to overcome the dichotomy between data and processes

• Warning: the dichotomy is deeply rooted in industrial practice, and in the
adopted methodologies and tooling

• BPM professionals: think that data are subsidiary to processes, and

neglect the importance of data quality

• Master data managers: claim that data are the main driver for the

company’s existence, and they only focus on data quality

13

Overcoming the data-process dichotomy
Strong need for

• formalisms supporting the integrated modeling of processes and data

• design methodologies based on such formalisms

• systems and tools that implement formalisms and methodologies

In line with our methodology, we follow a foundational approach

14

Dichotomy addressed in different communities
Data Management

Knowledge Representation

Business Processes

15

Dichotomy addressed in different communities
Data Management
• Dynamic Relational Model [Vianu 1980s] — constraints between DB states

• Active DBs [Vianu, Abiteboul 1980s, 1990s] — ECA rules over DBs

• Temporal DBs [Snodgrass 1980s, 1990s] — contraint-based [Kabanza & al. 1990s], temporal

deductive DBs [Chomicki & Imielinski 1980s] — Queried via timestamped FO or FO-LTL

• Relational transducers [Abiteboul & al., late 1990s] and ASM [Spielmann 2000s]

• Active XML (AXML) [Abiteboul 2000s]

• Data-driven Web Systems [Deutsch & al. 2000s]

• Data-centric Dynamic Systems (DCDSs) [Bagheri-Hariri & al. 2010s]

Knowledge Representation

Business Processes

16

Dichotomy addressed in different communities
Data Management

Knowledge Representation
• Reasoning about actions and Sitcalc [McCarthy 1960s; Reiter 1990s]

• Temporal extensions of DLs [Wolter & Zakharyaschev 1990s; Artale & al. 2000s]

• Temporal logics (LTL) over DLs [Baader & Lutz 2010s]

• Combining DLs and action formalisms [Milicic 2000s]

• Semantic Web Services — OWL-S, WSMO, … [mid 2000s]

• Adopting Levesque’s functional approach and boundedness [C., De Giacomo, Lomuscio,
Patrizi, Montali, et al. 2010s]

Business Processes

17

Dichotomy addressed in different communities
Data Management

Knowledge Representation

Business Processes
• Workflow formalisms and systems

• Artifact-centric approach [2000s at IBM, 2010s] — with data representation and lifecycle

components

• variants of Petri Nets with data — colored PNs, PNs with names, DB-nets [Montali &

Rivkin, late 2010s]

• “triple crown” of process improvement: BPMN + CMMN + DMN — somewhat loose

coupling, addressing practical requirements

Formal verification — The propositional case

18

Process control-flow

Agent behaviors / protocols

(Un)desired property

Formal verification — The propositional case

18

Finite-state
transition

system

Propositional
temporal formula|= �

Process control-flow

Agent behaviors / protocols

(Un)desired property

Formal verification — The propositional case

18

Finite-state
transition

system

Propositional
temporal formula|= �

Process control-flow

Agent behaviors / protocols

Verification
via model checking
2007 Turing award:

Clarke, Emerson, Sifakis

|= �

(Un)desired property

19

Formal verification — The data-aware case

Process+Data

Data-aware agent behaviors / protocols

(Un)desired property

19

Formal verification — The data-aware case

Process+Data

Data-aware agent behaviors / protocols

(Un)desired property

First-order
temporal formula

Infinite-state,
relational

transition system |= �

19

Formal verification — The data-aware case

Process+Data

Data-aware agent behaviors / protocols

(Un)desired property

?
|= � First-order

temporal formula

Infinite-state,
relational

transition system |= �

20

Why FO temporal logic
• To inspect data FO queries

• To capture system dynamics temporal modalities

• To track evolution of objects FO quantification
across states

Example: It is always the case that every order is eventually
either cancelled or paid and then delivered

→
→
→

Problem dimensions

21

Data
component

Relational 
DB

Description
logic KB

OBDA 
system

Inconsistency
tolerant KB …

Process
component

Condition-
action rules

ECA-like

rules

Golog 
program …

Task 
modeling

Conditional
effects

Add/delete
assertions

Logic  
programs …

External 
inputs None External

services Input DB Fixed 
input …

Network
topology

Single
orchestrator

Full 
mesh

Connected,
fixed graph

Dynamic 
graph …

Interaction
mechanism None Synchronous Asynchronous

and ordered …

We pick one specific model

23

Declarative distributed computing
Distributed, data-centric computations  

with extensions of Datalog

• Many applications: distributed query processing, distributed
business processes, web data management, routing
algorithms, software-defined networking, …

