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Abstract. In Virtual Knowledge Graphs (VKGs), access to a relational data
source is provided through an ontology that is linked to the data source via declar-
ative mappings. While the problem of query answering in VKGs has been studied
extensively over the past years, much less attention has been devoted to the prob-
lem of instance-level updates over the VKG, realized by updating the underlying
data source. Due to the form of VKG mappings, translating VKG updates into a
source updates might lead to side-effects in the VKG, i.e., unwanted insertions
or deletions. In this paper, we build on a recent proposal for translating VKG up-
dates into source updates, and extend it by introducing the notion of compensa-
tion, which are additional updates that aim at reverting side-effects. We provide
a novel algorithm relying on multiple levels of compensation and show that it
computes source updates with minimal side-effects in the VKG.

1 Introduction

The Virtual Knowledge Graph (VKG) approach (formerly known as ontology-based
data Access – OBDA) [16,5,19,20] is a well-established paradigm for data access and
integration, which has been investigated extensively, especially in the context where
the data sources to be accessed or integrated are relational. In VKGs, an ontology en-
capsulates essential domain knowledge and is linked to the data source via declarative
mappings, exposing to users a virtual knowledge graph. Users can issue high-level on-
tological queries over such VKG, and these are automatically translated, using both
the ontology axioms and the mappings, into equivalent low-level queries (like SQL in
a relational setting) that the underlying database engine can execute. The ontology is
usually specified in a lightweight language, and in this paper we consider as ontology
language DL-LiteR, which can capture conceptual modeling formalisms and enjoys ef-
ficient reasoning. Most importantly, DL-LiteR based VKG systems enjoy first-order
rewritability, i.e., any (union of) conjunctive queries issued over the ontology can be
rewritten considering both the ontology’s axioms and the declarative mappings into a
SQL query that, when executed over the underlying relational data sources, computes
the entailed answers [6,5].

The primary reasoning service offered by VKG systems is query answering, which
is carried out through query rewriting and query unfolding [16,5]. However, little atten-
tion has been paid to the issue of updating VKGs, which allows one to take advantage



2 R. E. Wandji and D. Calvanese

of the knowledge graph’s capacity to handle incomplete information and provide sup-
port for update operations over the source data through the lens of the ontology. More
specifically, we are interested in instance-level (or ABox) updates in VKGs, where up-
dates are applied over the extensional level of the system (the VKG), and need to be
translated into equivalent updates over the source. Such a feature will allow content
owners to fully manage all information at the level of the ontology, and hence detach
from low-level details of the underlying source structure and organization.

Several challenges need to be taken into account when updating a VKG through
the ontology. One has to deal first with potential inconsistencies between the ontology
and the provided update, and second, with the translation of the update to the under-
lying data source using the schema mappings. The first problem has been studied in
the literature in the context of knowledge base update and belief revision [18,13,12,9],
which also consider ontologies specified in DLs [22]. The second one is connected to
the well-known and well-studied view update problem [3,8,11]. Hence, the typical steps
in the VKG update framework are: (1) the user poses an instance-level update request
UA over the knowledge base (KB) K = ⟨T ,M(D)⟩ of a VKG instance. (2) The in-
stance level (i.e., virtual ABox)M(D) of K is updated and possibly repaired w.r.t. the
ontology T (according to a chosen repair semantics, see, e.g., [22]), which produces
the actual update U ′

A to be executed over K. (3) A process called translation takes
U ′
A and K to produce a set UD = {U1

D, . . . ,Un
D} of possible updates over the source

database. (4) Finally, a translation U i
D in UD is chosen, for which the knowledge base

K′ = ⟨T ,M(Di)⟩ is as close as possible to K, where Di is the source database ob-
tained by applying U i

D to D.
Considering that there is already a vast literature on ontology update and corre-

sponding semantics to handle possible inconsistencies, in this paper, we abstract from
repair at the ontology level (Step 2), and concentrate instead on the translation of the
ABox update into source updates (Step 3), and on the selection of the actual translation
to adopt (Step 4). Therefore, we assume that the actual update that gets executed over
the VKG instance already includes the update operations realizing the repair (hence,
coincides with U ′

A). Then, the distance between K′ and K is the side-effect that rep-
resents insertions or deletions in the VKG that are due to the way the mapping M
propagates the source update to the ontology level. Recently, two methods have been
proposed to translate ABox deletions and insertions into source deletions and insertions,
respectively [17]. However, the assumption of considering translations that are of the
same type as the corresponding ABox updates might lead to side-effects that are not
minimal.

Example 1. As a motivating example, consider a data source with two relations:
RS (res, sup) that relates researchers to their supervisor(s), and SG(sup, gr) that re-
lates supervisors to the grants they have access to. The information in this source has to
be integrated into a VKG whose ontology contains a role access , relating researchers
to grants, and a class supervises relating supervisors with their students. We consider a
mappingM between this source schema and the ontology consisting of the following
assertions:

∃y.RS (x, y) ∧ SG(y, z) ⇝ access(x, z);
RS (x, y) ⇝ supervises(y, x).
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Let us assume that we have a database with a single tuple D = {SG(sup1, grant1)},
and an update that consists of inserting the ABox fact supervises(sup1, john). Based on
the mappingM, the only translation of such update is the insertion of RS (john, sup1)
in D, which will lead to an extra insertion of access(john, grant1). However, the trans-
lation that consists of updating the database by inserting RS (john, sup1) and deleting
SG(sup1, grant1), is an exact translation in D of the ABox update. We observe that
combining both insertions and deletions in the source data has lead to an exact trans-
lation of a given ABox insertion. Notice also that deleting a database fact concerning
grants to reflect an ABox insertion concerning supervision might seem counterintuitive.
However, in the situation represented by our (admittedly very simple) example, where
the only mapping assertions are the ones provided above, the specified database update,
consisting of both a deletion of a tuple and an insertion of a tuple, exactly captures the
intention of the user to only insert the ABox fact supervises(sup1, john). ◁

In this paper, we propose to translate each ABox update operation (consisting of in-
sertions or deletions only) in general through a combination of both database insertions
and deletions. The additional update operations are meant to compensate possible side-
effects caused by database updates, and we formalize the notion of minimal side-effect
in our enriched setting. We then propose methods to recursively compute maximal com-
pensations so as to find translations with minimal side-effects, and in particular transla-
tions that are side-effect-free (exact translation) whenever an exact translation exists.

