
Integrating Data through Virtual Knowledge Graphs
with Ontop
Diego Calvanese, Benjamin Cogrel, Guohui Xiao
Ontopic s.r.l.

Knowledge Graph Conference, 3 May 2021

Data integration
Databases are great!
They let us manage e�ciently huge amounts of data . . .

. . . assuming you have put them all into your schema

However, the reality is much more involved and heterogeneous:
• Data sets were created independently
• Data are often stored across different sources
• Data sources are controlled by different people / organizations

The goal of data integration is to put together di�erent data sources,
created for di�erent purposes, and controlled by di�erent people,

making them accessible in a uniform way.

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
1/45

Why heterogeneity?

• Data model heterogeneity: Relational data, graph data, xml, json, csv, text
files, . . .

• System heterogeneity: Even when systems adopt the same data model,
they are not always fully compatible.

• Schema heterogeneity: Different people see things differently, and design
schemas differently!

• Data-level heterogeneity: e.g., ‘IBM’ vs. ‘Int. Business Machines’ vs.
‘International Business Machines’

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
2/45

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes
Table and attribute

names
Coverage and detail

of the schema

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
3/45

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes

Table and attribute
names

Coverage and detail
of the schema

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
3/45

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes

Table and attribute
names

Coverage and detail
of the schema

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
3/45

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes

Table and attribute
names

Coverage and detail
of the schema

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
3/45

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes

Table and attribute
names

Coverage and detail
of the schema

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
3/45

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes
Table and attribute

names

Coverage and detail
of the schema

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
3/45

How to address heterogeneity?

We use a combination of three key ideas:

1. Use a global (or integrated) schema and map the data sources to the
global schema

2. Adopt a very flexible data model for the global schema { Knowledge
Graph whose vocabulary is expressed in an ontology

3. Exploit virtualization, i.e., the KG is not materialized, but kept virtual

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
4/45

Virtual Knowledge Graph (VKG) architecture

Mapping

Data 
Sources

Query Query Result

Ontology

Virtual
Knowledge Graph

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
5/45

Why a mapping?

The traditional approach to data integration relies on mediators, which
are specified through complex code.

Mappings, instead:

• Provide a declarative specification, and not code

• Are easier to understand, and hence to design and to maintain

• Support an incremental approach to integration

• Are machine processable, hence can be used for query optimization

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
6/45

Why a KG for the global schema?

The traditional approach to data integration adopts a relational global
schema.

A KG, instead:

• Does not require to commit early on to a specific structure

• Can better accommodate heterogeneity

• Can better deal with missing / incomplete information

• Does not require complex restructuring operations to accommodate new
information / data sources

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
7/45

Why virtualization?

Materialized data integration relies on ETL (extract-transform-load)
operations, to load data from the sources into an integrated data store /
data warehouse / materialized KG.
In the purely virtual approach, instead:

• The data stays in the sources and is only accessed at query time
• There is no need to construct a large and potentially costly materialization

and to keep it up-to-date
• Hence the data is always fresh wrt the latest updates at the sources
• One can rely on the existing data infrastructure and expertise
• Better supports an incremental approach to integration

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
8/45

Components of the VKG architecture

Which are the right languages for the
components of the VKG architecture?
We need to consider the tradeoff between
expressive power and efficiency, where
e�ciency with respect to the data is key.

Mapping

VKG

Query Query Result

Ontology

Data 
Sources

The W3C has standardized languages that are suitable for VKGs:
1. Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)
2. Ontology O: expressed in OWL 2 QL [W3C Rec. 2012]
3. MappingM: expressed in R2RML [W3C Rec. 2012]
4. Query: expressed in SPARQL [W3C Rec. 2013] (v1.1)

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
9/45

Outline

1. Data Integration

2. A Quick History of VKGs

3. Ontop

4. Use Cases

5. The VKG Framework

6. Input Dataset Handling

7. Hands-on

A quick history of VKGs

1990’s Logic-based knowledge representation languages proposed as global
schema formalisms in data integration: high expressive power, too
complex { mostly theoretical

2005 Families of lightweight ontology languages (or Description Logics)
{ DL-Lite family of DLs

2007 DL-Lite used as a basis for the Ontology-based Data Access (OBDA)
paradigm: based on conjunctive queries, abstract mapping language

