
Efficient Ontology-Based Data Integration
with Canonical IRIs

Guohui Xiao1(B) , Dag Hovland2 , Dimitris Bilidas3 , Martin Rezk4,
Martin Giese2 , and Diego Calvanese1

1 Faculty of Computer Science, Free-University of Bozen-Bolzano, Bolzano, Italy
{xiao,calvanese}@inf.unibz.it

2 Department of Informatics, University of Oslo, Oslo, Norway
{hovland,martingi}@ifi.uio.no

3 National and Kapodistrian University of Athens, Athens, Greece
d.bilidas@di.uoa.gr

4 Rakuten, Tokyo, Japan
martin.rezk@rakuten.com

Abstract. In this paper, we study how to efficiently integrate multi-
ple relational databases using an ontology-based approach. In ontology-
based data integration (OBDI) an ontology provides a coherent view of
multiple databases, and SPARQL queries over the ontology are rewritten
into (federated) SQL queries over the underlying databases. Specifically,
we address the scenario where records with different identifiers in differ-
ent databases can represent the same entity. The standard approach in
this case is to use sameAs to model the equivalence between entities. How-
ever, the standard semantics of sameAs may cause an exponential blow
up of query results, since all possible combinations of equivalent identi-
fiers have to be included in the answers. The large number of answers
is not only detrimental to the performance of query evaluation, but also
makes the answers difficult to understand due to the redundancy they
introduce. This motivates us to propose an alternative approach, which
is based on assigning canonical IRIs to entities in order to avoid redun-
dancy. Formally, we present our approach as a new SPARQL entailment
regime and compare it with the sameAs approach. We provide a proto-
type implementation and evaluate it in two experiments: in a real-world
data integration scenario in Statoil and in an experiment extending the
Wisconsin benchmark. The experimental results show that the canonical
IRI approach is significantly more scalable.

1 Introduction

Large organizations, both public and private, typically need to manage, in multi-
ple information systems, large amounts of data stored across multiple heteroge-
neous data sources. To support decision making in such settings, there is the need
to access in an integrated way the data managed by the different systems, which
in general are stored in different databases. A key challenge for data integration

c© Springer International Publishing AG, part of Springer Nature 2018
A. Gangemi et al. (Eds.): ESWC 2018, LNCS 10843, pp. 697–713, 2018.
https://doi.org/10.1007/978-3-319-93417-4_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93417-4_45&domain=pdf
http://orcid.org/0000-0002-5115-4769
http://orcid.org/0000-0002-3569-8838
http://orcid.org/0000-0003-1119-5993
http://orcid.org/0000-0002-2058-2728
http://orcid.org/0000-0001-5174-9693

698 G. Xiao et al.

in such settings is that the different systems have often been designed separately
serving different purposes, and thus lack a coherent view of the underlying data.

Ontology-based data access (OBDA) [24] is a successful paradigm that
addresses this challenge by relying on semantic technologies to provide a uniform
conceptual view over heterogeneous data. Specifically, an ontology describing
the domain of interest is connected to a data source through a declarative spec-
ification, given in terms of mappings [8] that relate symbols (i.e., classes and
properties) in the ontology to (SQL) views over the data. The ontology layer
can be queried using SPARQL, and queries are automatically rewritten by an
OBDA engine into SQL queries expressed over the underlying database. Thus,
users no longer need an understanding of the structure and organization of the
data in the source. Ontology-based data integration (OBDI) is an extension of
OBDA in which the data is not stored in a single database, but in a multitude of
databases that need to be queried in an integrated way, while still maintaining
the same conceptual architecture based on mappings [3]. OBDI has been success-
fully deployed in several domains, such as oil and gas [18], maritime security [1],
and cultural heritage [2].

An important aspect in OBDI is the fact that the same conceptual entity may
be stored in different databases but represented by different identifiers. Consider
e.g., the same person, represented in one database through name, surname, and
date of birth, in a second database through the social security number, and
in a third database through the taxcode. In order to combine the information
coming from different systems so as to produce coherent results to queries, we
need a way to relate different representations so that they can be recognized as
representing the same entity. This is challenging both from the theoretical and
from the practical points of view.

The standard approach in the Semantic Web to modeling the fact that differ-
ent IRIs actually represent the same entity is to use owl:sameAs1, which defines
an equivalence relation between entities. In our previous work [5], we have shown
how an approach based on the use of sameAs can be adopted also for OBDI. A
serious drawback of this approach is that the semantics of sameAs may cause an
exponential blowup of query results, since all possible combinations of equivalent
identifiers have to be included in the answer to a query. The large number of
answers is detrimental to the performance of query evaluation, and also intro-
duces redundancy making answers difficult to understand.

To address this problem, we propose here an alternative approach, based on
assigning to each entity a canonical IRI. Such canonical IRI is the one of choice
for relating occurrences of the entity that are identified differently in different
data sources, and also for returning the entity to the user. The idea of exploit-
ing a canonical representation of IRIs internally, for optimization purposes, has
already been used in some reasoning engines. E.g., RDFox [22] uses an optimized
approach for rule evaluation by forward chaining based on propagating a canon-
ical representation for entities. Also Stardog adopts a similar strategy in query

1 For space reasons, from now on we will use sameAs as an abbreviation for owl:sameAs.

Efficient Ontology-Based Data Integration with Canonical IRIs 699

answering, by only returning a canonical representation of equivalent entities, to
avoid the combinatorial explosion in query results2.

