. - /
_Verification of g

N @ Temporal £
A i Properties for ({13
[Communicating =8

Datalog Programs

. ':'\,cr\ -
*‘\2 ‘

Diego Calvanese

Free ynl vgr Sl t)_/ of Bozen -BO/ZEZI’)O, Ita/y 21st International Workshop on Nonmonotonic Reasoning (NMR)
Umea University, Sweden 2 Sep. 2023 — Rhodes (Greece)

Our starting point

The information assets of an organization consist of:
» data, and
* processes, that determine how data changes and evolves over time.

The underlying dynamic systems come Iin different forms:
* business processes

» Industrial processes
» distributed systems
» multiagent systems

Complex systems lifecycle

[adustment

enactment/
monitoring

B

/

f

diagnosis/
requirements
-

\Y
A

S

| data

documentation

models
i

specification

f

configuration/
i Implementation

insight
discussion
animation

performance
analysis

.

2 (re)design]

verification

configuration

picture by Wil van der Aalst

f

diagnosis/
requirements
e

insight

Formal verification

[adustment JW
e animation N analysis "\
) & |
enactment/ g | : |
i | (re)design ;»
monitoring | | data j| models s 3

74
% //’

performance

N verification]
documentation T —
specification
(- .
configuration/

iImplementation . .
Celblzealll aro configuration

picture by Wil van der Aalst

Automated analysis
of a formal model of the system
against a property of interest,
considering all possible system behaviors

4

A claim ...

Logic-based languages ana
knowledge representation and reasoning
can provide powerful techniques and tools to
model and understand complex systems, and

verify in an automated way their behaviour
along their entire lifecycle

... and an appeal

Towards this goal, we should:

* Foster cross-fertilization with related fields such as database
theory, formal methods, business process management,
iInformation systems

» Understand the decidability / undecidability frontier, classifying
the sources of complexity, so as to attack them when
developing concrete tools

» Use requirements coming from practice to guide and validate
foundational results

Practice

How do we reconcile
this situation?

How do we reconcile
this situation?

?

10NN

tuat

1S SI

th

Theorem 4

A formally grounded design methodology

1. Develop formal models of the systems we deal with

Show that they can capture requirements coming from practice
Understand sources of undecidability and complexity

Find robust conditions for decidability/tractability

Understand how they apply in practice

o o » W DB

Implement proof-of-concept prototypes for verification

10

A formally grounded design methodology

1. Develop of the systems we deal with

3. Understand sources of undecidability and complexity

4. Find robust conditions for decidabillity/tractability

10

Data vs. processes

To understand how
complex systems operate,
we need to take into account
both data and processes,
and how they
Interact with each other

“Sometimes | just feel like processing some data,
but | have no data to process—other times | have the
data, but | have nothing to process it with.”

A dichotomy

* \We need to overcome the dichotomy between data and processes

 Warning: the dichotomy is deeply rooted in industrial practice, and in the
adopted methodologies and tooling

» BPM professionals: think that data are subsidiary to processes, and
neglect the importance of data quality

 Master data managers: claim that data are the main driver for the
company’s existence, and they only focus on data quality

12

Overcoming the data-process dichotomy

Strong need for
* formalisms supporting the integrated modeling of processes and data
* design methodologies based on such formalisms

e systems and tools that implement formalisms and methodologies

In line with our methodology, we follow a foundational approach

13

Dichotomy addressed in different communities

Data Management

Knowledge Representation

Business Processes

Dichotomy addressed in different communities

Data Management
 Dynamic Relational Model [Vianu 1980s] — constraints between DB states

* Active DBs [Vianu, Abiteboul 1980s, 1990s] — ECA rules over DBs

 Jemporal DBs [Snodgrass 1980s, 1990s] — contraint-based [Kabanza & al. 1990s], temporal
deductive DBs [Chomicki & Imielinski 1980s] — Queried via timestamped FO or FO-LTL

 Relational transducers [Abiteboul & al., late 1990s] and ASM [Spielmann 2000s]
* Active XML (AXML) [Abiteboul 2000s]

 Data-driven Web Systems [Deutsch & al. 2000s]
* Data-centric Dynamic Systems (DCDSs) [Bagheri-Hariri & al. 2010s]

