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Our starting point
The information assets of an organization consist of:

• data, and

• processes, that determine how data changes and evolves over time.


The underlying dynamic systems come in different forms:

• business processes

• industrial processes

• distributed systems

• multiagent systems
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Complex systems lifecycle

picture by Wil van der Aalst
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Formal verification

Automated analysis 

of a formal model of the system

against a property of interest,


considering all possible system behaviors

picture by Wil van der Aalst
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A claim … 
Logic-based languages and 

knowledge representation and reasoning

can provide powerful techniques and tools to

model and understand complex systems, and  


verify in an automated way their behaviour 
along their entire lifecycle
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… and an appeal 
Towards this goal, we should:

• Foster cross-fertilization with related fields such as database 

theory, formal methods, business process management, 
information systems


• Understand the decidability / undecidability frontier, classifying 
the sources of complexity, so as to attack them when 
developing concrete tools


• Use requirements coming from practice to guide and validate 
foundational results
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Practice
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How do we reconcile 
this situation?
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A formally grounded design methodology
1. Develop formal models of the systems we deal with


2. Show that they can capture requirements coming from practice 

3. Understand sources of undecidability and complexity 

4. Find robust conditions for decidability/tractability


5. Understand how they apply in practice 

6. Implement proof-of-concept prototypes for verification
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A formally grounded design methodology
1. Develop formal models of the systems we deal with


2. Show that they can capture requirements coming from practice 

3. Understand sources of undecidability and complexity 

4. Find robust conditions for decidability/tractability


5. Understand how they apply in practice 

6. Implement proof-of-concept prototypes for verification



To understand how 
complex systems operate, 

we need to take into account 
both data and processes, 

and how they 
interact with each other

Data vs. processes
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A dichotomy
• We need to overcome the dichotomy between data and processes


• Warning: the dichotomy is deeply rooted in industrial practice, and in the 
adopted methodologies and tooling

• BPM professionals: think that data are subsidiary to processes, and 

neglect the importance of data quality

• Master data managers: claim that data are the main driver for the 

company’s existence, and they only focus on data quality
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Overcoming the data-process dichotomy
Strong need for


• formalisms supporting the integrated modeling of processes and data


• design methodologies based on such formalisms


• systems and tools that implement formalisms and methodologies


In line with our methodology, we follow a foundational approach
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Dichotomy addressed in different communities
Data Management


Knowledge Representation


Business Processes
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Dichotomy addressed in different communities
Data Management 
• Dynamic Relational Model [Vianu 1980s] — constraints between DB states

• Active DBs [Vianu, Abiteboul 1980s, 1990s] — ECA rules over DBs

• Temporal DBs [Snodgrass 1980s, 1990s] — contraint-based [Kabanza & al. 1990s], temporal 

deductive DBs [Chomicki & Imielinski 1980s] — Queried via timestamped FO or FO-LTL

• Relational transducers [Abiteboul & al., late 1990s] and ASM [Spielmann 2000s]


• Active XML (AXML) [Abiteboul 2000s]

• Data-driven Web Systems [Deutsch & al. 2000s] 

• Data-centric Dynamic Systems (DCDSs) [Bagheri-Hariri & al. 2010s]


Knowledge Representation


Business Processes
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Dichotomy addressed in different communities
Data Management


Knowledge Representation 
• Reasoning about actions and Sitcalc [McCarthy 1960s; Reiter 1990s]

• Temporal extensions of DLs [Wolter & Zakharyaschev 1990s; Artale & al. 2000s]

• Temporal logics (LTL) over DLs [Baader & Lutz 2010s]

• Combining DLs and action formalisms [Milicic 2000s]

• Semantic Web Services — OWL-S, WSMO, … [mid 2000s]


• Adopting Levesque’s functional approach and boundedness [C., De Giacomo, Lomuscio, 
Patrizi, Montali, et al. 2010s]


Business Processes
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Dichotomy addressed in different communities
Data Management