2012 OWL 2 standardized by W3C with 3 profiles: OWL 2 QL profile based on
DL-Lite

2012 R2RML mapping language standardized by W3C
> 2012 OBDA paradigm moved to Semantic Web standards

2019 OBDAs rebranded as VKGs

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
10/45

Outline

1. Data Integration

2. A Quick History of VKGs

3. Ontop

4. Use Cases

5. The VKG Framework

6. Input Dataset Handling

7. Hands-on

The Ontop system

https://ontop-vkg.org/

• State-of-the-art VKG system

• Compliant with all relevant Semantic Web standards:
RDF, RDFS, OWL 2 QL, R2RML, SPARQL, and GeoSPARQL

• Supports all major relational DBs:
Oracle, DB2, MS SQL Server, Postgres, MySQL, Teiid, Dremio, Denodo, etc.

• Open-source and released under Apache 2 license.

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
11/45

https://ontop-vkg.org/

Developer community

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
12/45

Ontop downloads

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
13/45

Outline

1. Data Integration

2. A Quick History of VKGs

3. Ontop

4. Use Cases

5. The VKG Framework

6. Input Dataset Handling

7. Hands-on

Use cases of Ontop

• Adopted in many academic and industrial use cases.1
• Some application areas:

• Industry 4.0
• Many vendors / historical data of exploration campaigns
• Examples: Equinor, Siemens, Bosch

• Analytical / BI
• Combine internal data, manual processes (e.g., Excel) and external data
• Data privacy issues / GDPR: we need to avoid data copies
• Examples: Toscana Open Research, a large European university

• Geospatial data
• GeoSPARQL over PostGIS
• Examples: LinkedGeoData.org, South Tyrolean Open Data Hub

1Guohui Xiao, Linfang Ding, Benjamin Cogrel, and Diego Calvanese. Virtual knowledge graphs: An overview
of systems and use cases. Data Intelligence, 1:201–223, 2019.
Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
14/45

Failure detection for Surface Mounting Process pipeline in
Bosch2

Solder Paste

Printing (SPP)
Surface Mount

Devices (SMD)
Reflow

Oven (RFL)

Automated

Optical

Inspection (AOI)

- timestamp - boardScrapped = 1

- failureType = 2

- boardNumber - failureType = 21

= 2018-06-28T11:05…

 = “008152”

panelId=“0081“ panelId=“0081“

• Failure detection fundamentally relies on the integration and analysis of data generated in
different phases

• Such machines come from different suppliers and rely on distinct formats
2E Güzel Kalaycı, I Grangel Gonalez, F Lösch, G Xiao, A ul Mehdi, E Kharlamov, and D Calvanese. Semantic

integration of Bosch manufacturing data using virtual knowledge graphs. In ISWC, 2020.
Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
15/45

Use cases of Ontop

• Adopted in many academic and industrial use cases.
• Some application areas:

• Industry 4.0
• Many vendors / historical data of exploration campaigns
• Examples: Equinor, Siemens, Bosch

• Analytical / BI
• Combine internal data, manual processes (e.g., Excel) and external data
• Data privacy issues / GDPR: we need to avoid data copies
• Examples: Toscana Open Research, a large European university

• Geospatial data
• GeoSPARQL over PostGIS
• Examples: LinkedGeoData.org, South Tyrolean Open Data Hub

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
16/45

Toscana Open Research

http://www.toscanaopenresearch.it/en/

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
17/45

http://www.toscanaopenresearch.it/en/

A large European university

• Internal data
• Research funding, HR, teaching, etc.
• Redundant applications due to the merge of several universities
• Operational data store and data warehouse
• Many processes are still using Excel

• External data
• Open Data (from the ministry, EU commission and public initiatives)
• Commercial bibliometric data
• Mainly for benchmarking

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
18/45

Use cases of Ontop

• Adopted in many academic and industrial use cases.
• Some application areas:

• Industry 4.0
• Many vendors / historical data of exploration campaigns
• Examples: Equinor, Siemens, Bosch

• Analytical / BI
• Combine internal data, manual processes (e.g., Excel) and external data
• Data privacy issues / GDPR: we need to avoid data copies
• Examples: Toscana Open Research, a large European university