15

Dichotomy addressed in different communities

Knowledge Representation
* Reasoning about actions and Sitcalc [McCarthy 1960s; Reiter 1990s]
 TJemporal extensions of DLs [Wolter & Zakharyaschev 1990s; Artale & al. 2000s]
 Temporal logics (LTL) over DLs [Baader & Lutz 2010s]
 Combining DLs and action formalisms [Milicic 2000s]
« Semantic Web Services — OWL-S, WSMO, ... [mid 2000s]

 Adopting Levesque’s functional approach and boundedness [C., De Giacomo, Lomuscio,
Patrizi, Montali, et al. 2010s]}

16

Dichotomy addressed in different communities

Business Processes
 Workflow formalisms and systems

* Artifact-centric approach [2000s at IBM, 2010s] — with data representation and lifecycle
components

e variants of Petri Nets with data — colored PNs, PNs with names, DB-nets [Montali &
Rivkin, late 2010s]

* “triple crown” of process improvement: BPMN + CMMN + DMN — somewhat loose
coupling, addressing practical requirements

17

Formal verification — The propositional case

Process control-flow
Agent behaviors / protocols

(Un)desired property

Formal verification — The propositional case

Process control-flow
Agent behaviors / protocols

Finite-state o
C

transition

system $<:

R

@ Propositional
temporal formula

§

J

(Un)desired property

Formal verification — The propositional case

Process control-flow Verification

Agent behaviors / protocols via model checking

2007 Turing award:

? Clarke, Emerson, Sifakis
Finite-state Q<:?<: "
transition C O<: — @ Propositional
é)<: /@ temporal formula
system

@

(Un)desired property

18

Formal verification — The data-aware case

Process+Data
Data-aware agent behaviors / protocols

(Un)desired property

Formal verification — The data-aware case

Process+Data
Data-aware agent behaviors / protocols

R 4
-
A
> =
First-order
R 4
> temporal formula
A
-V
TA

(Un)desired property

Infinite-state,
relational
transition system

19

Formal verification — The data-aware case

l,

Process+Data
Data-aware agent behaviors / protocols

First-order
temporal formula

R 4
-

04 A

Infinite-state, >
relational -
transition system ’ :
P v

A

&

(Un)desired property

19

Why FO temporal logic

e To inspect data — FO queries
e [o capture system dynamics — temporal modalities

e To track evolution of objects — FO quantification
across states

Example: It is always the case that every order Is eventually
either cancelled or paid and then delivered

Problem dimensions

Data Relational Description OBDA Inconsistency
component DB logic KB system tolerant KB
Process Condition- ECA-like Golog
component Eleife]aNg¥l(cr rules program
Task Conditional Add/delete Logic
modeling effects assertions programs
External External Fixed
iInputs None services Input DB iInput
Network Single Full Connected, Dynamic
1(e]ele][o]s\"AR Orchestrator mesh fixed graph graph
Interaction None Synchronous Asynchronous

and ordered

mechanism

21

Declarative distributed computing

, data-centric computations
with extensions of Datalog

 Many applications: distributed query processing, distributed
business processes, web data management, routing
algorithms, software-defined networking, ...

* Contributed to the renaissance of Datalog [Loo & al., 2009;
Hellerstein, 2010]

 Compares well with standard approaches [Loo & al., 2005]

Communicating Datalog Programs (CDPs)

\ N\

 © We consider fixed,
O Connected graphs

o\g/

\

Communicating Datalog Programs (CDPs)

N
N

D2C program running in a node

» Datalog programs extended with
- time: to refer to the
- location: @ construct to refer the sender / receiver nodes
* hon-determinism: choice construct [Sacca & Zaniolo, 1990]

e Stable model semantics

 Each node has initial knowledge about its neighbors and its identity, and
starts with a given state DB that is the same for all nodes

* Input relations are read-only, and may inject fresh data from an infinite
data domain (strings, pure names, ...)