However, lifting this idea to the OBDI scenario is non-trivial. On the one
hand, the choice on which source should provide the canonical IRI for an entity
depends on the actual (type of) entity, and on the data sources in which it
appears. A more critical issue is due to the fact that in OBDI, entities with the
corresponding IRIs are not materialized but kept virtual, since they are generated
dynamically at query answering time from the data in the sources through the
mappings. Hence it is not really feasible to explicitly substitute the entities by
canonical ones. Instead our proposal is based on embedding such information in
the mapping specification, while delegating to the designer of the OBDI system
the responsibility of choosing which canonical IRIs to adopt.

For such a setting, we provide the following contributions:

– We formally define the canonical IRI semantics as a SPARQL entailment
regime. We show that such semantics is equivalent to the sameAs semantics
(taking into account equivalence of IRIs), thus guaranteeing soundness and
completeness of the associated query answering algorithm (see Sect. 3).

– We show that query answering and the canonical IRI semantics can be
reduced to a simple entailment regime by means of query rewriting. However,
this query rewriting step is only of theoretical interest since the rewritten
query is not efficiently executable (see Sect. 4).

– We propose an alternative practical mapping rewriting-based technique for
query answering, inspired by algorithms for mapping saturation [2] (see
Sect. 5).

– We provide a prototype implementation of our technique and evaluate it in
two experiments. The first experiment is based on a real-world data inte-
gration scenario in the oil company Statoil [18]. The second experiment is
based on the Wisconsin benchmark [9]. The experimental results show that
the canonical IRI approach is significantly more scalable (see Sect. 6).

We start our technical development by introducing in Sect. 2 the necessary
background.

2 Preliminaries

We present now the preliminary notions on RDF graphs, SPARQL, and ontology-
based data access on which we build in the rest of the paper.

2.1 RDF and SPARQL

SPARQL [14] is the W3C standard language designed to query RDF graphs.
We consider a vocabulary of three pairwise disjoint and countably infinite sets
of symbols: I for IRIs, L for RDF literals, and V for variables. In line with

2 https://www.stardog.com/docs/# same as reasoning.

https://www.stardog.com/docs/#_same_as_reasoning

700 G. Xiao et al.

previous work on ontology-based data access, we do not consider blank nodes.
The elements of T = I ∪ L are called RDF terms, and those of T × I × T are
called (RDF) triples. An (RDF) graph is a set of triples. A triple pattern is an
element of (T∪V) × (I∪V) × (T∪V). A basic graph pattern (BGP) is a finite
set of triple patterns. We consider the fragment of SPARQL queries defined by
Q in the following EBNF grammar3:

P :: = B | Q | P FILTER F | P UNION P | (P, P) | P OPT P
Q :: = SELECT { V AS V } WHERE P

where B is a BGP and F is a filter expression (we refer to [14] for details).
An expression {?y1 AS ?x1, . . . , ?yn AS ?xn} is called a projection with answer
variables {?x1, . . . , ?xn}. We abbreviate “?x AS ?x” with ?x. For a SPARQL
query Q = SELECT R WHERE Q1, we use sig(Q) to denote the answer variables
of R.

The semantics of SPARQL queries is given in terms of solution mappings,
which are partial maps s : V → T with (possibly empty) domain dom(s). Here,
following [20,23,25], we use the set-based semantics for SPARQL (rather than
the bag-based one, as in the W3C specification). More specifically, for a BGP B,
the answer �B�G to B over a graph G is �B�G = {s : var(B) → T | s(B) ⊆ G},
where var(B) is the set of variables occurring in B and s(B) is the result of
substituting each variable u in B by s(u). Then, the answer to a SPARQL query
Q over a graph G is the set �Q�G of solution mappings defined by induction using
the SPARQL algebra operators (filter, join, union, optional, and projection)
starting from BGPs; cf. [17]. This semantics is known as simple entailment.

2.2 SPARQL Entailment Regimes

SPARQL entailment regimes allow for querying RDF graphs with richer reason-
ing capabilities [12]. Specifically, an entailment regime E specifies how to obtain
from an RDF graph G an entailed graph egE(G). Then, the answer �B�E

G to a
BGP B under the entailment regime E is defined as �B�egE(G). Similarly, The
answer �Q�E

G to a SPARQL query Q under the entailment regime E is defined
as �Q�egE(G). Note that entailment regimes only modify the evaluation of BGPs
but not that of other SPARQL operators.

We present now the standard W3C semantics for SPARQL queries over
OWL 2 ontologies under different entailment regimes. Under the OWL2 direct
semantics entailment regime, one can query an RDF graph G that consist of
two parts: the intensional sub-graph (i.e., TBox or ontology) T representing the
background knowledge in terms of class and property axioms, and an extensional
sub-graph (i.e., ABox) A representing the data as class and property assertions.
We write such a graph G, which represents a knowledge base, as (T ,A) to empha-
size the partitioning when necessary. Moreover, for convenience, we use the triple
notations (s, rdf:type, C) and (s, p, o) and the ABox assertion notations C(s)
and p(s, o) interchangeably.
3 Recall that in EBNF “{A}” means any number of repetitions of A.

Efficient Ontology-Based Data Integration with Canonical IRIs 701

We work with ontologies expressed in the OWL 2 QL profile [21] of OWL 2.
Such profile induces the OWL2QL (or simply, QL) entailment regime in which,
for an OWL 2 QL knowledge base G we have egQL(G) = {t | G |=DL t}, where
|=DL denotes the standard OWL 2 entailment, defined in terms of description
logics semantics, cf. [27]. Under the QL entailment regime, a SPARQL query Q
formulated over an ontology T is first-order rewritable, i.e., Q can be rewritten
into a query QT such that for every ABox A, evaluating Q over (T ,A) (under
the QL entailment regime) is equivalent to evaluating QT over A (under the
simple entailment regime) [4,20].