• Contributed to the renaissance of Datalog [Loo & al., 2009;
Hellerstein, 2010]

• Compares well with standard approaches [Loo & al., 2005]

Communicating Datalog Programs (CDPs)

24

We consider fixed,

connected graphs

Communicating Datalog Programs (CDPs)

25

input

transport

state

D2C
program

26

D2C program running in a node
• Datalog programs extended with

• time: prev construct to refer to the previous state

• location: @ construct to refer the sender / receiver nodes

• non-determinism: choice construct [Saccà & Zaniolo, 1990]

• Stable model semantics

• Each node has initial knowledge about its neighbors and its identity, and
starts with a given state DB that is the same for all nodes

• Input relations are read-only, and may inject fresh data from an infinite
data domain (strings, pure names, …)

27

Reactive behaviour of nodes
Whenever a node receives (a set of) incoming messages, it
performs a transition:

1. Received messages form the current transport DB

2. The current input DB is incorporated

3. Stable models of the program are computed

4. The node nondeterministically evolves by updating its state and

transport DBs with the content of one of the stable models

5. The messages contained in the newly computed transport DB

are sent to the destination nodes

28

Execution semantics
Relational transition systems with node-indexed databases

Successors are constructed considering all possible input DBs and
all possible internal choices of nodes

…

…
…

…

Construction of a rooted spanning tree of the network

29

Example

• State schema: keeps neighbors and parent

• Transport schema: asks neighbor to become a child

30

Example
• When multiple neighbors request to join, pick one as a parent if you don’t

already have one:

parent(P) if choice(X,P), join@X,  
 prev not parent(_).

• If you have just joined the tree, flood the join request to neighbors (the
parent will ignore it):

 join@N if parent(_), neighbor(N), 
 prev not parent(_).

• Parent information is kept:

parent(P) if prev parent(P).

Another example

31

Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWar

Customer

Another example

31

Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWar

Customer

available(B,T) if chkWare@self, 
 newItem(B,T).

Another example

31

Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWar

Customer

available(B,T) if chkWare@self, 
 newItem(B,T).

 inCat(T) if available(_,T).

reply@C(yes) if askAv@C(T), 
 inCat(T).

 reply@C(no) if askAv@C(T), 
 not inCat(T).

32

Pure declarative semantics
• Runs of closed CDPs can be simulated using standard ASP solvers

• D2C programs are compiled into Datalog by:

• priming relations for simulating prev

• transforming @ into an additional predicate argument

• transforming transport predicates into send/receive predicates

• Additional rules for causality via vector clocks

• Additional rules for the semantics of the communication model

33

Which properties to verify
• Domain-specific properties: CTL-FO or LTL-FO with active

domain quantification

• Maintain:

• Broadcast:

• Generic properties: convergence

Check whether the system  
always / sometimes reaches quiescence 
with some / all nodes in a non-faulty state

AG(∀n, p . Parent@n(p) → AGParent@n(p))
AG(∀x . (∃n . R@n(⃗x)) → AF∀n′￼. R@n′￼(⃗x))

Sources of infinity

34

…

…
…

…

Infinite-branching  
due to external input

Sources of infinity

35

…

…
…

…

Runs visiting
infinitely many DBs  

due to usage of
external input

36

Problem space is still large
• Input-policy:

• closed: no inputs

• autonomous: input DB is given at the beginning and then not changed

• interactive: input DB changes at each computation step

• Channel behaviour: sets / multisets / queues, lossy / non lossy

• Data boundedness:

a DB is b-bounded if, in each reachable configuration, it contains at most b
objects. It is bounded if it is b-bounded for some b.

• Message expressiveness: propositional only / unary only / arbitrary

• Prev-awareness: allow / disallow the use of prev on the input

An easy case:
closed CDPs with set-channels

38

Closed CDPs with set-channels
There is

• no injection of data from the external world

• no component of the system that can grow indefinitely

 FO becomes syntactic sugar, and we can rely on traditional model checking→

38

Closed CDPs with set-channels
There is

• no injection of data from the external world

• no component of the system that can grow indefinitely

 FO becomes syntactic sugar, and we can rely on traditional model checking→

Still, convergence is PSPACE-hard, without any assumption on the network
topology:

1. Elect a leader

2. Construct a tree rooted in the leader

3. Linearize the tree

4. Use it to simulate a corridor-tiling problem

The hardest case:
Interactive CDPs 
without restrictions

The hardest case:
Interactive CDPs 
without restrictions

A node is a computing device with a
finite-state control and unbounded
memory 
… This is also called a Turing Machine!