The rest of the paper is structured as follows. In Section 2, we provide the necessary
technical preliminaries. In Section 3 we provide an algorithm for minimal (both in the
source and the ABox) direct translations of ABox updates. In Section 4 we introduce
the notion of maximal compensation, and in Section 5 we use it to compute updates
with minimal side-effects. Finally, Section 6 concludes the paper.

2 Preliminaries

We now introduce the notions about description logics (DLs), databases, and VKGs
necessary to understand the technical development in the paper, assuming familiarity
with the syntax and semantics of first-order logic (FOL). In general, when convenient,
we will view a tuple of elements (constants, variables, etc.) as equivalent to the set of
such elements. E.g., if c is a tuple of constants and D is a set, we might write c ⊆ D
to mean that every element of c is in D. We consider countably infinite and pairwise
disjoint alphabets NC of concept names, NP of role names, and NI of constants.

Description Logic Knowledge Bases. A DL knowledge base (KB)K = ⟨T ,A⟩ consists
of a TBox T (also called ontology), capturing intensional information, and an ABox
A, providing extensional information. We consider DLs of the DL-Lite family [6,16],
and specifically DL-LiteR, which is the formal counterpart of the tractable OWL 2 QL
profile of the Web Ontology Language (OWL 2) [15]. A DL-LiteR TBox is a finite set of
assertions of the form B1 ⊑ B2 (concept inclusion), B1 ⊑ ¬B2 (concept disjointness),
R1 ⊑ R2 (role inclusion), or R1 ⊑ ¬R2 (role disjointness). Here, R (possibly sub-
scripted) denotes an atomic role P ∈ NP or its inverse P−, while B (possibly sub-
scripted) denotes a basic concept, which is either an atomic concept A ∈ NC , or a
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concept of the form ∃R. For a TBox T , we use T + to denote the set of concept and role
inclusions in T , and T − to denote the set of concept and role disjointness assertions in
T , hence T = T + ∪ T −. A DL-LiteR ABox is a finite set of assertions of the form
A(c) or P (c, c′), with A ∈ NC , P ∈ NP , and c, c′ ∈ NI .

The semantics of a DL KB is given, as usual, in terms of first-order interpreta-
tions [2]. We make use of the standard notions of model, consistency, and logical im-
plication.

Instance Level Updates in DL KBs. We consider updates to a DL KB ⟨T ,A⟩ consisting
of a pair UA = ⟨U−

A ,U+
A ⟩, where U−

A and U+
A are sets of ABox facts, respectively

to be deleted and inserted from the KB, such that U−
A ⊆ A and U+

A ∩ A = ∅. In
this paper, we are concerned with how VKG mappings affect updates, not how the
TBox affects the consistency of the updates. Therefore, we follow [17] and consider that
inserting U+

A amounts to inserting clT (U+
A ), which represents the closure of U+

A w.r.t.
T , that is, the set of ABox assertions over individuals in U+

A that are logically implied
by ⟨T ,U+

A ⟩. Similarly, deleting U−
A amounts to deleting invclT (U−

A ), which represent
the inverse closure of U−

A [22]. Both clT (U+
A ) and invclT (U−

A ) can be computed in
polynomial time in the size of U+

A , U−
A , and T [6,22]. We also assume that the update

does not request to both insert and delete the same ABox fact, and since we prioritize
data consistency, this means that clT (U+

A ) ∩ invclT (U−
A ) = ∅.

Relational Databases and Queries. A database schema is a finite set S =
{r1/n1, . . . , rk/nk} of relation schemas, where each ri is a predicate name of arity
ni. A database instance D over S maps each predicate r/n in S to an n-ary relation,
denoted rD. An atom for r/n has the form r(t1, . . . , tn), or simply r(t), where each tj
is a term, which can be a constant from NI or a variable. If all tj’s are constants, the
atom is called ground, or simply a tuple.

A FOL formula over a relational schema S is constructed over the relation names
in S, the equality predicate =, and the constants in NI . A formula φ with free variables
x is denoted φ(x), and is also called a (relational) query with answer variables x.
The formula is closed when x is empty. The closed formula obtained from φ(x) by
replacing the variables in x by the corresponding constants in c is denoted φ(c).

A conjunctive query (CQ) Q(x) over the schema S is a query defined by a formula
of the form ∃y.φ(x,y), where φ = r1(t1)∧· · ·∧rn(tn) is a conjunction of atomic for-
mulae whose variables belong to x∪y. The variables y are called existential variables.
We also express such CQ as a logical rule of the form Q(x) ← r1(t1), . . . , rn(tn),
where Q(x) is called the head and r1(t1), . . . , rn(tn) the body of the rule. A union of
conjunctive queries (UCQ) is a finite disjunction of CQs with the same answer vari-
ables, also represented as a finite set of rules with the same head.

2.1 Virtual Knowledge Graphs

We recall the main elements of the VKG framework, also known as Ontology-based
Data Access (OBDA) [16,19], where declarative mappings are used to connect a TBox
T to a relational data source with schema S.
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A VKG mapping M from S to T consists of a set of mapping assertions of the
form Q(x) ⇝ E(t(x)), where Q(x) is a CQ (called source query) over S of arity
n > 0, and E(t(x)) is an atom (called target atom) over T with variables in x. Such
atom has the form A(t1(x1)), with A ∈ NC , or P (t1(x1), t2(x2)), with P ∈ NP ,
where the terms t1(x1) and t2(x2) denote so-called IRI-templates, obtained by apply-
ing (skolem) functions to the answer variables of the source query. Such IRI-templates3

are used to generate strings representing object IRIs (Internationalized Resource Iden-
tifiers) or (RDF) literals, starting from database values retrieved by the source query in
the mapping. In practice, it is desired that each IRI can be constructed by at most one
IRI template, and we make such an assumption here; formally, the union of all the IRI
templates is an injective function, i.e., there is a unique way to reconstruct from a string
s, the actual IRI-template t(x) and the constituent values v used to generate s = t(v).
Moreover we assume that for each IRI-template f(x1, . . . , xn), we have also n inverse
templates4 f1, . . . , fn such that f i(f(v1, . . . , vn)) = vi, for each i ∈ [1..n] and for all
possible values v1, . . . , vn instantiating the variables x1, . . . , xn.