• Geospatial data
• GeoSPARQL over PostGIS
• Examples: LinkedGeoData.org, South Tyrolean Open Data Hub

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
19/45

LinkedGeoData.org

• LGD converts OpenStreetMap to RDF
• one of the most important Geospatial

Knowledge Graphs
• The next version of LGD will be based

on Ontop
• ... in collaboration with University of

Leipzig

R2RML Support

OWL Reasoning Support

Part of LGD's Docker Architecture

Part of OSM's Ecosystem

lgd-sparqlify-web

lgd-osm-sync

lgd-db

OpenStreetMap

Full Dumps Changesets

Postgres

Osmosis

RDB2RDF Mappings
SML / R2RML

lgd-ontop-web

RDB2RDF Mappings
Ontop Mapping / R2RML

Ontop

VKG

OSM Tables
LGD Tables and Views
Nominatim Tables

lgd-nominatim-sync

Nominatim

Data Sources

Replication

Physical Storage

Virtualization

Materialization

SPARQL
Endpoints

lgd-nominatim-web

Nominatim

Auxiliary Geo-Services

Sparqlify

VKG

Applications

powered by

R2RML

R2RMLR2RML

GeoFabrik

Full Dumps Changesets

lgd-pubby-web

Pubby

SPARQL-based
Services lgd-services-web

REST-API
SPARQL-Wrapper

Canned
Queries

Linked Data
Server

RDF Files +
DCAT Metadata

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
20/45

LinkedGeoData.org

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
21/45

VKG over the South Tyrolean Open Data Hub (ODH)

https://sparql.opendatahub.bz.it/

• ODH publishes tourism, mobility, and weather data from different providers
through a JSON-based Web API

• The backend relies on PostgreSQL databases
• Joint project between Ontopic and NOI Techpark on extending ODH with a

VKG

The demos and hands-on of this tutorial are adapted from this use case.

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
22/45

https://sparql.opendatahub.bz.it/

Outline

1. Data Integration

2. A Quick History of VKGs

3. Ontop

4. Use Cases

5. The VKG Framework

6. Input Dataset Handling

7. Hands-on

Components of the VKG architecture

We consider now the main components that
make up a VKG system, and the languages
used to define them. Mapping

VKG

Query Query Result

Ontology

Data 
Sources

The W3C has standardized languages that are suitable for VKGs:
1. Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)
2. Query: expressed in SPARQL [W3C Rec. 2013] (v1.1)
3. Ontology O: expressed in OWL 2 QL [W3C Rec. 2012]
4. MappingM: expressed in R2RML [W3C Rec. 2012]

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
23/45

RDF – Data is represented as a graph

The graph consists of a set of subject-predicate-object triples:

Object property:
<A-1> ore:describes <ReM-1> .

Data property:
<ReM-1> :created "2008-02-07" .

Class membership:
<A-1> rdf:type :JournalArticle .

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
24/45

SPARQL query language
• Is the standard query language for RDF data. [W3C Rec. 2008, 2013]
• Core query mechanism is based on graph matching.
SELECT ?a ?t
WHERE { ?a rdf:type Actor .

?a playsIn ?m .
?m rdf:type Movie .
?m title ?t .

}

?a

Actor

?m

Movie

?t

rdf:type

playsIn

rdf:type

title

Additional language features (SPARQL 1.1):
• UNION: matches one of alternative graph patterns
• OPTIONAL: produces a match even when part of the pattern is missing
• complex FILTER conditions
• GROUP BY, to express aggregations
• MINUS, to remove possible solutions
• property paths (regular expressions)

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
25/45

The OWL 2 QL ontology language

• OWL 2 QL is one of the three standard profiles of OWL 2.
[W3C Rec. 2012]

• Is considered a lightweight ontology language:
• controlled expressive power
• efficient inference

• Optimized for accessing large amounts of data
• Queries over the ontology can be rewritten into SQL queries over the underlying

relational database (First-order rewritability).
• Consistency of ontology and data can also be checked by executing SQL queries.

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
26/45

Main constructs of OWL 2 QL
Class hierarchy: rdfs:subClassOf

Example: :MovieActor rdfs:subClassOf :Actor .
Inference: <person/2> rdf:type :MovieActor .