 Even the simplest form of
verification, i.e., reachability, is
undecidable

→

40

Size-boundedness
Put an a-priori bound b on the number of constants that can 
simultaneously appear in the DB.

• Studied extensively over the past 10 years (under the name of “state-
boundedness”)

• In general, the resulting transition system is still infinite-state

• The bound b might be known or not-known

• In CDPs, boundedness can be applied to the different types of DBs:

• state-boundedness

• transport-boundedness

• input-boundedness

Results for FO-CTL verification

41

Type of CDP Input
bounded

State / Channel bounded

N / Y Y / N Y / Y

Interactive
N U U PSPACE-c

Y U U PSPACE-c

Autonomous
N U U U

Y N.A. N.A. PSPACE-c

Closed N.A. N.A. N.A. PSPACE-c

42

Undecidability — State unbounded
Simulation of a 2-counter Minsky machine

• Single node with 2 unary relations C1 and C2

• A single unary input relation New

• Increment counter 1:

• check whether New contains an object not in C1

• if not, enter into an error state

• if so, insert it in C1

• Decrement counter 1: pick an object in C1 and remove it

• Test counter 1 for zero: check that C1 is empty

New

C1

C1

43

Undecidability — Transport unbounded
Again, by simulation of a 2-counter Minsky machine

• Single node with self-loop channel with 2 binary relations C1 and C2, each of which

represents a cyclic graph of length equal to the counter value + 1, initialized to (me,me)

• A single unary input relation New

• Increment counter 1:

• check whether New contains an object not in C1, by “working off” the cycle from the
channel

• if not, or if unexpected tuples are obtained from the channel, enter into an error state

• if so, extend C1 by incorporating the new object

• Decrement counter 1: remove from C1 the initial tuple (me,x), with x me, thus shortening
the cycle

• Test counter 1 for zero: check that C1 contains the tuple (me,me)

≠

44

Towards decidability — Key properties of CDPs
CDPs (and other similar logic-based formalisms for data-aware
processes) enjoy two key properties, since they are:

• Markovian: Next state only depends on the current state + input. 
Two states with identical node DBs are bisimilar.

• Generic: Datalog (as all query language) does not distinguish
structures that are identical modulo uniform renaming of data
objects

 Two isomorphic CDP snapshots are bisimilar→

45

Exploited to prune infinite branching
• Consider a system snapshot and its node DBs

• Input is bounded Only boundedly many isomorphic types
relating the input objects and those in the active domain of the
CDP

• Input configurations in the same isomorphic type produce
isomorphic snapshots

• Keep only one representative successor state per isomorphic type

• The “pruned” transition system is finite-branching and bisimilar to

the original one

→

46

Compacting infinite runs via recycling
• Key observation: under restricted quantification (persistence-preserving, or no

quantification across), the logic cannot distinguish local from global freshness

• Hence, we modify the transition system construction:  
whenever we need to consider a fresh representative object …

• … if there is an old object that can be recycled use that one

• … if not pick a globally fresh object

• Properties of this recycling technique:

• under size-boundedness, we need only a bounded number of objects (we do

not need to know the bound)

• it preserves bisimulation!

 We obtain a finite-state transition system

→
→

→

47

Resulting verification algorithm
• Input: Interactive CDP all of whose DBs are size-bounded

• Construct the abstract transition system that works over isomorphic types
and recycles objects. The abstract transition system is:

• finite-state

• bisimilar to (i.e., a faithful representation of) the original one

• Use the abstract system to model-check FO-LTL or FO-CTL formulas (with
suitably restricted quantification) using conventional techniques

 PSPACE upper bound→

48

Decidability with unbounded size
The undecidability results leave little margin for relaxing boundedness

• state-boundedness is unavoidable

• input-boundedness is not required, but unboundedness cannot be really

exploited

• transport-unboundedness leads to undecidability, provided we can use a

binary relation in the channel

 This leaves the case open, where we are not transport-bounded, but the
channels contain unary relations only — Still a significant case

• Exploiting an encoding into coverability for nu-Petri Nets, we have shown

decidability of verification of convergence properties in this case

• The general case of FO-CTL (and fragments of it) stays undecidable

→

49

Conclusions
• The formal analysis of dynamic systems considering data and distribution is

still a major challenge that needs to be addressed

• The problem space is very large, since many different factors crucially affect
decidability/complexity of verification

• Significant progress has been made, through a rather fine-grained analysis,
but the overall picture is still very fragmented

• Interesting contributions and techniques have come from many diverse areas,
and you are all welcome to collaborate with your favourite toolbox!