2.3 SPARQL Entailment Regimes for sameAs

In addition to the input graph G = (T ,A), we consider now a set As of sameAs
triples of the form sameAs(a, b), specifying the equivalence between individuals
a and b.

We now define an entailment regime that interprets sameAs as the equivalence
closure (i.e., the reflexive, transitive, and symmetric closure) of As. For a set As

of sameAs assertions, we denote by (As)∗ the equivalence closure of As. Given an
RDF graph A and a set As of sameAs assertions, we define the sameAs entailed
graph sag(A,As) of A with respect to As as

A ∪ {C(o′) | C(o) ∈ G, sameAs(o, o′) ∈ (As)∗}
∪ {R(o′

1, o
′
2) | R(o1, o2) ∈ G, sameAs(o1, o′

1) ∈ (As)∗, sameAs(o2, o′
2) ∈ (As)∗}.

Given an entailment regime E, we can derive an extended entailment regime
E+sameAs, which takes into account equivalences between entities inferred
through sameAs statements, as follows:

egE+sameAs(T ,A ∪ As) = egE(T , sag(A,As))

In this paper, we are mostly interested in the SPARQL entailment regimes
QL and QL+sameAs, but our results also apply to other entailment regimes
E in which sameAs is treated as a standard object property, and new sameAs
triples cannot be inferred.

2.4 Ontology-Based Data Access and Integration

In ontology-based data access (OBDA), we start from an OBDA specification
P = (T ,M,S), consisting of a set T of OWL 2 axioms, a set M of mapping
assertions, and a relational database schema S. An OBDA instance (P,D) is
given by an OBDA specification P and a relational database instance D com-
pliant with S.

Mapping assertions allow one to define how an ABox should be populated
with values retrieved by means of SQL queries. Each mapping assertion has one
of the forms

C(f(x)) ← sql(y) P (f(x), f ′(x′)) ← sql(y)

702 G. Xiao et al.

such that x ⊆ y and x′ ⊆ y, sql is an arbitrary SQL query over S projecting
columns y, and f and f ′ are functions constructing RDF terms out of values
retrieved from the database. In a concrete mapping language like R2RML [8],
these functions are specified as templates for IRIs and literals. For example,
<http://statoil.com/wellbore/{id}> is an IRI template where “{id}” is a place-
holder, and it generates, e.g., the IRI <http://statoil.com/wellbore/25> when
{id} is instantiated with “25”. In practice, it is desired that each IRI can be
constructed by at most one IRI template, and we make such assumption here;
formally, the union of all the IRI templates occurring in an OBDA specification
is an injective function. By applying all mapping assertions in M to D , one can
derive a (virtual) RDF graph AM,D [24]. Then, SPARQL query answering over
an OBDA instance (P,D) is defined as query answering over (T ,AM,D).

We recall that, ontology-based data integration (OBDI) considers a set of
data sources instead of a single one, but otherwise the formal treatment is iden-
tical to that of OBDA.

The inspiration for working with equality in OBDI came from problems we
encountered in the context of the EU-funded project Optique [11], when query-
ing data in the Norwegian oil company Statoil. This is also the background of
the real world experiments in Sect. 6.1. In the following, we present our run-
ning example, which provides a simplified version of the experimental setting
of Optique. The content of the tables below is real data from the Norwegian
Petroleum Directorate FactPages4.

Example 1. Assume two databases national and corporate with one table
each:

national.wellbore

name opPurp wlbFld

1/3-1 WILDCAT

2/4-2 WILDCAT EKOFISK

1/3-10 APPRAISAL OSELVAR

1/2-1 WILDCAT BLANE

corporate.drillingops

name driStDt reason

NO 1/3-1 06-07-1968 WILDCAT

NO 2/4-2 18-09-1969

NO 1/2-1 20-03-1989 WILDCAT

NO 1/3-A-1 H 22-07-2011 PRODUCTION

In both tables, the column name is the only key (i.e., names are unique within
each table). These columns have almost the same values in the two databases,
except that in the corporate database they are prefixed with “NO ” (country
code for Norway). An example set of mapping assertions is:

:NationalWellbore/{name} :inField {wlbFld} ; :purpose {opPurp} .
← SELECT name, wlbFld, opPurp FROM national.wellbore

:CorporateWellbore/{name} :drillingStarted {driStDt} ; :purpose {reason} .
← SELECT name, driStDt, reason FROM corporate.drillingops

4 http://factpages.npd.no.

http://statoil.com/wellbore
http://statoil.com/wellbore/25
http://factpages.npd.no

Efficient Ontology-Based Data Integration with Canonical IRIs 703

Examples of triples in the ABox defined by this OBDA scenario are5

(:NationalWellbore/1/2-1, :inField, BLANE),
(:CorporateWellbore/NO 1/3-A-1 H, :drillingStarted, 22-07-2011),
(:NationalWellbore/1/3-10, :purpose, APPRAISAL),
(:CorporateWellbore/NO 1/2-1, :purpose, WILDCAT).

Compare the property :purpose, which is mapped to several databases, with
the properties :inField and :drillingStarted, which are mapped to a sin-
gle database each. Properties like :purpose may or may not have values for
the same entity in different datasets. So the SPARQL query (?w , :purpose, ?p)
returns both {?w �→ :NationalWellbore/1/3-1, ?p �→ WILDCAT} and {?w �→
:CorporateWellbore/NO 1/3-1, ?p �→ WILDCAT} as answers, while the query
((?w , :inField, ?f), (?w , :drillingStarted, ?d)) has no answers.