=⇒ <person/2> rdf:type :Actor .

Domain of properties: rdfs:domain
Example: :playsIn rdfs:domain :MovieActor .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <person/2> rdf:type :MovieActor .

Range of properties: rdfs:range
Example: :playsIn rdfs:range :Movie .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <movie/3> rdf:type :Movie .

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
27/45

Other constructs of OWL 2 QL
Class disjointness: owl:disjointWith

Example: :Actor owl:disjointWith :Movie .
Inference: <person/2> rdf:type :Actor .

<person/2> rdf:type :Movie .
=⇒ RDF graph inconsistent with the ontology

Inverse properties: owl:inverseOf
Example: :actsIn owl:inverseOf :hasActor .
Inference: <person/2> :actsIn <movie/3> .

=⇒ <movie/3> :hasActor <person/2> .

Property hierarchy
Property disjointness
Mandatory participation
Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
28/45

Representing OWL 2 QL ontologies as UML class diagrams

There is a close correspondence between OWL 2 QL and conceptual
modeling formalisms, such as UML class diagrams and ER schemas.
:MovieActor rdfs:subClassOf :Actor .
:MovieActor owl:disjointWith :SeriesActor .
:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:actsIn rdfs:subPropertyOf :playsIn .
... owl:someValuesFrom ...

subclass
disjointness
domain
range
sub-association
mandatory participation

Actor
name: String

SeriesActor MovieActor

Play
title: String

MovieactsIn
1..?I

playsIn
I

{disjoint}
In fact, to visualize an OWL 2 QL
ontology, we can use standard
UML class diagrams.

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
29/45

Use of mappings

In VKGs, the mappingM encodes how the data D in the sources should
be used to create the virtual knowledge graph.

Virtual knowledge graphV defined fromM and D
• Queries are answered with respect to O andV.
• The data ofV is not materialized (it is virtual!).
• Instead, the information in O andM is used to

translate queries over O into queries formulated
over the sources.

• Advantage, compared to materialization:
the graph is always up to date w.r.t. data sources.

Mapping

VKG

Query Query Result

Ontology

Data 
Sources

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
30/45

Mapping language
The mapping consists of a set of assertions of the form

Qsql(~x) t(~x) rdf:type C
Qsql(~x) t1(~x) p t2(~x)

where
• Qsql(~x) is the source query expressed in SQL,
• the right hand side is the target, consisting of a triple pattern involving a

class C or a (data or object) property p, and making use of the answer
variables ~x of the SQL query.

Impedance mismatch between values in the DB and objects in the KG:
In the target, we make use of iri-templates t(~x), which transform
database values into IRIs (i.e., object identifiers) or literals.
Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
31/45

Mapping language – Example
Ontology O:

:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:title rdfs:domain :Movie .
:title rdfs:range xsd:string .

MappingM:
m1: SELECT mcode, mtitle FROM MOVIE
WHERE type = "m"
 :m/{mcode} rdf:type :Movie .
:m/{mcode} :title {mtitle} .

m2: SELECT M.mcode, A.acode FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode AND M.type = "m"
 :a/{acode} :actsIn :m/{mcode} .Database D:

MOVIE
mcode mtitle myear type · · ·

5118 The Matrix 1999 m · · ·

8234 Altered Carbon 2018 s · · ·

2281 Blade Runner 1982 m · · ·

ACTOR
pcode acode aname · · ·

5118 438 K. Reeves · · ·

5118 572 C.A. Moss · · ·

2281 271 H. Ford · · ·

The mappingM applied to database D generates the (virtual) knowledge graphV =M(D):
:m/5118 rdf:type :Movie . :m/5118 :title "The Matrix" .
:m/2281 rdf:type :Movie . :m/2281 :title "Blade Runner" .
:a/438 :actsIn :m/5118 . :a/572 :actsIn :m/5118 . :a/271 :actsIn :m/2281 .

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
32/45

Virtual approach for query answering in Ontop

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
33/45

Rewriting step

The rewriting Step 2 deals with the knowledge encoded in the axioms of
the ontology:

• hierarchies of classes and of properties;

• objects that are existentially implied by such axioms: existential reasoning.