26

Reactive behaviour of nodes

Whenever a node receives (a set of) incoming messages, it
performs a transition:

1. Received messages form the current transport DB
2. The current input DB is incorporated

3. Stable models of the program are computed

4

. The node nondeterministically evolves by updating Its and
transport DBs with the content of one of the stable models

5. The messages contained Iin the newly computed transport DB
are sent to the destination nodes

Execution semantics

Relational transition systems with node-indexed databases

Successors are constructed considering all possible input DBs and

——— F==°

Example

Construction of a rooted spanning tree of the network

e

. . Keeps neighbors and parent

* Transport schema: asks neighbor to become a child

29

Example

 When multiple neighbors request to join, pick one as a parent if you don’t
already have one;:
parent (P) 1f choice(X,P), join(X,
prev not parent().

* |f you have just joined the tree, flood the join request to neighbors (the
parent will ignore it):

join@N 1if parent(), neighbor(N),
prev not parent().

* Parent information is kept:
parent (P) 1f prev parent (P).

30

Another example

Warehouse manager
askAv (Type) newltem (Barcode, Type)
reply (yes/no)

Customer

Customer

31

Another example

.

Warehouse manager x 1f chkWare(@self,
newItem(B,T).
askAv (Type) newltem (Barcode, Type)
reply (yes/no)

Ej

Customer

Customer

31

Another example

.

Warehouse manager x 1f chkWare(@self,
newItem(B,T).
askAv (Type) newltem (Barcode, Type)
reply (yes/no)

Ej

Customer

if
- reply@C(yes) 1f askAv(@C(T),
chkWar inCat (T) .
Customer reply@C(no) if askAv@C(T),

not

31

Pure declarative semantics

* Runs of closed CDPs can be simulated using standard ASP solvers

* D2C programs are compiled into Datalog by:
* priming relations for simulating prev

* transforming @ into an additional predicate argument
* transforming transport predicates into send/receive predicates

* Additional rules for causality via vector clocks

e Additional rules for the semantics of the communication model

32

Which properties to verify

 Domain-specific properties: CTL-FO or LTL-FO with active
domain quantification

 Maintain: AG(Vn, p. Parent@n(p) - AGParent@n(p))
e Broadcast: AG(Vx.(3n.R@n(x)) - AFVn'.R@n'(x))

* (Generic properties: convergence

Check whether the system
always / sometimes reaches quiescence
with / all nodes in a non-faulty state

33

Sources of infinity

Infinite-branching
due to external input

34

Sources of infinity

Runs visiting
Infinitely many DBs
due to usage of
external input

35

Problem space is still large

* Input-policy:
* closed: no inputs
e autonomous: input DB is given at the beginning and then not changed

* Interactive: input DB changes at each computation step

 Channel behaviour: sets / multisets / queues, lossy / non lossy

e Data boundedness:

a DB is b-bounded if, in each reachable configuration, it contains at most b
objects. It is bounded if it is b-bounded for some b.

* Message expressiveness: propositional only / unary only / arbitrary

* Prev-awareness: allow / disallow the use of prev on the input

36

R

<

An easy case: _
closed CDPs with set-channels

Closed CDPs with set-channels

There Is
* Nno Iinjection of data from the external world

* no component of the system that can grow indefinitely

— FO becomes syntactic sugar, and we can rely on traditional model checking

38

Closed CDPs with set-channels

There Is
* Nno Iinjection of data from the external world

* no component of the system that can grow indefinitely

— FO becomes syntactic sugar, and we can rely on traditional model checking

Still, convergence is PSPACE-hard, without any assumption on the network
topology:

1. Elect a leader

2. Construct a tree rooted in the leader

3. Linearize the tree

4. Use It to simulate a corridor-tiling problem

38

>

finite-state control anc
memory
.. This is also Called a

A node is.a

t b
.
-

— Even the simplest form o)

verification, i.e., reachablhfy,.l '
undecidable " Pl o

3 e

. . ! g .“
: > - il - 3
‘ i ‘ {
]V{! o e :
I :

!-—'

Size-boundedness

Put an a-priori bound b on the number of constants that can
simultaneously appear in the DB.

o Studied extensively over the past 10 years (under the name of “state-
boundedness”)

* |n general, the resulting transition system is still infinite-state
 [he bound b might be known or not-known

* |n CDPs, boundedness can be applied to the different types of DBs:
o state-boundedness