Knowledge Representation


Business Processes 
• Workflow formalisms and systems

• Artifact-centric approach [2000s at IBM, 2010s] — with data representation and lifecycle 

components

• variants of Petri Nets with data — colored PNs, PNs with names, DB-nets [Montali & 

Rivkin, late 2010s]

• “triple crown” of process improvement: BPMN + CMMN + DMN — somewhat loose 

coupling, addressing practical requirements



Formal verification — The propositional case
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Process control-flow

Agent behaviors / protocols

(Un)desired property



Formal verification — The propositional case

18

Finite-state 
transition 

system

Propositional 
temporal formula|= �

Process control-flow

Agent behaviors / protocols

(Un)desired property



Formal verification — The propositional case
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Finite-state 
transition 

system

Propositional 
temporal formula|= �

Process control-flow

Agent behaviors / protocols

Verification  
via model checking 
2007 Turing award: 


Clarke, Emerson, Sifakis

|= �

(Un)desired property
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Formal verification — The data-aware case

Process+Data

Data-aware agent behaviors / protocols

(Un)desired property
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Formal verification — The data-aware case

Process+Data

Data-aware agent behaviors / protocols

(Un)desired property

First-order 
temporal formula

Infinite-state, 
relational  

transition system |= �
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Formal verification — The data-aware case

Process+Data

Data-aware agent behaviors / protocols

(Un)desired property

?
|= � First-order 

temporal formula

Infinite-state, 
relational  

transition system |= �
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Why FO temporal logic
• To inspect data  FO queries


• To capture system dynamics  temporal modalities


• To track evolution of objects  FO quantification 
across states


Example: It is always the case that every order is eventually 
either cancelled or paid and then delivered

→
→
→



Problem dimensions
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Data 
component

Relational 
DB

Description 
logic KB

OBDA 
system

Inconsistency 
tolerant KB …

Process 
component

Condition-
action rules

ECA-like

rules

Golog 
program …

Task 
modeling

Conditional 
effects

Add/delete 
assertions

Logic  
programs …

External 
inputs None External 

services Input DB Fixed 
input …

Network 
topology

Single 
orchestrator

Full 
mesh

Connected, 
fixed graph

Dynamic 
graph …

Interaction 
mechanism None Synchronous Asynchronous 

and ordered …



We pick one specific model
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Declarative distributed computing
Distributed, data-centric computations  

with extensions of Datalog 

• Many applications: distributed query processing, distributed 
business processes, web data management, routing 
algorithms, software-defined networking, … 


• Contributed to the renaissance of Datalog [Loo & al., 2009; 
Hellerstein, 2010]


• Compares well with standard approaches [Loo & al., 2005]



Communicating Datalog Programs (CDPs)
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We consider fixed, 

connected graphs



Communicating Datalog Programs (CDPs)
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input 

transport 

state 

D2C  
program 
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D2C program running in a node
• Datalog programs extended with

• time: prev construct to refer to the previous state

• location: @ construct to refer the sender / receiver nodes

• non-determinism: choice construct [Saccà  & Zaniolo, 1990] 


• Stable model semantics


• Each node has initial knowledge about its neighbors and its identity, and 
starts with a given state DB that is the same for all nodes


• Input relations are read-only, and may inject fresh data from an infinite 
data domain (strings, pure names, …)
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Reactive behaviour of nodes
Whenever a node receives (a set of) incoming messages, it 
performs a transition:

1. Received messages form the current transport DB

2. The current input DB is incorporated 

3. Stable models of the program are computed

4. The node nondeterministically evolves by updating its state and 

transport DBs with the content of one of the stable models

5. The messages contained in the newly computed transport DB 

are sent to the destination nodes
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Execution semantics
Relational transition systems with node-indexed databases

Successors are constructed considering all possible input DBs and 
all possible internal choices of nodes

…

…
…

…



Construction of a rooted spanning tree of the network
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Example

• State schema: keeps neighbors and parent

• Transport schema: asks neighbor to become a child
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Example
• When multiple neighbors request to join, pick one as a parent if you don’t 

already have one:

parent(P) if choice(X,P), join@X,  
             prev not parent(_). 