A VKG mappingM from S to T , which we also call a source-to-ontology mapping
(so-mapping), maps a database instance D of S to the (unique) ABox

M(D) = {as(E(t(x)),x 7→ o) | (x 7→ o) ∈ Q(x)D, (Q(x)⇝ E(t(x))) ∈M}

where x 7→ o represents a solution mapping from the evaluation Q(x)D of the source
query Q(x) over the database instance D, and the term as(E(t(x)),x 7→ o)) denotes
the ABox assertion obtained by applying the solution mapping x 7→ o to E(t(x)).
This application typically involves replacing x with o in the templates in t(x) (us-
ing appropriate string concatenation operations). It is also convenient to consider a so-
mappingM as the set of pairs {(D,M(D)) | D is a database instance of S}, so that
(D,A) ∈ M is an alternative notation for A = M(D). Notice that, since a concept
name A (or role name P ) might appear as target atom of multiple mapping assertions,
the source query that generates the instances of A (or P ) is in general a UCQ.

We are now ready to formalize the VKG setting. A VKG specification is a tuple
P = ⟨T ,M,S⟩, where T is a DL-LiteR TBox (typically expressed in OWL 2 QL), S
is a data source schema, andM is a set of so-mappings from S to T . A VKG instance
is a pair ⟨P, D⟩ where D is a source instance of S. Its semantics is defined in terms of
FO interpretations over T . An interpretation I is a model of ⟨P, D⟩ if it is a model of
the DL KB ⟨T ,M(D)⟩.

We recall also the notion of mapping saturation [14], which allows one to compile
into the mapping M the inclusion assertions of T that do not involve an existential
quantification ∃R in the right-hand side. Specifically, to compute the mapping satura-
tion satT (M) ofM w.r.t. T , we start fromM, and repeatedly add implied mapping
assertions. E.g., if Q(x) ⇝ A1(t(x)) is in satT (M) and A1 ⊑ A2 is in T , we add to
satT (M) also Q(x)⇝ A2(t(x)); similarly for inclusions ∃R ⊑ A and R1 ⊑ R2.

As shown in [17], when dealing with ABox updates and their side-effects in the
VKG setting, we can assume w.l.o.g. that ⟨P, D⟩ is a VKG instance, where P =
⟨T −,M,S⟩ is a VKG specification whose mapping M has been saturated w.r.t. an

3 IRI-templates correspond to the R2RML string templates.
4 These correspond to the rr:inverseExpression of R2RML.



6 R. E. Wandji and D. Calvanese

original TBox T , and where T − consists of the disjointness assertions of T . In the
following, we make such an assumption.

2.2 Lineage and Schema Mapping Recovery

We adopt some definitions by [17]. For a given assertion in the ABox, its lineage (also
called provenance) consists of the minimal set of source tuples that generate the asser-
tion through the VKG mapping. Formally:

Definition 1 (Lineage). Let P = ⟨T ,M,S⟩ be a VKG specification, ⟨P, D⟩ a VKG
instance, and f ∈ M(D) an ABox assertion. A subset B ⊆ D is a lineage branch
of f if f ∈ M(B), and for every B′ ⊊ B, f /∈ M(B′). The lineage of f , denoted
lineage(f,P, D), is the set of all lineage branches of f . ◁

For an so-mapping M, a reverse mapping describes a novel mapping now going
from T back to S, called ontology-to-source mapping (os-mapping). We consider such
a mapping M̂ as a set of pairs (A, D), withA an ABox for T and D a database instance
of S, called solution of A under M̂. Moreover, we define M̂(A) = {D | (A, D) ∈
M̂}. We are interested in os-mappings that maintain semantic consistency with the
relationship established byM, and which intuitively represent the inverse of such rela-
tionship, in line with the notion of inverse mapping for the relational setting [10].

Notice that an so-mappingM is a function, since it generates from a database in-
stance D a unique ABoxM(D). Instead, due to the non-injectiveness of so-mappings,
its reverse M̂ in general is not a function, but a relation that maps an ABox to a set of
database instances. In order to construct the reverse of an so-mappingM, we rely on
the notion of MR-os-mapping as introduced by [17], which is based on the maximum re-
covery for schema mappings introduced in the database exchange setting [1], but adapt
it in Section 3 to the more general case we consider here.

3 Update Translation in VKGs

In VKGs, the central challenge in dealing with ABox updates, lies in translating them
into appropriate source updates. In [17], two algorithms are proposed that respectively
handle translations of only ABox deletions and only ABox insertions. Also in the so-
lution proposed there, the fundamental assumption is made that ABox deletions are
translated into a set of source deletions only, and similarly for ABox insertions. As dis-
cussed in the introduction, such kinds of translations might not produce translations of
ABox updates with minimal side-effects.

In this paper, we overcome the limitations of the previous work and extend our
former translation framework along two directions: (i) We lift the restriction on the
form of ABox translation: A set of ABox deletions (or of ABox insertions) could now
be translated to a combination of both source deletions and source insertions, with the
aim of obtaining the minimum side-effects. (ii) We consider also update operations that
consist of a combination of deletions and insertions. (iii) We allow the use of different
IRI-templates for the same predicate in the targets of mappings.
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We now extend the notion of update translation in VKGs as introduced in [17].
Moreover, we introduce the notion of direct translation, which refers to translations that
are of the same nature as the original ABox update, i.e., ABox insertions translate to
source insertions, and ABox deletions translate to source deletions.

Definition 2 (Direct deletion translation). Let U−
A be a set of ABox deletions. A set

U−
D of source deletions is a direct translation of U−

A in J if U−
A ∩M(D \U−

D ) = ∅. We
say that U−

D is an exact direct translation of U−
A in J ifM(D \ U−

D ) =M(D) \ U−
A .◁

An exact direct translation of the ABox deletion U−
A ensures that requested deletions

are perfectly reflected in the final (virtual) ABox generated from the data source via
the mapping M. A non-exact translation may inadvertently delete additional ABox
facts not initially specified in U−

A . Following, we call the set of these facts that are
unintendedly deleted from the ABox a side-effect. We can proceed in a symmetric way
for ABox insertions.