There are different ways of improving this situation. Perhaps the most
obvious and direct one is to just change the mapping set such that the
wellbores are mapped into equal IRIs. This is not always possible, as a
data source may not be under the control of the mapping author; con-
sider, e.g., Linked Open Data. Moreover, when integrating two OBDA sys-
tems where there already are IRIs defined, instead of modifying existing map-
ping sets, it is in general more convenient to add mappings stating the equiv-
alences between IRIs, so as to virtually generate the sameAs relation, e.g.,
(:NationalWellbore/1/3-1, sameAs, :CorporateWellbore/NO 1/3-1). Such
mappings also serve as a documentation for the way the data is linked.

3 Canonical IRI Semantics

We observe that the standard sameAs semantics is not scalable for query answer-
ing in general. Suppose that μ = {?x1 �→ a1, . . . , ?xn �→ an} is a solu-
tion mapping of a SPARQL query q over an ABox that includes assertions
{sameAs(ai, bi) | 1 ≤ i ≤ n}. Then one can replace any ai by bi in μ, resulting
in a semantically equivalent solution mapping, which is still a valid answer to q.
In this case, there are 2n such possibilities. This example shows that in general,
sameAs could cause an exponential blowup of query results. Such large numbers
of answers are not only detrimental to the performance of query evaluation, but
also make the query answers difficult to understand due to the redundancy they
introduce. Indeed, our motivation is to integrate multiple datasets, and what we
care most are the entities, not the IRIs that represent them. This motivates us
to propose an alternative approach, which is based on assigning canonical IRIs
to entities.

We assume that, in addition to A, we have a set Ac of canonical IRI assertions
using the property canIriOf. We make the following assumption on Ac, which
states that one IRI cannot have more than two canonical representations:

5 The IRI encoding of special symbols like “/” is omitted for readability.

704 G. Xiao et al.

Assumption 1. The property canIriOf is inverse functional in Ac, i.e.,:

{canIriOf(c1, i), canIriOf(c2, i)} ⊆ Ac implies c1 = c2.

Definition 1 (Canonical IRI and Canonical Graph). For an IRI o, the
canonical IRI canAc(o) of o is co, if canIriOf(co, o) ∈ Ac for some co, and o
otherwise. Given A and Ac, the canonical graph cg(A,Ac) is

{C(canAc(o)) | C(o) ∈ A} ∪ {P (canAc(o1), canAc(o2)) | P (o1, o2) ∈ A}.

Given an entailment regime E without special treatments of canonical IRI
assertions, we can now define the canonical IRI entailment regime E+can as:

egE+can(T ,A ∪ Ac) = egE(T , cg(A,Ac))

Now we study the relationship between the canonical IRI semantics and
the sameAs semantics. To do so, we first define the correspondence between Ac

and As.

Definition 2. We say that Ac is compliant with As if the following two condi-
tions hold:

1. if canIriOf(o1, o2) ∈ Ac, then sameAs(o1, o2) ∈ (As)∗;
2. if sameAs(o1, o2) ∈ (As)∗, then canAc(o1) = canAc(o2).

Next, we extend canonical graphs to SPARQL queries. More precisely, given a
SPARQL query Q, we obtain cg(Q,Ac) by replacing each IRI o in Q by canAc(o).

In the following, we assume that SPARQL queries contain neither sameAs nor
canIriOf. The next proposition shows that query answering under the canonical
IRI and the sameAs entailment regimes are equivalent in the following sense:

Theorem 1. Let (T ,A) be a KB, Ac compliant with As, Q a SPARQL query,
sig(Q) = {?x1, . . . , ?xn}, and E an entailment regime that does not imply new
sameAs or canIriOf assertions. It holds that

– if {?x1 �→ o1, . . . , ?xn �→ on} ∈ �Q�E+sameAs
T ,A∪As , then

{?x1 �→canAc(o1), . . . , ?xn �→canAc(on)} ∈ �cg(Q,Ac)�E+can
T ,A∪Ac ;

– if {?x1 �→ o1, . . . , ?xn �→ on} ∈ �Q�E+can
T ,A∪Ac , and sameAs(oj , o

′
j) ∈ (As)∗, for

j ∈ J ⊆ {1, . . . , n}, then

{?xj �→ oj | j 	∈ J} ∪ {?xj �→ o′
j | j ∈ J} ∈ �Q�E+sameAs

T ,A∪As .

Example 2. Referring to Example 1, a possible set Ac of canonical IRI assertions
(satisfying Assumption 1) is:

{ (:Wellbore/1, canIriOf, :NationalWellbore/1/3-1),
(:Wellbore/1, canIriOf, :CorporateWellbore/NO 1/3-1),
(:Wellbore/2, canIriOf, :NationalWellbore/2/4-2),
(:Wellbore/2, canIriOf, :CorporateWellbore/NO 2/4-2) }

Efficient Ontology-Based Data Integration with Canonical IRIs 705

An example of a set As such that Ac is compliant with As is:

{ (:NationalWellbore/1, sameAs, :CorporateWellbore/1),
(:NationalWellbore/2, sameAs, :CorporateWellbore/2) }

Here we have chosen the canonical representative to always be of the (new)
form : Wellbore/{id}. This is a choice made by the mapping author, and the
canonical representative could also have been one of the existing IRIs. If we let
D be the database and M the mappings from Example 1, the query

Q = SELECT ?w , ?f , ?d WHERE ((?w , :inField, ?f), (?w , :drillingStarted, ?d))

has a non-empty answer set over the canonical graph cg(AM,D,Ac), including
the answer {?w �→ :Wellbore/1, ?f �→ EKOFISK, ?d �→ 06-07-1968}. In Sect. 5
we will see mapping assertions that populate this ABox.