We illustrate the need for dealing with class hierarchies.

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
34/45

Dealing with hierarchies
Suppose that every MovieActor is an Actor, i.e.,

:MovieActor rdfs:subClassOf :Actor .

and that keanu is a MovieActor: :keanu rdf:type :MovieActor .

What is the answer to the following query, asking for all actors?
SELECT ?x WHERE { ?x a :Actor . }

The answer should be keanu, since being a MovieActor, he is also an Actor.

In fact, the query rewriting algorithm applies the above inclusion axiom as a kind of
rule from right to left, and rewrites the query into a UNION query:

SELECT DISTINCT ?x
WHERE {
{ ?x a :Actor . } UNION { ?x a :MovieActor . }

}

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
35/45

Demo: Basic usage of Ontop

$ git clone \
https://github.com/ontopic-vkg/destination-tutorial \
--config core.autocrlf=input # important for Windows

$ cd destination-tutorial
$ docker-compose -f docker-compose.solution.yml up

1. Check the database in DBeaver
2. Open vkg/dest-solution.ttl in Protégé
3. Open http://localhost:8080 in the browser

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
36/45

http://localhost:8080

Outline

1. Data Integration

2. A Quick History of VKGs

3. Ontop

4. Use Cases

5. The VKG Framework

6. Input Dataset Handling

7. Hands-on

Direct input for Ontop (“sources”)

• Transactional database in production (not so often)

• Physical replica
• Logical replica: allows for basic transformations

• Flattening JSON structure
• Adding geospatial indexes
• Merging different databases (e.g. managed by different teams)

• Operational data store

• Data warehouse

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
37/45

Mediated input for Ontop

• Data lake: files (e.g., CSV, JSON)
• Through Denodo or Dremio
• Populated by data pipelines
• Provided by non-IT people (first iterations)

• WebAPI
• Through Denodo
• Often comes with querying pattern restrictions

• More than one source for the same Ontop instance
• Through Denodo, Dremio, or Teiid (coming soon)

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
38/45

Data federation with Dremio
• Supports data lakes, relational databases and several NoSQL systems

• Open source (Apache 2.0)

• Distributed query processing by pushing sub-queries to the sources
• Acceleration though “reflections” when needed

• Particularly powerful for aggregation queries (e.g., slicing/dicing)
• Often considered as a second step, for accelerating some queries
• Make sure to check first that no integrity constraint is missing!
• Materialization remains at the relational level

• Limited set of functions
• E.g., does not support geospatial functions

• Does not expose integrity constraints
• They have to be specified externally

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
39/45

Data federation with Dremio

Demo

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
40/45

Pros of the virtual approach to KGs

• Not being required to move data allows for fast iterations

• Reuses the existing infrastructure, methods and expertise present in the
company

• Often perceived less intrusive to admins than a new database technology
they don’t know

• Most inner and left joins can be eliminated at the SQL level

• Materialization concerns come later, e.g., for accelerating some queries

• Reasoning costs are usually very low

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
41/45

Cons of the virtual approach to KGs

• Requires paying more attention to mapping quality and integrity constraints
• Non-RDF materialization, when needed, is at the moment still fairly manual
• Meta-queries can be challenging (new optimizations to come)
• Less expressive reasoning capabilities (in the absence of advanced

post-processing capabilities)
• Dealing with RDF dumps implies at the moment SPARQL federation
• No native support for graph analytics (has to be done externally)

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
42/45

Outline

1. Data Integration

2. A Quick History of VKGs

3. Ontop

4. Use Cases

5. The VKG Framework

6. Input Dataset Handling

7. Hands-on

Destination tutorial

https://github.com/ontopic-vkg/destination-tutorial

• Focused on the mapping design
• Ontology already provided
• SPARQL endpoint and database handled by Docker-compose
• Guidance for specifying the mapping will be published in the coming days

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
43/45

https://github.com/ontopic-vkg/destination-tutorial

Lodging businesses and municipalities

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
44/45

Weather stations

Data Integration through VKGs with Ontop | D. Calvanese, B. Cogrel, G. Xiao
45/45

	Data Integration
	A Quick History of VKGs
	Ontop
	Use Cases
	The VKG Framework
	Input Dataset Handling
	Hands-on