Definition 3 (Direct insertion translation). Let U+
A be a set of ABox insertions. A

set U+
D of source insertions is a direct translation of U+

A in J if U+
A ⊆ M(U+

D) and
⟨T −,M(D∪U+

D)⟩ is consistent. U+
D is an exact direct translation of U+

A inJ ifM(D∪
U+
D) =M(D) ∪ U+

A . ◁

In the definition, we require that U+
A ⊆ M(U+

D) to ensure that the translation U+
D

alone is enough to generate U+
A throughM. However, notice that, by complying with

the minimal change principle, U+
D might contain tuples already present in D and there-

fore will result in fewer tuples inserted over D when U+
D is added to D.

Hence, an exact translation of the ABox insertion U+
A will insert only the requested

facts into the (virtual) ABox. In contrast, a non-exact translation could lead to the in-
sertion of additional facts beyond U+

A . The side-effect is the set of these facts that are
unintendedly inserted into the ABox. If the side-effect causes an inconsistency with the
disjointness assertions in T −, then the (non-exact) translation U+

D is ruled out to main-
tain data integrity in the VKG instance. Notice also that a (direct) insertion translation
might not exist, either because some facts in U+

A cannot be obtained via the mapping
(because the set of lineage branches is empty), or because the side-effects would neces-
sarily violate the disjointness assertions in T −.

To comply with the minimal change principle in update translation, it is essential
to ensure that a change in the ABox results in a minimal change in the source data.
Building on this principle, we propose extending the definition of translation for ABox
updates so as to ensure that the translation of ABox updates remains minimal in the
source data, characterized by the following definition.

Definition 4 (Minimal direct translation). Let U−
A be a set of ABox deletions. A di-

rect translation U−
D of U−

A in J is minimal if every proper subset of U−
D is not a transla-

tion of U−
A in J . Similarly, let U+

A be a set of ABox insertions. A direct translation U+
D

of U+
A in J is minimal if every proper subset of U+

D is not a translation of U+
A in J . ◁

Alg. 1 (MINTRANSDEL) extends the algorithm presented in [17] so that it returns
all minimal direct translations of a set of ABox deletions. It makes use of the func-
tion lineage(f,P, D), defined in [17], which computes the set of lineage branches in
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Algorithm 1: MINTRANSDEL (J ,U−
A )

input : A VKG instance J = ⟨P, D⟩. A set U−
A of ABox deletions.

output: A set of source direct translations of U−
A .

1 B = {B1, . . . , Bn} ←
⋃

f∈U−
A
lineage(f,P, D); // Compute lineage branches in D

2 S← {{t1, . . . , tn} | ti ∈ Bi, for i ∈ [1..n]};
3 U−

D ← {};
4 for each translation T ∈ S do
5 add ← true;
6 for each translation T ⋆ ∈ U−

D do
7 if T ⋆ ⊊ T or COMPARE−

J (T ⋆, T ) = ’<’ then add ← false;

8 else if T ⊊ T ⋆ or COMPARE−
J (T, T ⋆) = ’<’ then U−

D ← U−
D \ {T

⋆};
9 if add then U−

D ← U−
D ∪ {T}

10 return U−
D

Algorithm 2: FILTERBRANCHES (S)

input: A set S of branches, each of the form
⋃n

i=1{∃wi.φi(ai,wi)}.
output: A set B∗ of CQs, each representing a minimal update.

1 B← {
∧n

i=1 ∃wi.φi(ai,wi) |
⋃n

i=1{∃wi.φi(ai,wi)} ∈ S}
2 B∗ ← {}
3 for each branch B ∈ B do
4 add ← true;
5 for each branch B∗ ∈ B∗ do
6 if B ⊑ B∗ then add ← false;
7 else if B∗ ⊑ B then B∗ ← B∗ \ {B};
8 if add then B∗ ← B ∪ {B};
9 return B∗

database D for an ABox assertion f . It also exploits an abstract function COMPARE−
J

that compares two translations T1 and T2 of ABox deletions in terms of their side-effect
and returns ’<’, if T1 has less side-effect than T2 based on the considered metric.

Theorem 5. Let U−
A be a set of ABox deletions. Then MINTRANSDEL(J ,U−

A ) returns
every minimal source direct translation of U−

A in J .

For the minimal direct translation of ABox insertions, we make use of some notation
and definitions taken from [17], but adjust them to the more general setting adopted
here. First, we assume w.l.o.g. that mapping assertions are normalized in the following
sense: the head of a mapping assertion contains only variables of the form xi for i ∈ N,
no variable appears more than once, and the indexes i of variables xi increase from
left to right. Hence, in any n-ary tuple t(x) = (t1(x1), . . . , tn(xn)), where xi ⊆ x,
of IRI-templates appearing in the head of a mapping assertion, ti(xi) ̸= tj(xj) when
i ̸= j, and we define ut(x) as an n-tuple (u1, . . . , un) of pairwise distinct variables. We
then define Vt(x) = V 1 ∧ · · · ∧ V n, where each V i is obtained as follows: (a) if ti(xi)
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Algorithm 3: MINTRANSINS (J ,U+
A )

input: A VKG instance J = ⟨⟨T ,M,S⟩, D⟩.
A set U+

A of ABox insertions.
output: A set of source direct translations of U+

A .
1 Compute the MR-os-mapping M̂mr ofM;
2 Compute the insertion tree B of U+

A w.r.t. M̂mr ;
3 U+

D ← {};
4 for each branch B ∈ FILTERBRANCHES(B) of the form ∃w.φ(a,w) do
5 ∆w ← {b1, . . . , b|w|} ∪∆A ∪∆D , where ∆A and ∆D are the constants in U+

A

and D respectively, and each bi is a fresh value from NI not in ∆A ∪∆D;
6 for each assignment η(w) ⊆ ∆w do
7 T ← γ(φ(a, η(w)));
8 add ← true;
9 for each translation T ⋆ ∈ U+

D do
10 if (T ∗ \D) ⊊ (T \D) or COMPARE+

J (T ⋆, T ) = ’<’ then add ← false;

11 else if (T \D) ⊊ (T ∗ \D) or COMPARE+
J (T, T ⋆) = ’<’ then

U+
D ← U+

D \ {T
⋆};

12 if add then U+
D ← U+

D ∪ {T}

13 return U+
D

is a variable y in x, then V i is the equality y = ui, (b) otherwise, if ti(xi) is an IRI-
template f(y1, . . . , yk), where each yj is a variable in x, then V i is (y1=f1(ui))∧· · ·∧
(yk=fk(ui)), where each f j is the j-th inverse template of f . Finally, for a concept or
role F in the target of a mappingM, let IRIM(F ) = {t(x) | F (t(x)) is the target of
some mapping assertion inM}.