4 Handling Canonical IRI Semantics by Query Rewriting

In this section, we develop a query rewriting algorithm for canonical IRI seman-
tics so that the canonical graph does not need to be materialized. This rewriting
algorithm is mostly of theoretical interest but not meant to be implemented,
since the structure of rewritten queries is too complex.

We recall that BGP queries under the simple entailment regime are mono-
tonic (in the input graph G): if s ∈ �Q�G then s ∈ �Q�G∪ΔG. However,
observe that BGP queries under canonical IRI semantics are non-monotonic:
for example let G = {(a, rdf:type, C)}, ΔG = {(ca, canIriOf, a)}, and Q =
(?x , rdf:type, C); then {?x �→ a} ∈ �Q�canG but {?x �→ a} /∈ �Q�canG∪ΔG. This
means that for some (and actually for every) BGPs Q, there is no union of
BGPs Q′ such that for all RDF graphs G, �Q�canG = �Q′�G. The reason is that
�Q�canG is always non-monotonic in G, while �Q′�G is always monotonic in G.
Thus we cannot rewrite a BGP under the canonical IRI semantics to a union
of BGPs under the standard SPARQL semantics and expect to obtain the same
answers. In the following, we show that query answering under the E+can entail-
ment regime can be reduced to query answering under the E entailment regime,
by using non-monotonic SPARQL construct like NOT EXISTS.

To define such a translation, we first introduce a subquery, denoted
qc[?xc, ?x], that returns canAc(?x) for ?xc. This is achieved by encoding the
two cases of Definition 1:

qc[?xc, ?x] = SELECT ?xc, ?x WHERE ((?xc, canIriOf, ?x) UNION
(SELECT ?x AS ?xc, ?x WHERE ((?x , ?p1 , ?o) UNION (?s, ?p2 , ?x))
FILTER NOT EXISTS (?y , canIriOf, ?x)))

Lemma 1. Let A and Ac be as above and a an individual occurring in A. Then

{?xc �→ ca, ?x �→ a} ∈ �qc[?xc, ?x]�A∪Ac iff ca = canAc(a).

706 G. Xiao et al.

Definition 3. The canonical-iri rewriting ψ(Q) of a SPARQL query Q is
obtained from Q by replacing each triple pattern t with the sub-query ψ(t)
obtained from t as follows:

(1) for each variable ?x , introduce a fresh variable ?xc,
(2) for each occurrence of a variable ?x , introduce a fresh variable ?xo, change

?x to ?xo, and join with qc[?xc , ?xo], and
(3) for each variable ?x , add a projection ?xc AS ?x .

Example 3. Consider Example 1 and the query
Q=SELECT ?w , ?f , ?d WHERE ((?w , :inField, ?f), (?w , :drillingStarted, ?d)).
Then
ψ(Q) = SELECT ?w , ?f , ?d WHERE (

(SELECT ?wc1 AS ?w , ?fc AS ?f WHERE
((?wo1 , :inField, ?fo), qc[?wc1 , ?wo1], qc[?fc, ?fo])),

(SELECT ?wc2 AS ?w , ?dc AS ?d WHERE
((?wo2 , :drillingStarted, ?d), qc[?wc2 , ?wo2], qc[?dc, ?do])))

We note that Step 2 in Definition 3 is necessary to deal with each occurrence
of a variable separately, as shown in the following example:

Example 4. Let A = {(a, P, b)}, Ac = {(c, canIriOf, a), (c, canIriOf, b)}, and
B = (?x , P, ?x) a BGP. It is easy to see that the following query returns the
expected answers:

ψ(B) = SELECT ?xc AS ?x WHERE ((?x ′, P, ?x ′′), qc[?xc, ?x ′], qc[?xc, ?x ′′]).

Theorem 2. For any E, T , A, Ac, and Q, �Q�E+can
T ,A∪Ac = �ψ(Q)�E

T ,A∪Ac .

We observe that although the size of the rewritten query is linear in the
size of the original one, the approach is impractical. Intuitively, the number of
variables in the NOT EXISTS clauses and in the inner UNION clauses is linear
in the number of variables in the original query, and a (naive) query execution
engine would need to enumerate over all individuals in the ABox for each such
variable. Hence, the query execution time would essentially grow exponentially
in the number of variables in the query.

5 Handling Canonical IRI Statements in OBDA

We now propose a practical approach to supporting canonical IRI semantics for
ontology-based integration of cross-linked datasets. We assume that the mapping
set M may include a subset Mc consisting of all mapping assertions populating
canIriOf triples.

Efficient Ontology-Based Data Integration with Canonical IRIs 707

Fig. 1. Table and mappings for Example 5

Example 5. We extend the OBDA scenario from Example 1 with mappings for
canIriOf into tables in a database central, both shown in Fig. 1. The canonical
IRI mapping assertions relate wellbores in databases national and corporate
by employing an existing aliasing table in database central. By materializing
these mappings and the database, we obtain the assertions in Example 2. Mas-
ter tables like central are available in the Statoil use case, and are typical in
corporate scenarios.

The canonical IRI mappings do not depend on the existence of such master
tables, as arbitrary SQL queries in the source part of mappings can be used.
However, regarding both maintainability and performance, our experience is that
materializing the resolution of equality into a master table is a better choice.

In an OBDA setting, we propose a practical method based on compiling the
consequences of canonical IRI semantics into mappings. This method is inspired
by the mapping saturation algorithm used for classical OBDA [20,26].