* transport-boundedness
* Input-boundedness

40

Results for FO-CTL verification

State / Channel bounded

Input
Type of CDP
bounded N /Y Y /N Y /Y
N U U PSPACE-c
INTEIrACTIVE |+ e
Y U U PSPACE-c
N U U U
AU O N QI O US|+
Y N.A. N.A. PSPACE-cC
Closed N.A. N.A. N.A. PSPACE-c

41

Undecidability — State unbounded

Simulation of a 2-counter Minsky machine

* Single node with 2 unary relations C1 and C2

New

* A single unary input relation New

* |ncrement counter 1:
 check whether New contains an object not in C1

e if not, enter into an error state
e |f so, insertitin C1

. . pick an object in C1 and remove it

* Test counter 1 for zero: check that C1 is empty

42

Undecidability — Transport unbounded

Again, by simulation of a 2-counter Minsky machine

* Single node with self-loop channel with 2 binary relations C1 and C2, each of which
represents a cyclic graph of length equal to the counter value + 1, initialized to (me,me)

* A single unary input relation New

e Increment counter 1:

* check whether New contains an object not in C1, by “working off” the cycle from the
channel

* if not, or if unexpected tuples are obtained from the channel, enter into an error state
* If so, extend C1 by incorporating the new object

. : remove from C1 the initial tuple (me,x), with x # me, thus shortening
the cycle

o Test counter 1 for zero: check that C1 contains the tuple (me,me)

43

Towards decidability — Key properties of CDPs

CDPs (and other similar logic-based formalisms for data-aware
processes) enjoy two key properties, since they are:

 Markovian: Next state only depends on the current state + input.
Two states with identical node DBs are bisimilar.

* Generic: Datalog (as all query language) does not distinguish

structures that are identical modulo uniform renaming of data
objects

— Two isomorphic CDP snapshots are bisimilar

44

Exploited to prune infinite branching

* Consider a system snapshot and its node DBs

e |[nput is bounded — Only boundedly many isomorphic types

relating the input objects and those in the active domain of the
CDP

* [nput configurations in the same isomorphic type produce
Isomorphic snapshots

 Keep only one representative successor state per isomorphic type

 The “pruned” transition system is finite-branching and bisimilar to
the original one

45

Compacting infinite runs via recycling

 Key observation: under restricted quantification (persistence-preserving, or no
quantification across), the logic cannot distinguish local from global freshness

 Hence, we modify the transition system construction:
whenever we need to consider a fresh representative object ...

e ... If there is an old object that can be recycled — use that one
e ... If not — pick a globally fresh object

* Properties of this recycling technique:
* under size-boundedness, we need only a bounded number of objects (we do

not need to know the bound)
* |t preserves bisimulation!

— \We obtain a finite-state transition system

46

Resulting verification algorithm

* Input: Interactive CDP all of whose DBs are size-bounded

* Construct the abstract transition system that works over isomorphic types
and recycles objects. The abstract transition system is:

* finite-state
* bisimilar to (i.e., a faithful representation of) the original one

* Use the abstract system to model-check FO-LTL or FO-CTL formulas (with
suitably restricted quantification) using conventional techniques

— PSPACE upper bound

47

Decidability with unbounded size

The undecidability results leave little margin for relaxing boundedness
» state-boundedness is unavoidable

* Input-boundedness is not required, but unboundedness cannot be really
exploited

* transport-unboundedness leads to undecidabillity, provided we can use a
binary relation in the channel

— This leaves the case open, where we are not transport-bounded, but the
channels contain unary relations only — Still a significant case

» Exploiting an encoding into coverabllity for nu-Petri Nets, we have shown
decidability of verification of convergence properties in this case

» The general case of FO-CTL (and fragments of it) stays undecidable

48

Conclusions

* The formal analysis of dynamic systems considering data and distribution is
still a major challenge that needs to be addressed

 The problem space is very large, since many different factors crucially affect
decidability/complexity of verification

» Significant progress has been made, through a rather fine-grained analysis,
but the overall picture is still very fragmented

* |nteresting contributions and techniques have come from many diverse areas,
and you are all welcome to collaborate with your favourite toolbox!

49