Definition 6 (MR-os-mapping). For a concept or role F in the target of M, Let
MF (t(x)) =

⋃k
ℓ=1{∃wℓ.φℓ(x,wℓ) ⇝ F (t(x)} be the set of all mapping

assertions of M with F (t(x)) in the target. Then, we define the so-mapping
M̂mr

F (t(x)) =
⋃k

ℓ=1{F (ut(x)) ⇝ ∃wℓ.φℓ(x,wℓ) ∧ Vt(x)}. Finally, we call M̂mr =⋃
F∈T

⋃
t(x)∈IRIM(F ) M̂mr

F (t(x)) the MR-os-mapping ofM. ◁

The insertion tree of U+
A is defined as the set of all insertion branches of U+

A , where
each insertion branch represents a possible rewriting of U+

A in the source schema. For
convenience, we also make use of γ, defined as γ(

∧n
i=1 ri(ai)) =

⋃n
i=1{ri(ai)}, to

transform a conjunction of facts into a set of tuples.
As an extension to the method proposed in [17], the insertion algorithm

MINTRANSINS (Alg. 3) consists of two stages. In the first stage, it first computes (at
Line 2) the insertion tree with respect to the MR-os-mapping M̂mr , and then filters out
redundant branches from the insertion tree using FILTERBRANCHES (Alg. 2). Since
each branch is a CQ, the latter algorithm removes a branch B if (as a CQ) it is contained
in another branch B∗. Indeed, if B ⊑ B∗, every atom of B∗ can be homomorphically
mapped to an atom of B [7], hence B∗ will result in fewer facts that need to be inserted
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in the database, if chosen instead of B as a branch for the insertion. Hence, branch B
can be removed. The second stage is analogous to the one of [17], but uses the branches
returned by FILTERBRANCHES to find the translations to insert in the database that give
rise to minimal side-effects. Notice that, when comparing translations for containment
(Lines 10 and 11), we do so considering only the tuples that are not already in D.

Theorem 7. Let U+
A be a set of ABox insertions. Then MINTRANSINS(J ,U+

A ) returns
every minimal source direct translation of U+

A in J .

4 Compensations and their Maxima

As noticed, given a VKG instance and an ABox update UA, if there is no exact direct
translation UD (with no side-effect) of UA, we can attempt to find an extra update oper-
ation that can be carried out in the data source to minimize the side-effect in the ABox
caused by the update in the data. We call such an extra operation a compensation of
the side-effect. In the rest of the paper, we assume that an ABox update has the form
UA = ⟨U−

A ,U+
A ⟩, such that U−

A ∩U
+
A = ∅5, and similarly we consider as corresponding

source updates UD = ⟨U−
D ,U+

D⟩ where U−
D ∩U

+
D = ∅. Coherently, we extend the notion

of side-effect to handle such combined updates. In what follows, we denote D∪U+
D\U

−
D

by D • UD. Similarly, for A•UA.

Definition 8 (Combined side-effect). Let UA = ⟨U−
A ,U+

A ⟩ be an ABox update, and
UD = ⟨U−

D ,U+
D⟩ a source update. The combined side-effect EJ (UA,UD) caused by UD

for UA is ⟨E−, E+⟩, where E− = (M(D) • UA) \ M(D • UD) is called the deletion
side-effect and E+ =M(D • UD) \ (M(D) • UA) is called the insertion side-effect. ◁

Intuitively, the deletion side-effect E− represents tuples that should remain in the ABox
but have been deleted and therefore should be added back. Symmetrically, the insertion
side-effect E+ represents unwanted tuples that have been inserted and that therefore
should be removed. Note that none, one, or both of E− and E+ in the combined side-
effect might be empty.

For a given ABox update UA and its corresponding source update UD with deletion
side-effect E−, we would now like to find extra source insertions that minimize E−.

Definition 9 (Compensation by insertion). A non-empty set Θ+ is a compensation by
insertion of EJ (UA,UD) if there are two disjoint sets E−

∆ and E+
∆ of ABox assertions

such that U−
A ∩ E+

∆ = ∅, E−
∆ ̸= ∅, E

−
∆ ⊆ E−, and EJ (UA, ⟨U−

D ,U+
D ∪ Θ+⟩) =

⟨E− \ E−
∆, E+ ∪ E+

∆⟩. ◁

In the compensation by insertion, the aim is to minimize the deletion side-effect
E− caused by the deletion of U−

D in the data source. And this is achieved when a non-
empty subset E−

∆ of E− is re-inserted when the compensation is applied in the source.
However, attempting to minimize E− might also lead to extra insertions E+

∆ in the
ABox. To maintain the initially requested deletion U−

A unaffected by the compensation,
we require that U−

A ∩ E+
∆ = ∅.

5 Since it suffices to consider TBoxes that consists of disjointness assertions only, we have that
U−
A = invcl(U−

A ), and U+
A = cl(U+

A ).
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Similar to compensating deletion side-effects by extra source insertions, we can
compensate insertion side-effects by extra source deletions.

Definition 10 (Compensation by deletion). A non-empty set Θ− ⊆ D is a compen-
sation by deletion of EJ (UA,UD) if there are two disjoint sets E−

∆ and E+
∆ of ABox as-

sertions such that U+
A ∩E

−
∆ = ∅, E+

∆ ̸= ∅, E
+
∆ ⊆ E+, and EJ (UA, ⟨U−

D ∪Θ−,U+
D⟩) =

⟨E− ∪ E−
∆, E+ \ E+

∆⟩. ◁

The aim of compensating by deletion is to minimize the insertion side-effect E+

caused by the insertion of U+
D in the data source. And this is achieved when a non-

empty subset E+
∆ is removed from E+ when the compensation is applied in the source.