In order to make sure that the RDF graph constructed from the mappings
satisfies Assumption 1, we state a stronger assumption on the mappings:

Assumption 2. For each IRI template iri , there is at most one mapping asser-
tion of the form: iric(a) canIriOf iri(b) ← sql(a, b).

Lemma 2. If Mc is a set of mapping assertions satisfying Assumption 2, then
AMc,D satisfies Assumption 1 for every database instance D.

Now we are ready to present the mapping rewriting algorithm. Intuitively, it
replaces all the individuals and IRI-templates in the mapping by their canonical
representation.

Definition 4. Let M=M′ ∪ Mc be a set of mapping assertions. The canonical-
iri rewriting cm(M′,Mc) of M is obtained by processing each m ∈ M′ as
follows:

– for each IRI template iri(a) occurring in m, if Mc contains a mapping

iric(b0) canIriOf iri(b1) ← sql(b0, b1)

then we replace iri(a) in the target of m by iric(b0) and join the source query
with sql(b0, b1),a = b1.

– for each occurrence of an IRI o, if o = iri(a) for some IRI template iri , then
we process it as in the IRI template case.

708 G. Xiao et al.

Example 6. Let M′ be the mappings in Example 1 and Mc the mappings in
Example 5. Then cm(M′,Mc) obtained according to Definition 4 is as follows:

:Wellbore/{id} :inField {wlbField} ; :purpose {opPurp} .

← SELECT wlbFld, opPurp, id FROM national.wellbore, central.aliasTable

WHERE name = nationalName

:Wellbore/{id} :drillingStarted {driStDt} ; :purpose {reason} .

← SELECT driStDt, reason, id FROM corporate.drillingops, central.aliasTable

WHERE name = corporateName

It is easy to see that the algorithm described in Definition 4 has the same
effect as applying cg to the RDF graph:

Lemma 3. Let M = M′ ∪ Mc be a set of mapping assertions, and D a database
instance. Then cg(AM′,D,AMc,D) = Acm(M′,Mc),D.

It follows that the mapping rewriting algorithm is sound and complete.

Theorem 3. Let E be an entailment regime, P = (T ,M,S) an OBDA speci-
fication where M = M′ ∪ Mc, (P,D) an OBDA instance, and Q a SPARQL
query. Then �Q�E+can

T ,AM,D
= �Q�E

T ,Acm(M′,Mc),D
.

This theorem shows that the support for canonical IRI semantics in OBDA
can be implemented by simply adding a canonical-iri rewriting step into the
existing workflow during the startup of an OBDA system.

The canonical IRI approach shown above shifts effort from the rewriting to
the mapping construction. That is, compared with the approach using sameAs
triples, more information must be encoded in the mappings. Specifically, one
must encode transitivity, and choose a representative for each equivalence class.
An important question is therefore if this is applicable in practical scenarios. Our
experience from the Statoil use case is that one can exploit existing master tables
correlating the names used for objects in different databases. The mappings for
canonical IRIs are simple mappings into these tables.

6 Implementation and Experiments

The canonical IRI approach described above has been implemented in Ontop
[2], which now supports both sameAs and canonical IRI semantics. Observe that
Ontop does not perform SQL federation, therefore it usually relies on systems
such as Teiid6 or Exareme [7] to integrate multiple databases. These systems
act as mediators and expose to Ontop a set of tables coming from the differ-
ent databases. In particular, Ontop has been tested with Exareme intensively.
Exareme was initially developed as an engine for complex dataflow processing
on elastic clouds [19], and was subsequently enriched with data federation capa-
bilities. As a result, the Exareme SQL federation engine is able to decompose
complex relational queries, use common sub-expression identification techniques
6 http://teiid.jboss.org.

http://teiid.jboss.org

Efficient Ontology-Based Data Integration with Canonical IRIs 709

in order to save processing costs (e.g., to process only once identical query frag-
ments coming from different subqueries of a union query), and decide which
query fragment should be sent to each external database. Exareme then pro-
cesses intermediate results coming from different databases in parallel in order
to produce the final results.

We now present two sets of experiments evaluating the performance of queries
over crossed-linked datasets. One experiment was conducted on a production
environment of databases in Statoil, based on queries from geoscientists at the
company. Since all the data sources are on production servers with confidential
data, the load changes, and the OBDA setting is too complex to isolate different
features of this approach, we also created a controlled OBDA environment in
our own server to study our technique.

6.1 Real-World Experiments

We integrated 7 data sources (relational databases) used in Statoil, extending
an existing ontology and the set of mappings, and creating the tables necessary
for sameAs and canIriOf. The queries and ontology are published in [15] and a
description of the corporate use case is given in [18]. One of the data sources is
the slegge database, which is also described in [15] together with the mappings
toward this database.

The experiments in Statoil were run with a catalogue of 76 SPARQL queries
constructed from information needs written down by geologists and geoscientists
in the company. The domain of the queries is that of subsurface exploration,
with a focus on wellbore information. The most complex query had 23 triple
patterns, using object and data properties coming from 5 data sources. The
queries were executed with a 20 min timeout, both with sameAs approach and
with the canonical IRI approach.

The Ontop rewriting engine and Exareme SQL federation engine all run on
virtual machines deployed on the company intranet, as the data cannot be moved
out. Ontop ran on a single machine, while the Exareme SQL federation ran on
8 other machines. The oracle databases are version 10g, and run on separate
machines.7

We realize that this setup does not comply with the normal clean setup of a
database experiment. However, the complexity (7 datasources) and realism (real
questions and production databases) of the setup means the results have great
value, although their precision is sub-optimal. Compare this with biology, where
the in vivo experiments on live creatures, dealing with the full complexity of the
organisms, may lead to results that cannot be seen in the in vitro experiments,
and therefore are considered superior.