• If you have just joined the tree, flood the join request to neighbors (the 
parent will ignore it):


 join@N if parent(_), neighbor(N), 
           prev not parent(_).


• Parent information is kept:

parent(P) if prev parent(P).



Another example
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Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWar

Customer



Another example
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Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWar

Customer

available(B,T) if chkWare@self, 
                  newItem(B,T).



Another example
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Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWar

Customer

available(B,T) if chkWare@self, 
                  newItem(B,T).

    inCat(T) if available(_,T).

reply@C(yes) if askAv@C(T), 
                inCat(T).

 reply@C(no) if askAv@C(T), 
                  not inCat(T).
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Pure declarative semantics
• Runs of closed CDPs can be simulated using standard ASP solvers


• D2C programs are compiled into Datalog by:

• priming relations for simulating prev

• transforming @ into an additional predicate argument

• transforming transport predicates into send/receive predicates


• Additional rules for causality via vector clocks


• Additional rules for the semantics of the communication model
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Which properties to verify
• Domain-specific properties: CTL-FO or LTL-FO with active 

domain quantification

• Maintain: 

• Broadcast: 


• Generic properties: convergence

Check whether the system  
always / sometimes reaches quiescence 
with some / all nodes in a non-faulty state

AG(∀n, p . Parent@n(p) → AGParent@n(p))
AG(∀x . (∃n . R@n( ⃗x)) → AF∀n′￼. R@n′￼( ⃗x))



Sources of infinity
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…

…
…

…

Infinite-branching  
due to external input



Sources of infinity
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…

…
…

…

Runs visiting 
infinitely many DBs  

due to usage of 
external input
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Problem space is still large
• Input-policy:


• closed: no inputs

• autonomous: input DB is given at the beginning and then not changed

• interactive: input DB changes at each computation step


• Channel behaviour: sets / multisets / queues,  lossy / non lossy 


• Data boundedness:

a DB is b-bounded if, in each reachable configuration, it contains at most b 
objects.  It is bounded if it is b-bounded for some b.


• Message expressiveness: propositional only / unary only / arbitrary


• Prev-awareness: allow / disallow the use of prev on the input



An easy case: 
closed CDPs with set-channels
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Closed CDPs with set-channels
There is

• no injection of data from the external world

• no component of the system that can grow indefinitely

 FO becomes syntactic sugar, and we can rely on traditional model checking→
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Closed CDPs with set-channels
There is

• no injection of data from the external world

• no component of the system that can grow indefinitely

 FO becomes syntactic sugar, and we can rely on traditional model checking→

Still, convergence is PSPACE-hard, without any assumption on the network 
topology:

1. Elect a leader

2. Construct a tree rooted in the leader

3. Linearize the tree

4. Use it to simulate a corridor-tiling problem



The hardest case: 
Interactive CDPs 
without restrictions



The hardest case: 
Interactive CDPs 
without restrictions

A node is a computing device with a 
finite-state control and unbounded 
memory 
… This is also called a Turing Machine!


 Even the simplest form of 
verification, i.e., reachability, is 
undecidable

→
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Size-boundedness
Put an a-priori bound b on the number of constants that can 
simultaneously appear in the DB.