However, attempting to minimize E+ might lead to deletions E−
∆ in the ABox in addi-

tion to E−
∆. Similarly to the case of compensation by insertion, to maintain the initially

requested insertion U+
A unaffected by the compensation, we require that U+

A ∩E
−
∆ = ∅.

Example 2. Consider the VKG instance J = ⟨P1, D⟩ of our motivating ex-
ample, where P1 = ⟨∅,M1,S1⟩, and D in this case consists of the follow-
ing tuples D = {SG(sup1, grant1);SG(sup1, grant2)}. Then, given M1, the
ABox insertion U+

A = {supervises(sup1, john)} and a corresponding source in-
sertion U+

D = {RS (john, sup1)}, we obtain the side-effect EJ (⟨∅,U+
A ⟩,UD) =

⟨∅, {access(john, grant1); access(john, grant2)}⟩. A possible compensation by dele-
tion might consists of an extra source deletion Θ−

1 = {SG(sup1, grant1)}. Therefore,
we obtain EJ (⟨∅,U+

A ⟩, ⟨Θ
−
1 ,U

+
D⟩) = ⟨∅, {access(john, grant2)}⟩}. ◁

Our formalization of compensation in VKGs relates to any possible operation that
can be carried out in the source to bring the resulting ABox closer to what the end user
expects after a given ABox update operation. Given the nature of VKG mappings, dif-
ferent compensations can be applied for a given ABox update and its source translation,
which leads to the need of comparing compensations.

In Example 2, if there is another compensation by deletion Θ−
2 such that

EJ (⟨∅,U+
A ⟩, ⟨U

−
D∪Θ

−
2 ,U

+
D⟩) = ⟨∅, ∅⟩, then one would prefer Θ−

2 over Θ−
1 . In general,

if Θ− is a compensation by deletion of EJ (UA,UD), then the smaller the side-effect
in EJ (UA, ⟨U−

D ∪ Θ−,U+
D⟩) due to undesired insertions, the better Θ− is. When the

insertion side-effects are equal, we also consider the deletion side-effects.

Definition 11. Let Θ−
1 , Θ−

2 be compensations by deletion of EJ (UA,UD) s.t.
EJ (UA, ⟨U−

D ∪ Θ−
1 ,U

+
D⟩ = ⟨E− ∪ E−

1 , E+ \ E+
1 ⟩ and EJ (UA, ⟨U−

D ∪ Θ−
2 ,U

+
D⟩ =

⟨E−∪E−
2 , E+\E+

2 ⟩. We say that Θ−
1 is better than Θ−

2 for EJ , and write Θ−
2 ≺J Θ−

1 ,
if E+

2 ⊊ E+
1 or we have that both E+

2 = E+
1 and E−

1 ⊊ E−
2 . ◁

Similarly, we can define an order between compensations by insertion. This means
that if Θ+ is a compensation by insertion of EJ (UA,UD), then the smaller the side-
effect in EJ (UA, ⟨U−

D ,U+
D ∪Θ+⟩) due to undesired deletions, the better Θ+ is. And if

the deletion side-effects are equal, we also consider the insertion side-effects.

Definition 12. Let Θ+
1 , Θ

+
2 be compensations by insertion of EJ (UA,UD) s.t.

EJ (UA, ⟨U−
D ,U+

D ∪ Θ+
1 ⟩ = ⟨E− \ E−

1 , E+ ∪ E+
1 ⟩ and EJ (UA, ⟨U−

D ,U+
D ∪ Θ+

2 ⟩ =
⟨E−\E−

2 , E+∪E+
2 ⟩. We say that Θ+

1 is better than Θ+
2 for EJ , and write Θ+

2 ≺J Θ+
1

if E−
2 ⊊ E−

1 or we have that both E−
2 = E−

1 and E+
1 ⊊ E+

2 . ◁
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If, for a given ABox update UA and its source translation UD, there exists a compen-
sation by deletion Θ− such that there is no other compensation of EJ (UA,UD) that is
better, then we say that Θ− is a maximal compensation by deletion that can be executed
over the source data to minimize the insertion side-effects. Analogously, we can define
a maximal compensation by insertion Θ+ that can be executed over the source data to
minimize the deletion side-effects.

Definition 13. A set Θ−
1 is a maximal compensation by deletion of EJ (UA,UD) if

there is no compensation by deletion Θ−
2 of EJ (UA,UD), such that Θ−

1 ≺J Θ−
2 . ◁

Example 3 (Continued from Example 2). The set Θ−
2 that consists of the extra source

deletion Θ−
2 = {SG(sup1, grant1);SG(sup1, grant2)} is a maximal compensation by

deletion, and we have that EJ (⟨∅,U+
A ⟩, ⟨U

−
D ∪Θ−

2 ,U
+
D⟩) = ⟨∅, ∅⟩. ◁

Definition 14. A set Θ+
1 is a maximal compensation by insertion of EJ (UA,UD) if

there is no compensation by insertion Θ+
2 of EJ (UA,UD), such that Θ+

1 ≺J Θ+
2 . ◁

4.1 Characterizing Maximal Compensations

From the definition of maximal compensation for both deletion and insertion given in
the previous section, we notice that, in principle, it can be difficult to verify whether a
compensation Θ− is maximal or not. This is mainly due to the fact that it will require
comparing Θ− with all other compensations. In other words, it will require comparing
the source deletion implied by Θ− with every other possible source deletion, leading
to minimizing the corresponding insertion side-effects. In this section, we focus on the
problem of characterizing maximal compensations by deletion or insertion for a given
ABox insertion or deletion, respectively.

For ABox insertions, a maximal compensation by deletion should ensure that no
further tuples can be deleted from the data source to minimize the insertion side-effect
further. This is the case when all ABox assertions in the insertion side-effect have at
least one branch in the database that contributes to the initial ABox update.