The total query execution times, for both the sameAs and canonical IRI
approaches are shown in Fig. 2. The improvement from sameAs to canonical IRI

7 Typical machine: HP ProLiant Server, 24 Intel Xeon CPUs (X560@2.67 GHz),
283 GB RAM.

710 G. Xiao et al.

Queries ordered by execution time with sameas

To
ta

l e
xe

cu
tio

n
tim

e
(m

in
ut

es
) −

 li
ne

ar
 s

ca
le

1
5

10
15

20

sameAs
Canonical IRI

timeout

sameAs Canonical IRI
Total queries 76 76
Timeouts 31 11
Min exec. time 12s 0.50s
Mean exec. time 11m 4.3m
Median exec. time 11m 0.77m

Fig. 2. Execution time and statistics for the queries in the federated setting at Statoil

is drastic. With the canonical IRI approach all queries, with three exceptions, are
faster, there are fewer timeouts, and the majority of the queries execute within
3 min.

6.2 Controlled Experiments Using Wisconsin Benchmark

We also evaluated the canonical IRI approach in a more controlled setting. All
files needed to reproduce this example are provided online8. This example is a
simulated federated scenario with a single database consisting of 4 Wisconsin
tables [9], representing different datasets, and 6 linking tables, see [5]. We reused
the Wisconsin Benchmark tables, each of them containing 100M rows, and we
created 3 new canonical IRI tables out of existing linking tables. We added the
columns for provenance and canonical id, so that the mappings can generate
canIriOf relations out of these 3 tables.

To evaluate the overhead of equality reasoning when answering SPARQL
queries, we considered the following three parameters: (1) number of linked
datasets (2–3); (2) selectivity of the query (returning 0.001%, 0.01%, 0.1% of
the dataset); (3) number of equal objects between datasets (10%, 30%, 60%). In
total, we ran 1332 queries, grouped in 9 groups: (G1) no properties, (G2) 1 data
property and 0 object properties, (G3) 0 data properties and 1 object property,
. . . , (G9) 2 data properties and 2 object properties.

The results confirm an improvement, reducing the high cost of execution
of the queries. In the previous setting based on sameAs, with the 6 linking
tables and 2 linked-datasets scenario, with 120M equal objects (60%), in the
worst case, most of the queries ran in around 3 min, while with the new canon-
ical IRI approach, all queries can be executed in around 1 min. The query that
performed worst in the previous setting (4 joins, 2 data properties, 2 object
properties) returned 480 000 results and took around 6 min. In the new setting,
for the same query, the number of results reduced to 60 000, avoiding duplicates.
The resulting SQL query is simpler, and can be executed in only 50 s. In the

8 https://github.com/ontop/ontop-examples/tree/master/eswc-2018-canonical-iri.

https://github.com/ontop/ontop-examples/tree/master/eswc-2018-canonical-iri

Efficient Ontology-Based Data Integration with Canonical IRIs 711

Fig. 3. Execution times of most expensive queries with 2 datasets

Fig. 4. Execution times of most expensive queries with 3 datasets

3 linked-datasets scenario, the improvement is even more visible: the slowest
executions took around 9 min in the previous setting, and less than 1.5 min in
the new setting. The worst query in the previous setting took around 1.5 h, and
returned 1 620 000 results. This query can now be executed in 53 s, and the num-
ber of results returned is significantly reduced to 60 000. The number of linked
datasets is the variable that has most impact on query performance, but it is less
influential in the canonical IRI setting. Another observation is that compared to
the sameAs setting, the optimization for canonical IRI semantics is done only in
the off-line phase and additional startup time is negligible. In fact, the startup
time is only around 5 s.

In Figs. 3 and 4, we visualize the comparison of the execution times in these
two settings. For each group, we show the execution times of the most expensive
queries. The results confirm that under the canonical IRI semantics, we are able
to run the queries significantly faster and the query answering times are more
uniform.

7 Conclusions

This work is a natural continuation of [5], which was the first work to study the
issue of equivalence of IRIs in OBDI and used the standard sameAs construct
to model equivalence between entities. Our proposal based on canonical IRIs

712 G. Xiao et al.

improves on such an approach in terms of efficiency, and avoids the drawback of
redundant answers.

Another important aspect in OBDI is how to efficiently evaluate the rewrit-
ten SQL queries over federated databases. Several federated database systems
and prototypes have been presented in the literature. Early approaches include
TSIMMIS [6], Garlic [13], and Tukwila [16]. Unpredictability regarding process-
ing is the main issue that these systems have to cope with, using techniques
such as adaptive query planning and query caching. BigDAWG [10] is a more
recent approach that lays emphasis on the “one size does not fit all” principle,
by trying to take advantage of specialized engines used as endpoints in order to
efficiently process different types of data. How to natively deal with federated
query evaluation in the setting of OBDI is subject of further work.

Acknowledgement. This research is supported by the project OBATS, funded by
Free University of Bozen-Bolzano, by the Euregio IPN12 KAOS, funded by the
“European Region Tyrol-South Tyrol-Trentino” (EGTC) under the first call for basic
research projects, and by the Sirius Centre funded by the Norwegian Research Council.