• Studied extensively over the past 10 years (under the name of “state-
boundedness”)


• In general, the resulting transition system is still infinite-state


• The bound b might be known or not-known


• In CDPs, boundedness can be applied to the different types of DBs:

• state-boundedness

• transport-boundedness

• input-boundedness



Results for FO-CTL verification
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Type of CDP Input 
bounded

State / Channel bounded

N / Y Y / N Y / Y

Interactive
N U U PSPACE-c

Y U U PSPACE-c

Autonomous
N U U U

Y N.A. N.A. PSPACE-c

Closed N.A. N.A. N.A. PSPACE-c
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Undecidability — State unbounded
Simulation of a 2-counter Minsky machine

• Single node with 2 unary relations C1 and C2

• A single unary input relation New

• Increment counter 1:

• check whether New contains an object not in C1

• if not, enter into an error state

• if so, insert it in C1


• Decrement counter 1: pick an object in C1 and remove it


• Test counter 1 for zero: check that C1 is empty

New

C1

C1
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Undecidability — Transport unbounded
Again, by simulation of a 2-counter Minsky machine

• Single node with self-loop channel with 2 binary relations C1 and C2, each of which 

represents a cyclic graph of length equal to the counter value + 1, initialized to (me,me)


• A single unary input relation New

• Increment counter 1:


• check whether New contains an object not in C1, by “working off” the cycle from the 
channel


• if not, or if unexpected tuples are obtained from the channel, enter into an error state

• if so, extend C1 by incorporating the new object


• Decrement counter 1: remove from C1 the initial tuple (me,x), with x  me, thus shortening 
the cycle


• Test counter 1 for zero: check that C1 contains the tuple (me,me)

≠
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Towards decidability — Key properties of CDPs
CDPs (and other similar logic-based formalisms for data-aware 
processes) enjoy two key properties, since they are:


• Markovian: Next state only depends on the current state + input. 
Two states with identical node DBs are bisimilar.


• Generic: Datalog (as all query language) does not distinguish 
structures that are identical modulo uniform renaming of data 
objects


 Two isomorphic CDP snapshots are bisimilar→
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Exploited to prune infinite branching
• Consider a system snapshot and its node DBs


• Input is bounded  Only boundedly many isomorphic types 
relating the input objects and those in the active domain of the 
CDP


• Input configurations in the same isomorphic type produce 
isomorphic snapshots


• Keep only one representative successor state per isomorphic type

• The “pruned” transition system is finite-branching and bisimilar to 

the original one

→
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Compacting infinite runs via recycling
• Key observation: under restricted quantification (persistence-preserving, or no 

quantification across), the logic cannot distinguish local from global freshness


• Hence, we modify the transition system construction:  
whenever we need to consider a fresh representative object …

• … if there is an old object that can be recycled  use that one

• … if not  pick a globally fresh object


• Properties of this recycling technique:

• under size-boundedness, we need only a bounded number of objects (we do 

not need to know the bound)

• it preserves bisimulation!

 We obtain a finite-state transition system

→
→

→



47

Resulting verification algorithm
• Input: Interactive CDP all of whose DBs are size-bounded


• Construct the abstract transition system that works over isomorphic types 
and recycles objects. The abstract transition system is:

• finite-state

• bisimilar to (i.e., a faithful representation of) the original one


• Use the abstract system to model-check FO-LTL or FO-CTL formulas (with 
suitably restricted quantification) using conventional techniques


 PSPACE upper bound→
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Decidability with unbounded size
The undecidability results leave little margin for relaxing boundedness

• state-boundedness is unavoidable

• input-boundedness is not required, but unboundedness cannot be really 

exploited

• transport-unboundedness leads to undecidability, provided we can use a 

binary relation in the channel


 This leaves the case open, where we are not transport-bounded, but the 
channels contain unary relations only — Still a significant case

• Exploiting an encoding into coverability for nu-Petri Nets, we have shown 

decidability of verification of convergence properties in this case

• The general case of FO-CTL (and fragments of it) stays undecidable 

→
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Conclusions
• The formal analysis of dynamic systems considering data and distribution is 

still a major challenge that needs to be addressed


• The problem space is very large, since many different factors crucially affect 
decidability/complexity of verification


• Significant progress has been made, through a rather fine-grained analysis, 
but the overall picture is still very fragmented


• Interesting contributions and techniques have come from many diverse areas, 
and you are all welcome to collaborate with your favourite toolbox!