Proposition 15. Let EJ (UA,UD) = ⟨E−, E+⟩ and let Θ− be a compensation by dele-
tion such that EJ (UA, ⟨U−

D∪Θ−,U+
D⟩ = ⟨E−∪E−

∆, E+\E+
∆⟩. Then, Θ− is a maximal

compensation by deletion if and only if for every f ∈ E+ \ E+
∆ there exists a branch

B ∈ lineage(f,P, D •⟨U−
D ∪Θ−,U+

D⟩) such that B ⊆ U+
D .

For ABox deletions, one needs to ensure that no extra tuples can be inserted in
the data source to minimize the deletion side-effect. Based on that, an intuitive way to
characterize a maximal compensation by insertion is to check whether the assertions in
the deletion side-effect cannot be inserted back without affecting the initially requested
ABox deletion.

Proposition 16. Let EJ (UA,UD) = ⟨E−, E+⟩ and let Θ+ be a compensation by in-
sertion such that EJ (UA, ⟨U−

D ,U+
D ∪ Θ+⟩) = ⟨E− \ E−

∆, E+ ∪ E+
∆⟩. Then, Θ+ is a

maximal compensation by insertion if and only if for every f ∈ E− \E−
∆, we have that

U−
A ∩M(D •⟨U−

D ,U+
D ∪Θ+⟩ ∪T ) ̸= ∅ for every minimal translation by insertion T of

{f}.
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Algorithm 4: COMPBYDEL (J ,UA,UD)

input : A VKG instance J = ⟨P, D⟩. An ABox update UA.
A translation UD = ⟨U−

D ,U+
D⟩ of UA, where U+

D is minimal.
output: A set of source deletions.

1 ⟨E−, E+⟩ ← EJ (UA,UD);
2 T = {T1, . . . , Tn} ← MINTRANSDEL(⟨P, D • UD⟩, E+);
3 U−

D ← {T \ U
+
D | T ∈ T};

4 return U−
D \ {∅};

5 Side-Effect Minimization in VKG Updates

We discuss now how to effectively minimize side-effects in VKG updates through an
approach that recursively applies compensations for previously carried out data source
insertions or deletions. We deal first with the case where we start with the insertion
operation and with the corresponding compensation by deletion.

5.1 Computing Maximal Compensations by Deletion

For an ABox insertion U+
A , the goal of the compensation by deletion is to reduce

the insertion side-effect E+, while ensuring that the initial insertion U+
A remains un-

affected. However, we observe that while attempting to reduce E+, we might in-
advertently increase the deletion side-effect E−. Due to the nature of VKG map-
pings, it might not always be possible to eliminate the insertion side-effects with-
out affecting the initial ABox insertion. E.g., in Example 2, if M includes the as-
sertion RS (x, y) ⇝ Researcher(x), then the translation RS (john, sup1) of the
ABox insertion supervise(sup1, john) will lead to the insertion side-effect E+ =
{Researcher(john), access(john, grant1)}. In this case, it is impossible to delete the
assertion Researcher(john) without affecting the original insertion.

When the insertion side-effect E+ cannot be completely removed, we try to find
its maximal subset that can be removed without affecting the original ABox insertion.
In other words, we try to find a subset of the data source whose deletion will lead to
a maximal compensation by deletion. Algorithm COMPBYDEL (Alg. 4) takes as in-
put a VKG instance J , an ABox update UA, and its translation UD = ⟨U−

D ,U+
D⟩, and

computes the set of direct translations by deletion (computed by MINTRANSDEL) of
the insertion side-effect (i.e., the second component of EJ (UA,UD)) for the updated
database D • UD. It then eliminates (at Line 3) the tuples in U+

D from each such trans-
lation, to ensure that tuples that are to be inserted are not part of the compensation by
deletion. This is why we require that in the translation UD given as input, U+

D is mini-
mal. We also observe that U+

D might include tuples that originally were in D, and that
therefore are actually not inserted (again) as part of the database update. However, since
they are part of U+

D , Line 3 ensures that all tuples of U+
A are kept in the ABox update.

Theorem 17. Every set in COMPBYDEL(J ,UA,UD) is a maximal compensation by
deletion of EJ (UA,UD).
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Algorithm 5: COMPBYINS (J ,UA,UD)

input : A VKG instance J = ⟨P, D⟩. An ABox update UA = ⟨U−
A ,U+

A ⟩.
A translation UD = ⟨U−

D ,U+
D⟩ of UA, where U−

D is minimal.
output: A set of source insertions.

1 ⟨E−, E+⟩ ← EJ (UA,UD);
2 T = {T1, . . . , Tn} ← MINTRANSINS(⟨P, D • UD⟩, E−);
3 S← {T \ U−

D | T ∈ T};
4 U+

D ← ∅;
5 for each translation Θ+ ∈ S such that Θ+ ̸= ∅ do
6 ⟨E−

1 , E+
1 ⟩ ← EJ (UA, ⟨U−

D ,U+
D ∪Θ+⟩);

7 if E+
1 ∩ U

−
A = ∅ then U+

D ← U+
D ∪ {Θ

+};
8 return U+

D;

5.2 Computing Maximal Compensations by Insertion

Similarly to how we address compensation by deletion for ABox insertions, the goal of
compensation by insertion for ABox deletions is to reduce the deletion side-effect E−,
while ensuring that the initial deletion U−

A remains unaffected. Also, note that while
attempting to reduce E−, we might unintendedly increase the insertion side-effect E+.

Algorithm COMPBYINS (Alg. 5) takes as input a VKG instance J , an ABox update
UA, and its source translation UD, and computes the set of direct translations by inser-
tion (computed by MINTRANSINS) of the deletion side-effect (i.e., the first component
of EJ (UA,UD)) for the updated database D • UD. It then eliminates (at Line 3) the tu-
ples in U−

D from each translation to ensure disjointness between the final insertion and
deletion translations. Finally, for each translation, it computes the insertion side-effect
E+

1 (Line 6) and rejects the translation if it contains some tuple from U−
A (Line 7).

Theorem 18. Every set Θ+ ∈ COMPBYINS(J ,UA,UD) is a maximal compensation
by insertion of EJ (UA,UD).