References

1. Brüggemann, S., Bereta, K., Xiao, G., Koubarakis, M.: Ontology-based data
access for maritime security. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini,
C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 741–757.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3 45

2. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational
databases. Semant. Web J. 8(3), 471–487 (2017)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.,
Ruzzi, M.: Data integration through DL−LiteA ontologies. In: Schewe, K.-D.,
Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp. 26–47. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88594-8 2

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

5. Calvanese, D., Giese, M., Hovland, D., Rezk, M.: Ontology-based integration of
cross-linked datasets. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M.,
d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K.,
Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 199–216. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25007-6 12

6. Chawathe, S.S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou,
Y., Ullman, J.D., Widom, J.: The TSIMMIS project: integration of heterogeneous
information sources. In: Proceedings of the 10th Meeting of the International Pro-
ceedings Society of Japan (IPSJ 1994), pp. 7–18 (1994)

7. Chronis, Y., Foufoulas, Y., Nikolopoulos, V., Papadopoulos, A., Stamatogiannakis,
L., Svingos, C., Ioannidis, Y.E.: A relational approach to complex dataflows. In:
Proceedings of the EDBT/ICDT Workshops. CEUR, vol. 1558. ceur-ws.org (2016)

8. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language.
W3C Recommendation, W3C, September 2012. http://www.w3.org/TR/r2rml/

https://doi.org/10.1007/978-3-319-34129-3_45
https://doi.org/10.1007/978-3-540-88594-8_2
https://doi.org/10.1007/978-3-319-25007-6_12
http://www.w3.org/TR/r2rml/

Efficient Ontology-Based Data Integration with Canonical IRIs 713

9. DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: Gray, J.
(ed.) The Benchmark Handbook. Morgan Kaufmann, Burlington (1992)

10. Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe, B., Kepner, J.,
Madden, S., Maier, D., Mattson, T., Zdonik, S.: The BigDAWG polystore system.
SIGMOD Rec. 44(2), 11–16 (2015)

11. Giese, M., Soylu, A., Vega-Gorgojo, G., Waaler, A., Haase, P., Jiménez-Ruiz, E.,
Lanti, D., Rezk, M., Xiao, G., Özçep, Ö.L., Rosati, R.: Optique: zooming in on big
data. IEEE Comput. 48(3), 60–67 (2015)

12. Glimm, B., Ogbuji, C.: SPARQL 1.1 entailment regimes. W3C Recommendation,
W3C, March 2013. http://www.w3.org/TR/sparql11-entailment/

13. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing queries across
diverse data sources. In: Proceedings of the VLDB 1997, pp. 276–285 (1997)

14. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation,
W3C, March 2013. http://www.w3.org/TR/sparql11-query

15. Hovland, D., Kontchakov, R., Skjæveland, M.G., Waaler, A., Zakharyaschev, M.:
Ontology-based data access to slegge. In: d’Amato, C., Fernandez, M., Tamma,
V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC
2017. LNCS, vol. 10588, pp. 120–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68204-4 12

16. Ives, Z.G., Florescu, D., Friedman, M., Levy, A., Weld, D.S.: An adaptive query
execution system for data integration. SIGMOD Rec. 28(2), 299–310 (1999)

17. Kaminski, M., Kostylev, E.V., Cuenca Grau, B.: Query nesting, assignment, and
aggregation in SPARQL 1.1. ACM Trans. Database Syst. 42(3), 17:1–17:46 (2017)

18. Kharlamov, E., Hovland, D., Skjæveland, M.G., Bilidas, D., Jiménez-Ruiz, E.,
Xiao, G., Soylu, A., Lanti, D., Rezk, M., Zheleznyakov, D., Giese, M., Lie, H.,
Ioannidis, Y.E., Kotidis, Y., Koubarakis, M., Waaler, A.: Ontology based data
access in Statoil. J. Web Semant. 44, 3–36 (2017)

19. Kllapi, H., Sitaridi, E., Tsangaris, M.M., Ioannidis, Y.: Schedule optimization for
data processing flows on the cloud. In: Proceeding ACM SIGMOD 2011, pp. 289–
300 (2011)

20. Kontchakov, R., Rezk, M., Rodŕıguez-Muro, M., Xiao, G., Zakharyaschev, M.:
Answering SPARQL queries over databases under OWL 2 QL entailment regime.
In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 552–567. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 35

21. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language Profiles, 2nd edn. W3C Recommendation, W3C, December
2012

22. Motik, B., Nenov, Y., Piro, R.E.F., Horrocks, I.: Handling owl:sameAs via rewrit-
ing. In: Proceedings of AAAI 2015, pp. 231–237. AAAI Press (2015)

23. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)

24. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

25. Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
J. Web Semant. 33, 141–169 (2015)

26. Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting or materializa-
tion? In practice, both! In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp.
535–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 34

27. W3C OWL Working Group. OWL 2 Web Ontology Language document overview,
2nd edn. W3C Recommendation, W3C, December 2012

http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-query
https://doi.org/10.1007/978-3-319-68204-4_12
https://doi.org/10.1007/978-3-319-68204-4_12
https://doi.org/10.1007/978-3-319-11964-9_35
https://doi.org/10.1007/978-3-319-11964-9_34

	Efficient Ontology-Based Data Integration with Canonical IRIs
	1 Introduction
	2 Preliminaries
	2.1 RDF and SPARQL
	2.2 SPARQL Entailment Regimes
	2.3 SPARQL Entailment Regimes for sameAs
	2.4 Ontology-Based Data Access and Integration

	3 Canonical IRI Semantics
	4 Handling Canonical IRI Semantics by Query Rewriting
	5 Handling Canonical IRI Statements in OBDA
	6 Implementation and Experiments
	6.1 Real-World Experiments
	6.2 Controlled Experiments Using Wisconsin Benchmark

	7 Conclusions
	References