5.3 Computing Source Translations with Minimal Side-Effects

We now leverage the notion of compensation to minimize side-effects for translat-
ing a given ABox update. Since insertions and deletions are managed separately, our
compensation mechanism will consist of a recursive sequence of insertions and dele-
tions to minimize side-effects in the ABox. This means that, for a given ABox inser-
tion U+

A (resp., deletion U−
A ) in J , our algorithm returns a set of possible translations

UD = ⟨U−
D ,U+

D⟩ over the source with minimum side-effects.
For the case of insertion, Algorithm POSTINSERTION (Alg. 6) takes as input an

ABox insertion U+
A and a set T of possible source translations. For each translation

UD = ⟨U−
D ,U+

D⟩ ∈ T, it tries to minimize the insertion side-effect by applying COMP-
BYDEL (Alg. 4) (at Line 3), which will lead to compensations by deletion of the initial
insertion U+

D . For each compensation by deletion Θ−, it tries to minimize the deletion
side-effect by applying COMPBYINS (Alg. 5) (at Line 7), which will lead to com-
pensations by insertion Θ+. At Line 11, it adds to the solution UD a recursive call
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Algorithm 6: POSTINSERTION (J ,U+
A ,T)

input : A VKG instance J = ⟨P, D⟩. A set U+
A of ABox insertions.

A set T of source translations of U+
A .

output: A set of source translations of U+
A .

1 UD ← ∅;
2 for each translation ⟨U−

D ,U+
D⟩ ∈ T do

3 Θ− = {Θ−
1 , . . . , Θ−

n } ← COMPBYDEL(J ,UA, ⟨U−
D ,U+

D⟩);
4 if Θ− = ∅ then UD ← UD ∪ {⟨U−

D ,U+
D⟩};

5 else
6 for each compensation Θ− ∈ Θ− do
7 Θ+ = {Θ+

1 , . . . , Θ
+
m} ← COMPBYINS(J ,UA, ⟨U−

D ∪Θ−,U+
D⟩);

8 if Θ+ = ∅ then UD ← UD ∪ {⟨U−
D ∪Θ−,U+

D⟩};
9 else

10 S = {⟨U−
D ∪Θ−,U+

D ∪Θ+⟩ | Θ+ ∈ Θ+};
11 UD ← UD ∪ POSTINSERTION(J ,U+

A ,S);

12 return UD;

of POSTINSERTION over U+
A and the set S of all possible pairs of compensations by

deletion Θ− and by insertion Θ+. Note that, if the set of compensations is empty, the
algorithm keeps the solution without compensation (see Lines 4 and 8).

Theorem 19. Let J = ⟨P, D⟩ be a VKG instance where P = ⟨∅,M,S⟩, U+
A

an ABox insertion, and T a set of translations of U+
A over J . Then, Algorithm

POSTINSERTION(J ,U+
A ,T) always terminates.

Finally, we propose Algorithm INSERTION (Alg. 7) for an ABox insertion U+
A over a

VKG instance. It first computes the set of direct translations of U+
A (Line 1) and applies

Algorithm 7: INSERTION (J ,U+
A )

input : A VKG instance J = ⟨P, D⟩. A set U+
A of ABox insertions.

output: A set of source translations of U+
A with minimal side-effect.

1 T = {T1, . . . , Tn} ← MINTRANSINS(J ,U+
A );

2 Θ← POSTINSERTION(J ,U+
A , {⟨∅, T ⟩ | T ∈ T});

3 UD ← {};
4 for each translation Θ ∈ Θ do
5 if ⟨T ,M(D •Θ)⟩ is consistent then
6 add← true;
7 for each translation Θ⋆ ∈ UD do
8 if COMPAREJ (Θ⋆, Θ) = ’<’ then add ← false;
9 else if COMPAREJ (Θ,Θ⋆) = ’<’ then UD ← UD \ {Θ⋆};

10 if add then UD ← UD ∪ {Θ};

11 return UD;
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the POSTINSERTION (Alg. 6) mechanism on each direct translation (Line 2). It then
compares the obtained translations and filters out the ones that lead to larger side-effects
according to the abstract comparison function COMPAREJ (Lines 5 to 10). Notice that
COMPAREJ compares two translations Θ1 and Θ2 in terms of their side-effect, and
similar to COMPARE−

J and COMPARE+
J , returns ’<’ if Θ1 has less side-effects that Θ2.

Theorem 20. Let J = ⟨P, D⟩ be a VKG instance where P = ⟨∅,M,S⟩ and U+
A an

ABox insertion. Then, Algorithm INSERTION(J ,U+
A ) computes a set of source transla-

tions of U+
A with minimal side-effect.

The deletion procedure is symmetric to the insertion procedure. Algorithm POST-
DELETION takes as input an ABox deletion U−

A and a set T of possible source trans-
lations, and recursively applies compensations by insertion and deletion until no fur-
ther compensation is possible. Algorithm DELETION takes as input an ABox deletion
U−
A , computes a set T of possible direct translations, and also applies Algorithm POST-

DELETION to minimize the side-effects of the deletions caused by the translations in T.

6 Conclusions

This paper builds upon recent work on instance-level updates in VKGs [17]. Specif-
ically, we propose a compensation procedure to address side-effects caused by ABox
deletions and insertions, aiming to minimize unintended deletions and insertions, re-
spectively. We introduce the concept of order among compensations for given ABox
updates, leading to the notion of maximum compensation, and we explore its prop-
erties and justify its role in minimizing side-effects. Based on that, we proposed two
methods, DELETION and INSERTION, that respectively take ABox deletions and ABox
insertions, and recursively apply a sequence of maximum compensations by insertion
and deletion in order to converge towards an update with minimum side-effect in the
ABox. The computation of the maximum recovery and the lineage of ABox assertions
that are essential parts of our proposed methods can be done at compile time, and the
translation of ABox deletions can be done at run-time and is exponential in the size of
its lineage branches. However, the translation of ABox insertions remains challenging
due to the non-injective nature of VKG mappings. The complexity of finding the right
combination is exponential in the size of the data source and the provided ABox inser-
tion. In a practical setting, constraints over the source data or various techniques can be
used to derive the right assignments.

We are currently working on implementing our algorithms by exploiting the query
reformulation techniques of state-of-the-art tools for VKGs, specifically the open source
system Ontop [4,21].
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